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Abstract

The Bayesian estimation of the spectral density of the AR(2) pro-
cess is considered. We propose a superharmonic prior on the model
as a noninformative prior rather than the Jeffreys prior. Theoretically
the Bayesian spectral density estimator based on it dominates asymp-
totically the one based on the Jeffreys prior under the Kullback-Leibler
divergence. In the present paper, an explicit form of a superharmonic
prior for the AR(2) process is presented and compared with the Jeffreys
prior in computer simulation.

1. INTRODUCTION

The p-th order autoregressive (AR(p)) model is widely-known in the time se-
ries analysis. It consists of the data {xt} and satisfying xt = −

∑p
i=1 aixt−i+

εt, where {εt} is a Gaussian white noise with mean 0 and variance σ2. The
point estimation of the AR parameters a1, · · · , ap is well understood and
has been vigorously investigated for a long time. On the other hand, the
AR(p) model is surprizingly challenging to objective Bayesians, even in the
comparatively simple case of known σ2, as is discussed in Phillips (1991).
The AR(1) model was investigated in such a Bayesian viewpoint by Berger
and Yang (1994). Their approach is based on the reference prior method
and the stationarity is not assumed. In contrast, assuming the stationarity,
we focus on the Bayesian estimation of the spectral density of the AR(2)
model and propose a superharmonic prior as a noninformative prior.

The spectral density estimation in the Bayesian framework and the su-
perharmonic prior approach is briefly reviewed in Section 2.1. Our argument
is mainly based on the geometrical properties of the AR(p) model manifolds
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endowed with the Fisher metric. General definition of the AR(p) model
manifolds are given in Section 2.2. We also rewrite the Fisher metric in the
simple form and give the Jeffreys prior for the AR(2) process by introducing
a new coordinate. A superharmonic prior for the AR(p) process is defined
in Section 3.1 and an explicit form is given in the AR(2) process in Section
3.2. Although in an asymptotic sense superharmonic prior distributions
are shown to be better than the Jeffreys prior distributions in our setting,
we perform the numerical simulation in the AR(2) process and the result
ensures this fact in Section 4.

2. THEORETICAL PRELIMINARY

2.1. Our motivation

Let us consider a parametric model of stationary Gaussian process with its
mean parameter zero. It is known that a stationary Gaussian process corre-
sponds to its spectral density one-to-one. Thus, we focus on the estimation
of the true spectral density S(ω|θ0) in a parametric family of spectral den-
sities

M := {S(ω|θ) : θ ∈ Θ ⊆ Rk}.

The performance of a spectral density estimator Ŝ(ω) is evaluated by the
Kullback-Leibler divergence.

D(S(ω|θ0)||Ŝ(ω)) :=
∫ π

−π

dω

4π

{
S(ω|θ0)
Ŝ(ω)

− 1 − log

(
S(ω|θ0)
Ŝ(ω)

)}
.

Then, let us consider minimizing the average risk. First we assume that a
proper prior distribution π(θ) is known in advance. The spectral density
estimator minimizing the average risk,

EΘEX [D(S(ω|θ)||Ŝ(ω))]

:=
∫

dθπ(θ)
∫

dx1 . . . dxnpn(x1, . . . , xn|θ)D(S(ω|θ)||Ŝ(ω)),

is given by the Bayesian spectral density (with respect to π(θ)), which is
defined by

Sπ(ω) :=
∫

S(ω|θ)π(θ|x)dθ. (1)

We call the r.h.s. of the above definition (1) a Bayesian spectral density
even when an improper prior distribution is considered.

If one has no information on the unknown parameter θ, it is natural to
adopt a noninformative prior in the Bayesian framework. Although there
are arguments on the choice of a noninformative prior, usually the Jeffreys
prior seems to be adopted. However, Tanaka and Komaki (2005) show that
in the ARMA process there exists another candidate as a noninformative
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prior if there exists a positive superharmonic function on the ARMA model
manifold with the Fisher metric. We call this candidate a superharmonic
prior, whose definition is given later. It is a non-i.i.d. extension of the
work by Komaki (2006). In his paper, Komaki (2006) also pointed out that
a sufficient condition for the existence of superharmonic priors is that the
model manifold has a non-positive sectional curvature.

Now we focus on the AR process. Tanaka and Komaki (2003) evaluated
the sign of the sectional curvature of the AR model manifold with the above
motivation. They showed that the sectional curvature on the AR(2) model
always has a negative sign, while those on the AR(p) models (p ≥ 3) could
have a positive sign at some points. Thus, it was shown that there exists a
superharmonic prior (at least) for the AR(2) process.

But we emphasize that the above result only ensures the existence of a
superharmonic prior for the AR(2) process. When estimating the spectral
density of the AR process from the observed data, one needs an explicit
form of a positive superharmonic function on the model manifold. Thus, the
purpose of this paper is to give the explicit form of a positive superharmonic
function on the AR(2) model manifold and the superharmonic prior derived
from it. Numerical simulation is also performed and its result illustrates the
validity of our method.

2.2. Fisher metric on the AR(p) model manifold

Here, we briefly summarize the AR(p) model manifold and some geometrical
facts needed in the present paper.

The Riemannian metric of a model specified by a parametric family of
spectral densities M := {S(ω|θ)|θ ∈ Θ}, where θ is a finite-dimensional
parameter, is

gij := g

(
∂

∂θi
,

∂

∂θj

)
=

1
4π

∫ π

−π
dω

∂iS(ω|θ)
S(ω|θ)

∂jS(ω|θ)
S(ω|θ)

, (2)

where ∂i := ∂
∂θi . We call it the Fisher metric. In the information geometry,

considering θ as a coordinate, we call M a model manifold, or shortly a
model, see Amari (1987) and Amari and Nagaoka (2000).

The explicit form of the spectral density of the AR model is given by

S(ω, a1, · · · , ap, σ
2) =

σ2

2π

1
|Ha(z)|2

, z = eiω, (3)

where Ha(z) is the charateristic polynomial, z is the shift operator, i.e.,
zxt = xt+1, and

xt = Ha(z)−1εt, Ha(z) :=
p∑

i=0

aiz
−i with a0 = 1 .
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Here, we use another coordinate system, which brings us a more conve-
nient form to consider it. Equation zpHa(z) = zp +a1z

p−1 + · · ·+ap−1z +ap

is a p-degree polynomial and has p complex roots, z1, z2, · · · , zp (Note that
|zi| < 1 from the stationarity condition). Since a1, a2, · · · , ap are all real, it
consequently has the conjugate roots. Thus, we can put them in the order
like, z1, · · · , zq, zq+1, · · · , z2q ∈ C, z2q+1, · · · , z2q+r ∈ R and zq+j = z̄j(1 ≤
j ≤ q) (for simplicity, we assume that there are no multiple roots). The
roots z1, z2, · · · , zp correspond to the original parameter a1, a2, · · · , ap one-
to-one. Let us introduce a coordinate system (θ0, θ1, · · · , θp) using these
roots

θ0 := σ2, θ1 := z1, θ2 := z2, · · · , θp := zp.

In the remainder of the paper indices I, J,K, · · · run 0, 1, · · · , p and indices
i, j, k, · · · run 1, 2, · · · , p. The formal complex derivatives are defined by

∂

∂zi
:=

1
2

(
∂

∂xi
+ i

∂

∂yi

)
,

∂

∂z̄i
:=

1
2

(
∂

∂xi
− i

∂

∂yi

)
,

see, for example, Gunning and Rossi (1965). Since the conjugate complex
coordinates zi and z̄i correspond to xi and yi one-to-one, we are always able
to go back to the real coordinates xi and yi once we need. In the coordinate
system given above, the Fisher metric on the AR(p) model gIJ is given by

gIJ =


g00 · · · g0i · · ·
... · · · · · · · · ·

gi0
... gij

...
...

... · · ·
...

 and


g00 = 1

2(θ0)2
= 1

2σ4

g0i = gi0 = 0
gij = 1

1−zizj

, (4)

see Komaki (1999) for more details of information geometric quantities.
Now we can easily obtain the Jeffreys prior πJ(θ) for the AR(2) process

using the Fisher metric (4). The Jeffreys prior πJ(θ) is improper prior and
given by

πJ(θ) ∝
√
|g|

=

√
1

2(θ0)2

∣∣∣∣∣ (θ1 − θ2)2

{1 − (θ1)2}{1 − (θ2)2}(1 − θ1θ2)2

∣∣∣∣∣
1
2

,

where g := det(gIJ). In the next section, we derive a superharmonic prior
on the AR(2) model using these forms.
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3. SUPERHARMONIC PRIOR FOR THE AR(2)
PROCESS

In this section, we describe the definition of a superharmonic prior and give
an example of it for the AR(2) process.

3.1. Superharmonic prior

Let M denote a Riemannian manifold with a coordinate θ. A scalar function
φ(θ) on M is called a superharmonic function if it satisfies,

∆φ(θ) ≤ 0 ∀θ,

where ∆ is the Laplace-Beltrami operator. Let gIJ be a Riemannian metric
(Fisher metric), gIJ , the inverse of gIJ , and g := det(gIJ). The Laplace-
Beltrami operator is defined by

∆φ :=
1
√

g

∂

∂θI

(√
ggIJ ∂

∂θJ
φ

)
.

Note that we adopt Einstein’s summation convention: if an index occurs
twice in any one term, once as an upper and once as a lower index, summa-
tion over that index is implied.

If a superharmonic function is positive, i.e., φ(θ) > 0, ∀θ, then it is
called a positive superharmonic function. When a model manifold with the
Fisher metric has a positive superharmonic function φ(θ), we call πH(θ) :=
πJ(θ)φ(θ) a superharmonic prior. Note that not all model manifolds with
the Fisher metric have a superharmonic prior while all of them have the
Jeffreys prior.

In the AR(p) model manifold, ∆ can be decomposed into two parts. One
part is relevant with θ0 = σ2 and the others with θ1, · · · , θp. We show it
in the following for later convenience. First, we divide the metric into two
componets, 00 and ij. Let us define hij := gij , hij := h−1

ij , h := det(hij).
Then,

g = det(gIJ) = g00h,

gIJ := (gIJ)−1 =


g−1
00 0 · · · 0
0
... hij

0

 .

We obtain the decomposition of ∆ using hij .

∆φ =
1

√
g00

√
h

∂

∂θI

(√
g00

√
h

(
gI0∂0φ + gIj∂jφ

))
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=
1

√
g00

√
h

{
∂

∂θ0

(√
g00

√
hg00∂0φ

)
+

∂

∂θi

(√
g00

√
hhij∂jφ

)}
=

1
√

g00

∂

∂θ0

(√
g00g

00∂0φ
)

+
1√
h

∂

∂θi

(√
hhij∂jφ

)
= ∆0φ + ∆hφ,

where we used the identies below.

g0j = 0,
∂

∂θ0

√
h = 0,

∂

∂θi

√
g00 = 0.

In the last line, both terms are defined as

∆0φ :=
1

√
g00

∂

∂θ0

(√
g00g

00∂0φ
)

,

∆hφ :=
1√
h

∂

∂θi

(√
hhij∂jφ

)
.

We can, thus, consider each term ∆0 and ∆h separately. Observing that

g00 =
1

2(θ0)2
, g00 = 2(θ0)2, θ0 := σ2 > 0

and ∆0 is rewritten as

∆0φ = 2(θ0)2
(

∂

∂θ0

)2

φ + 2θ0 ∂φ

∂θ0
.

Therefore, in order to find out a positive superharmonic function, it is
enough to find φh(θ1, · · · , θp) out satisfying{

φh(θ1, · · · , θp) > 0
∆hφh(θ1, · · · , θp) ≤ 0

for |θi| < 1, i = 1, · · · , p . (5)

It is easily seen that φh satisfies the original condition ∆φh ≤ 0 since ∆0φh =
0.

3.2. An example of superharmonic priors πH for the AR(2)
process

From here on, we consider the AR(2) model only and fix σ2 = 1. Since
we assume the stationarity condition, the parameter region on the AR(2)
model is given by

Ω := {θ = (θ1, θ2) = (z1, z2) : |z1| < 1, |z2| < 1}

Fortunately, we find out one positive superharmonic function on this model.
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Proposition 3.1. A positive superharmonic function on the AR(2) model
is given by

φ(z1, z2) := 1 − z1z2.

Thus, a superharmonic prior for the AR(2) process is given by

πH(z1, z2) ∝
∣∣∣∣∣ (z1 − z2)2

(1 − z2
1)(1 − z2

2)

∣∣∣∣∣
1
2

.

Proof.
From the stationarity condition, it is easily seen that φ(z1, z2) > 0. Next,

we will show that
∆hφ(z1, z2) = −φ(z1, z2) < 0. (6)

Both (6) and ∆0φ = 0 indicate that φ(z1, z2) is a superharmonic function.
In the AR(2) model, ∆hφ is written in the following way.

∆hφ =
1√
h

∂

∂zi

(
√

hhij ∂

∂zj
φ

)

=
∂

∂z1

(
h11 ∂φ

∂z1
+ h12 ∂φ

∂z2

)
+

∂

∂z2

(
h21 ∂φ

∂z1
+ h22 ∂φ

∂z2

)
+

1
2h

(
∂h

∂z1

) (
h11 ∂φ

∂z1
+ h12 ∂φ

∂z2

)
+

1
2h

(
∂h

∂z2

) (
h21 ∂φ

∂z1
+ h22 ∂φ

∂z2

)
,

where hij with p = 2 is represented by

hij = gij =

 1
1−z2

1

1
1−z1z2

1
1−z1z2

1
1−z2

2

 .

Determinant h and the inverse matrix hij are given below.

h = h11h22 − h12h21 =
(z1 − z2)2

(1 − z2
1)(1 − z2

2)(1 − z1z2)2
,

hij =
1
h

 1
1−z2

2
− 1

1−z1z2

− 1
1−z1z2

1
1−z2

1

 .

Using the above, it is straightforward to obtain (6) Q.E.D.

4. SIMULATION

In the last section, we obtained a superharmonic prior πH(θ) for the AR(2)
process. It is shown to be better than the Jeffreys prior πJ(θ) in an asymp-
totic sense in Tanaka and Komaki (2005). From numerical simulation we
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Figure 1: Histgram of the Kullback-Leibler divergence (Upper:D(ST , ŜJ),
Lower:D(ST , ŜH))

can see directly that the Bayesian estimator of the spectral density based on
our superharmonic prior gives a better estimating method than that based
on the Jeffreys prior.

Our simulation goes as follows: First we generate 100 groups of the
observed data x = (x1, x2, · · · , xN ) under the AR(2) process with a1, a2

fixed. For simplicity, we fix σ2 = 1, and the length of the time series is set
N = 10. Then, we construct a posterior distribution πJ(θ|x) using πJ(θ)
and another one πH(θ|x) using πH(θ). Two kinds of the Bayesian estimator
of the spectral density, ŜJ(ω), ŜH(ω) are given by

ŜJ(H)(ω) :=
∫ ∫

S(ω|a1, a2)πJ(H)(a1, a2|x)da1da2.

Finally we calculate the Kullback-Leibler divergence from the true spectral
density ST (ω|a1, a2) to ŜJ(ω), ŜH(ω) for each observation. For example,
Figure 1 shows the histgram of the Kullback-Leibler divergence with a1 =
0.5, a2 = −0.3. Obviously ŜH(ω) performs better than ŜJ(ω) in the sense
that the former estimator of the spectral density is more concenterated on
the true density ST (ω). Similar results hold with other sets of the AR
parameters. This result illustrates the validity of our method in a practical
application .

5. CONCLUDING REMARKS

We indicated how to estimate the spectral density on the AR(2) process in
the Bayesian framework by introducing a superharmonic prior.

Our attention was paid only to the AR(2) model. We briefly describe the
MA models. Generally, the MA models are completely different from the AR
models as a stochastic process and in the information geometrical viewpoint
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they are known to have the different structures. These models, however,
have the same structure in the Riemaniann geomerical viewpoint, i.e., the
Fisher metric in the same order coincides under the appropriate coordinate
transformation. In particular, the same result as the AR(2) model holds in
the MA(2) model.

We also note that a superharmonic prior could exist for the higher order
(i.e. p ≥ 3) AR processes and other stochastic processes such as ARMA
processes. Thus, we will try to enlarge our method to them. It is also
important in practice to give a construction algorithm to obtain an explicit
form of a positive superharmonic function once it is shown to exist on a
statistical model manifold.

ACKNOWLEDGEMENT

One of the authors, F. Tanaka, was supported by the JSPS Research Fel-
lowships for Young Scientists.

REFERENCES

AMARI, S. (1987) Differential geometry of a parametric family of invertible
linear systems - Riemannian metric, dual affine connections, and diver-
gence. Mathematical System Theory 20, 53–82.

AMARI, S. and NAGAOKA, H. (2000) Methods of Information Geometry.
Oxford: American Mathematical Society.

BERGER, J. YANG, R.Y. (1994) Noninformative priors and Bayesian test-
ing for the AR(1) model. Econotmeric Theory 10, 461–482.

GUNNING, C. and ROSSI, H. (1965) Analytic Functions of Several Complex
Variables. Englewood Cliffs, New Jersey: Prentice-Hall.

KOMAKI, F. (1999) Estimating method for parametric spectral densities.
Journal of Time Series Analysis 20, 31–50.

KOMAKI, F. (2006) Shrinkage priors for Bayesian prediction. to appear in
Annals of Statistics.

TANAKA, F. and KOMAKI, F. (2003) The sectional curvature of AR model
manifolds. Tensor 64, 131–143.

TANAKA, F. and KOMAKI, F. (2005) Asymptotic expansion of the risk
difference of the Bayesian spectral density in the ARMA model. Mathe-
matical Engineering Technical Reports 2005–31.

PHILLIPS, P. C. B. (1991) To criticize the critics: An objective Bayesian
analysis of stochastic trends. Journal of Applied Econometrics 6, 333–364.

9


