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Abstract

In this paper, we propose a fully polynomial-time randomized approximation scheme (FPRAS)
for the closed Jackson network. Our algorithm is based on Markov chain Monte Carlo (MCMC)
method. Thus, our scheme returns an approximate solution, of which the size of error satisfies
a given error rate. To our knowledge, the algorithm is the first polynomial time MCMC algo-
rithm for closed Jackson networks with multiple servers. We propose two of new ergodic Markov
chains, both of which have a unique stationary distribution that is the product form solution
of closed Jackson networks. One of them is for approximate sampler, and we show it mixes
rapidly. The other is for perfect sampler based on monotone coupling from the past (CFTP)
algorithm proposed by Propp and Wilson, and we show it has a monotone update function.

1 Introduction

A Jackson network is one of the basic and significant models in queueing network theory. In the
model, customers receive service at nodes with multiple exponential servers on first-come-first-
served (FCFS) basis, and move stochastically to a next node when service is completed. In [14],
Jackson showed that the network has a product-form solution as the steady-state distribution of
customers in the network [15, 12]. By computing the normalizing constant of the product-form
solution, we can obtain important performance measures like as throughput, rates of utilization of
stations, and so on.

There is well-known Buzen’s algorithm [5], which computes the normalizing constant of the
product-form solution. However, the running time of Buzen’s algorithm is pseudo-polynomial time
depending on the number of customers in a closed network. Chen and O’Cnneide [7] proposed
a randomized algorithm based on Markov chain Monte Carlo (MCMC), but in some very special
cases it becomes a polynomial-time algorithm. In [24], Ozawa proposed a perfect sampler for closed
Jackson networks with single servers, however his chain mixes in pseudo-polynomial time.

In this paper, we propose a fully polynomial-time randomized approximation scheme (FPRAS)
for calculating the normalizing constant of the product form solution of a closed Jackson network.
We deal with the model that a given network is strongly connected, a class of customers is unique,
no customer leaves or enters the network, and each node has multiple servers. Our algorithm is

1He is supported by the Research Fellowship of the Japan Society for the Promotion of Science for Young Scientists.
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based on MCMC method, and the approximation rate of our scheme is theoretically guaranteed in
a stochastic form. Precisely, for any given parameter ε and δ, satisfying 0 < ε < 1, 0 < δ < 1, an
approximate solution Z obtained by our algorithm satisfies

Pr[|Z − A| ≤ εA] ≥ 1 − δ

where A is the exact solution.
We propose two ergodic Markov chains, both of which have a unique stationary distribution

that is the product-form solution of a given closed Jackson network. Here we note that our chains
are NOT a simulation of a given queueing network, but just have a unique stationary distribution
which is the same as the product-form solution of a network. We show that the mixing time of
our chain for approximate sampler is bounded by n(n − 1) ln(Kε−1)/2 for an arbitrary positive
ε < 1, where n is the number of nodes and K is the number of customers. A key idea which derives
polynomiality is not to simulate behavior of customers in a network, while both algorithms of [7]
and [24] simulate behavior of customers. We estimate the mixing time by using a technique of path
coupling introduces in [4]. On the other hand, we show the monotonicity of the other chain, and
design a perfect sampler based on monotone coupling from the past (monotone CFTP) algorithm
proposed by [25].

2 Jackson Network

We denote the set of real numbers (non-negative, positive real numbers) by R (R+, R++), and the
set of integers (non-negative, positive integers) by Z (Z+, Z++), respectively. A closed Jackson
network is a queueing network model satisfying the followings;
(i) The network has n ∈ Z++ nodes. Node i ∈ {1, . . . , n} contains si ∈ Z++ servers, thus at most
si customers can receive services on node i at a time.
(ii) In each node, customers are served on first-come-first-served (FCFS) basis. The servicing time
of every server on node i ∈ {1, . . . , n} is exponentially distributed with mean 1/µi ∈ R++.
(iii) Once served in node i ∈ {1, . . . , n}, a customer goes to node j ∈ {1, . . . , n} with probability
Wij ∈ R+. We assume that the matrix W = (Wij) of transition probability of customers is
irreducible and aperiodic, so ergodic.
(iv) No customers leave or enter the network. Thus, we assume that there are always K ∈ Z++

customers in the network.
In queueing network theory, it is well-known that a closed Jackson network has a product form

solution, described below, as a steady state distribution of customers in a network. First, we
introduce the set of non-negative integer points

∆(K) def.=
{
x = (x1, x2, . . . , xn) ∈ Zn

+ |
∑n

i=1 xi = K
}

in an n−1 dimensional simplex. Clearly, a state of K customers on nodes in a network with n nodes
is represented by x = (x1, x2, . . . , xn) ∈ ∆(K). Since matrix W of the transition probability of
customers is ergodic, 1 is an eigenvalue and corresponding eigenvector is unique, excluding constant
factor. Let θ ∈ Rn

++ be an eigenvector for W with corresponding to the eigenvalue 1, i.e., θW = θ.
The steady-state distribution JK : ∆(K) → R++ for the closed Jackson network is product form
defined by

JK(x) =
1

G(K)

n∏
i=1

αi(xi), (2.1)
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where αi : Z+ → R++ is a function defined by

αi(z) def.=
1∏z

j=1 min{j, si}

(
θi

µi

)z

≡


1
z!

(
θi

µi

)z

(z ≤ si),

1
sz−si
i si!

(
θi

µi

)z

(z > si),
(2.2)

for z ∈ Z+, (we denote
∏0

j=1 min{j, si}
def.= 1 and 0! def.= 1), and G(K) def.=

∑
x∈∆

∏n
i=1 αi(xi) is the

normalizing constant. For convenience we denote α(x) def.=
∏n

i=1 αi(xi) for any x ∈ Zn
+.

3 Randomized Approximation Scheme

In the following we consider a closed Jackson network with n nodes and K customers which has
the product form solution (2.1) for any x ∈ ∆(K).

In this section, we give an FPRAS for calculating the normalizing constant G(K) of product
form solution for a closed Jackson network. Our approximation scheme is a standard Jerrum-
Sinclair type recursive algorithm [17, 16], while there are some technical points.

3.1 Outline of approximation scheme

In this subsection, we outline our approximation scheme.
For a non-negative integer N ∈ Z+, and a non-negative integer vector c ∈ Zn

+, we define a
constant G(N ; c) by

G(N ; c) def.=
∑

x∈∆(N)

n∏
i=1

αi(xi + ci).

Clearly, G(K;0) = G(K), what we want to compute. Given a node j in the network, we define a
set Ξj(N) ⊂ ∆(N) by

Ξj(N) def.=
{
x ∈ ∆(N) | xj ≥

⌈
N
n

⌉}
.

Note that the convex hull of Ξj(N) is also a simplex. We denote the jth unit vector by ej , whose
jth element is one and others are zeros. Given a node j in the network, there is a bijection between
Ξj(N) and ∆

(
N −

⌈
N
n

⌉)
, since obviously the properties

[∀y ∈ ∆
(
N −

⌈
N
n

⌉)
, y +

⌈
N
n

⌉
ej ∈ Ξj(N)] and [∀x ∈ Ξj(N), x −

⌈
N
n

⌉
ej ∈ ∆

(
N −

⌈
N
n

⌉)
]

hold. The subset Ξj(N) of ∆(N) naturally leads the constant

Fj(N ; c) def.=
∑

x∈Ξj(N)

n∏
i=1

αi(xi + ci).

Then we can see that

Fj(N ; c) =
∑

x∈Ξj(N)

n∏
i=1

αi(xi + ci)

=
∑

y∈∆(N−dN
n e)

αj

(
yj + cj +

⌈
N
n

⌉) ∏
i6=j

αi(yi + ci)

= G
(
N −

⌈
N
n

⌉
; c +

⌈
N
n

⌉
ej

)
.
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Thus,

G(N ; c) =
G(N ; c)
Fj(N ; c)

· G
(
N −

⌈
N
n

⌉
; c +

⌈
N
n

⌉
ej

)
(3.1)

holds and we can compute G(N ; c) if we know the ratio

Fj(N ; c)
G(N ; c)

=
∑

x∈Ξj(N)

∏n
i=1 αi(xi + ci)

G(N ; c)

and the constant G
(
N −

⌈
N
n

⌉
; c +

⌈
N
n

⌉
ej

)
. We define a function JN

c : ∆(N) → R++ by

JN
c (x) def.=

1
G(N ; c)

n∏
i=1

αi(xi + ci), (3.2)

which is a probability function on ∆(N) satisfying

Fj(N ; c)
G(N ; c)

=
∑

x∈Ξj(N)

JN
c (x).

Then we can estimate the ratio Fj(N ; c)/G(N ; c) by the Monte Carlo method with a sampler
for JN

c . By using the equation (3.1) recursively, we can compute the constant G(K) as follows.
Given a sequence of indices (nodes) (i0, i1, . . . , iR−1) ∈ {1, . . . , n}R, we obtain that

G(K) = G(K;0)

= G(K1; c1) · G(K0; c0)
Fi0(K0; c0)

= G(K2; c2) · G(K1; c1)
Fi1(K1; c1)

· G(K0; c0)
Fi0(K0; c0)

= · · ·

= G(KR; cR) ·
R−1∏
r=0

G(Kr; cr)
Fir(Kr; cr)

where K0 def.= K, c0 def.= 0, Kr def.= Kr−1−
⌈

Kr−1

n

⌉
, and cr def.= cr−1 +

⌈
Kr−1

n

⌉
eir−1 for r = 1, 2, . . . , R.

If we set the sequence (i0, . . . , iR−1) satisfying that KR−1 > KR = 0, then

G(K) = α(cR) ·
R−1∏
r=0

G(Kr; cr)
Fir(Kr; cr)

. (3.3)

The above equality gives an idea of an approximation scheme for computing the constant G(K) in a
recursive fashion. In Section 3.3, we describe the detail of our scheme and discuss the approximation
ratio. In the rest of this section, we estimate R, the number of recursions.

Lemma 3.1 The number of recursions R satisfying KR−1 > KR = 0 is bounded by n lnK + 1.
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Proof: If n = 1, then R = 1 and hence we obtain the claim. If n ≥ 2 and K = 1, 2 then R = 1, 2,
respectively, hence we also obtain the claim. In the following, we consider the case n ≥ 2 and
K ≥ 3. We define R′ by

R′ def.= min
{
r

∣∣ K
(

n−1
n

)r
< 1

}
,

then clearly R ≤ R′, since K ′ − dK ′/ne ≤ K ′(n − 1)/n for any K ′ ∈ Z++. Thus it is enough to
show that

K
(

n−1
n

)n ln K+1 ≤ 1.

With considering lnK > 0 and n ≥ 2,(
n−1

n

)n ln K+1
<

(
n−1

n

)n ln K =
((

1 − 1
n

)n)ln K ≤
(

1
e

)ln K = 1/K.

Thus we obtain the claim. ¤
For a polynomial-time approximation scheme, we need to consider the followings;

• How to sample efficiently from JN
c (x)?

• How to choose the index ir?

• How many samples do we need for Monte Carlo approximation?

In Section 3.2, we will propose a new sampler for JN
c (x) based on Markov chain and discuss the

mixing time of our chain.

3.2 Rapidly mixing Markov chain

Given a vector c ∈ Zn
+ and a positive integer N ∈ Z++, we propose a new Markov chain MA(N ; c)

with state space ∆(N). A transition of MA(N ; c) from a current state X ∈ ∆(N) to a next state
X ′ is defined as follows. First, we chose a distinct pair of indices {j1, j2} ⊂ {1, 2, . . . , n} uniformly
at random. Next, let k = Xj1 + Xj2 , and chose l ∈ {0, 1, . . . , k} with probability

αj1(l + cj1)αj2(k − l + cj2)∑k
s=0 αj1(s + cj1)αj2(k − s + cj2)(

≡
αj1(l + cj1)αj2(k − l + cj2)

∏
j 6∈{j1,j2} αj(Xj + cj)∑k

s=0 αj1(s + cj1)αj2(k − s + cj2)
∏

j 6∈{j1,j2} αj(Xj + cj)

)

then set

X ′
i =


l (for i = j1),
k − l (for i = j2),
Xi (otherwise).

Since αi(x) is a positive function, the Markov chain MA(N ; c) is irreducible and aperiodic, so
ergodic, hence has a unique stationary distribution. Also, MA(N ; c) satisfies detailed balance
equation

JN
c (x)P (x → y) = JN

c (y)P (y → x)
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0 α+
i (0)α+

j (k)/A α+
i (1)α+

j (k − 1)/A · · · α+
i (k)α+

j (0)/A 1

0 α+
i (0)α+

j (k + 1)/A′ α+
i (1)α+

j (k)/A′ α+
i (2)α+

j (k − 1)/A′ · · · α+
i (k + 1)α+

j (0)/A′ 1

Figure 1: A figure of alternating inequalities for a pair of indices (i, j) and a non-negative integer k.
We denote α+

i (z) def.= αi(z + ci), α+
j (z) def.= αj(z + cj), A

def.=
∑k

s=0 α+
i (s)α+

j (k − s), and A′ def.=∑k+1
s=0 α+

i (s)α+
j (k + 1 − s).

for any states x, y ∈ ∆(K), where P (x → y) denotes the transition probability from x to y. Thus
the stationary distribution is equivalent to JN

c (x) defined by (3.2). We can obtain a sample w.r.t.
the probability function JN

c (x) by simulating MA(N ; c) sufficiently many steps. Next we discuss
the mixing time (defined below) of MA(N ; c).

Given a pair of probability distributions ν1 and ν2 on a finite state space Ω, the total variation
distance between ν1 and ν2 is defined by

dTV(ν1, ν2)
def.= max

A⊆Ω

∑
x∈A

|ν1(x) − ν2(x)| ≡ 1
2

∑
x∈Ω

|ν1(x) − ν2(x)|. (3.4)

Given an arbitrary positive real ε, the mixing time of an ergodic Markov chain M is defined by

τ(ε) def.= max
x∈Ω

{min{t | ∀s ≥ t, dTV(π, P s
x) ≤ ε}} (3.5)

where π is the stationary distribution of M and P s
x is the probability distribution of the chain M

at time period s ≥ 0 with initial state x (at time period 0).
In the rest of this subsection, we show the following theorem.

Theorem 3.2 For 0 < ∀ε < 1, the mixing time τ(ε) of Markov chain MA(N ; c) satisfies

τ(ε) ≤ n(n − 1)
2

ln(Nε−1).

Let c = (c1, . . . , cn) be an arbitrary non-negative integer vector, and we consider the cumulative
distribution function g

[k,c]
ij : {0, 1, . . . , k} → R+ defined by

g
[k,c]
ij (l) def.=

∑l
s=0 αi(s + ci)αj(k − s + cj)∑k
s=0 αi(s + ci)αj(k − s + cj)

. (3.6)

We also define g
[k,c]
ij (−1) def.= 0, for convenience. We abbreviate g

[k,c]
ij to gk

ij , if there is no confusion.
We can describe a transition of the Markov chain MA(N ; c) by using the function gk

ij as follows.
First, choose a distinct pair {j1, j2} of indices with probability 2/(n(n−1)). Next, put k = Xj1+Xj2 ,
generate a uniformly random real number Λ ∈ [0, 1), choose l satisfying gk

j1j2
(l − 1) ≤ Λ < gk

j1j2
(l),

and set X ′
j1

= l, X ′
j2

= k − l and X ′
i = Xi for any other indices i 6∈ {j1, j2}.

The following lemma plays an important role for our main theorems.

Lemma 3.3 For any i ∈ {1, . . . , n}, the function αi : Z+ → R++ (i ∈ {1, 2, . . . , n}) is log-concave,
i.e.,

lnαi(z) − lnαi(z − 1) ≥ lnαi(z + 1) − lnαi(z) (∀z ∈ Z++). (3.7)
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It implies that, for any pair of distinct indices (i, j) (i, j ∈ {1, 2, . . . , n}), for any k ∈ Z+, and for
any c ≥ 0, the inequalities

g
[k+1,c]
ij (l) ≤ g

[k,c]
ij (l) ≤ g

[k+1,c]
ij (l + 1) (∀l ∈ Z+), (3.8)

called alternating inequalities, holds.

Figure 1 illustrates the definition of alternating inequalities. In the following, we denote α+
i (z) def.=

αi(z + ci) and α+
j (z) def.= αj(z + cj).

Proof: First, we show the log-concavity of αi(z). From the equations (2.2) of the function αi(z),

lnαi(z) =

 z ln
(

θi
µi

)
−

∑z
j=1 ln j (z ≤ si),

z ln
(

θi
µi

)
− (z − si) ln si −

∑si
j=1 ln j (z > si),

hold. Thus

lnαi(z) − lnαi(z − 1) =

 ln
(

θi
µi

)
− ln z (z ≤ si),

ln
(

θi
µi

)
− ln si (z > si).

From the above, the function αi satisfies (3.7), and thus αi is log-concave. Since the function
α+

i (z) def.= αi(z + ci), obtained by shifting the domain of αi by ci, is also log-concave and satisfies

lnα+
i (z) − lnα+

i (z − 1) ≥ lnα+
i (z + 1) − lnα+

i (z) (∀z ∈ Z++). (3.9)

Next, we show the latter statement. When k = 0, it is obvious. When we fix k ∈ Z++, the
alternating inequalities (3.8) hold for any l ∈ {0, 1, . . . , k}, if and only if(∑l

s=0 α+
i (s)α+

j (k + 1 − s)
)(∑k

s′=l+1 α+
i (s′)α+

j (k − s′)
)

≤
(∑l

s=0 α+
i (s)α+

j (k − s)
)(∑k+1

s′=l+1 α+
i (s′)α+

j (k + 1 − s′)
)

, (3.10)

and (∑l
s=0 α+

i (k + 1 − s)α+
j (s)

)(∑k
s′=l+1 α+

i (k − s′)α+
j (s′)

)
≤

(∑l
s=0 α+

i (k − s)α+
j (s)

)(∑k+1
s′=l+1 α+

i (k + 1 − s′)α+
j (s′)

)
, (3.11)

hold for any l ∈ {0, 1, . . . , k − 1}. With considering the expansion of (3.10), it is enough to show
that ∀s,∀s′ ∈ {0, 1, . . . , k}, 0 ≤ s < s′ ≤ k implies that

α+
i (s)α+

j (k + 1 − s)α+
i (s′)α+

j (k − s′) ≤ α+
i (s)α+

j (k − s)α+
i (s′)α+

j (k + 1 − s′). (3.12)

Since, αj is log-concave for any index j ∈ {1, 2, . . . , n}, the inequalities (k − s′) < (k − s′ + 1) ≤
(k − s) < (k − s + 1) implies that

lnα+
j (k − s′) + ln α+

j (k − s + 1) ≤ lnα+
j (k − s′ + 1) + lnα+

j (k − s)

holds. From the above, the inequality (3.12) hold ∀s,∀s′ ∈ {0, 1, . . . , k} satisfying 0 ≤ s < s′ ≤ k.
We obtain inequality (3.11) in the same way as (3.10) by interchanging i and j. ¤

We show Theorem 3.2 by using the following path coupling technique proposed in [4].
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Theorem 3.4 (Path coupling [4]) Let M be a finite ergodic Markov chain with a state space Ω. Let
H = (Ω, E) be a connected undirected graph with vertex set Ω and edge set E ⊂ Ω2. Let the length of
all edges be 1, and let the distance between x and y, denoted by d(x, y) and/or d(y, x), be the length
of a shortest path between x and y. Suppose that there exists a joint process (X,Y ) 7→ (X ′, Y ′) with
respect to M satisfying that whose marginals are a faithful copy of M. If there exists a positive
real β, exactly less than one, satisfying

E[d(X ′, Y ′)] ≤ βd(X,Y )

for any edge {X,Y } ∈ E of H, then the mixing time τ(ε) of the Markov chain M satisfies

τ(ε) ≤ (1 − β)−1 ln(ε−1D),

where D
def.= max{d(x, y) | ∀x,∀y ∈ Ω} is the diameter of the graph H. ¥

Proof of Theorem 3.2 Let H = (∆(N), E) be an undirected simple graph with vertex set
∆(N) and edge set E defined as follows. A pair of vertices {x, y} is an edge of H if and only if
(1/2)

∑n
i=1 |xi − yi| = 1. Clearly the graph H is connected. We define the length of an edge e ∈ E

as 1, and the distance dA(x, y) for each pair (x, y) ∈ (∆(N))2 by the length of a shortest path
from x to y on H. Clearly, the diameter of H defined by maxx,y∈∆(N){dA(x, y)}, is bounded
by N .

We define a joint process (X,Y ) 7→ (X ′, Y ′) for any pair {X,Y } ∈ E . Pick a distinct pair of
indices {i1, i2} uniformly at random. Then put kX = Xi1 + Xi2 and kY = Yi1 + Yi2 , generate a
uniformly random number Λ ∈ [0, 1), chose lX ∈ {0, 1, . . . , kX} and lY ∈ {0, 1, . . . , kY } which satisfy
gkX
i1i2

(lX − 1) ≤ Λ < gkX
i1i2

(lX) and gkY
i1i2

(lY − 1) ≤ Λ < gkY
i1i2

(lY ), and set X ′
i1

= lX , X ′
i2

= kX − lX ,
Y ′

i1
= lY and Y ′

i2
= kY − lY .

Now we show that

β
def.= 1 − 2

n(n − 1)

satisfies

E[dA(Y ′, Y ′)] ≤ βdA(X,Y )

for any pair {X,Y } ∈ E . Here we suppose that X,Y ∈ E satisfies |Xj − Xj | = 1 for j ∈ {j1, j2},
and |Xj − Xj | = 0 for j 6∈ {j1, j2}.

Case 1: In case that neither of indices j1 nor j2 are chosen, i.e., {i1, i2} ∩ {j1, j2} = ∅. Put
k = Xi1 + Xi2 , then it is easy to see that Pr(X ′

i1
= l) = Pr(Y ′

i1
= l) for any l ∈ {0, . . . , k} since

Yi1 + Yi2 = k. By setting X ′
i1

= Y ′
i1

and X ′
i2

= Y ′
i2

, we have dA(X ′, Y ′) = dA(X,Y ).

Case 2: In case that both of indices j1 and j2 are chosen, i.e., {i1, i2} = {j1, j2}. In the same way
as Case 1, we can set X ′

i1
= Y ′

i1
and X ′

i2
= Y ′

i2
. Hence dA(X ′, Y ′) = 0.

Case 3: In case that exactly one of indices j1 and j2 is chosen, i.e., |{i1, i2}∩{j1, j2}| = 1. Without
loss of generality, we can assume that i1 = j1 and that Xi1 + 1 = Yi1 . Let k = Xi1 + Xi2 . Then
Yi1 +Yi2 = k +1 obviously. Let us consider a transition of the joint process with a random number
Λ ∈ [0, 1). Let l ∈ {0, 1, . . . , k} be a unique index satisfying gk

i1i2
(l − 1) ≤ Λ < gk

i1i2
(l). Then

alternating inequalities imply that gk+1
i1i2

(l − 1) ≤ Λ < gk+1
i1i2

(l + 1). Therefore, if X ′
i1

= l then Y ′
i1

8



should be in {l, l + 1} by the definition of the joint process. Thus we always obtain that [X ′
i1

= Y ′
i1

and X ′
i2

+ 1 = Y ′
i2

] or [X ′
i1

+ 1 = Y ′
i1

and X ′
i2

= Y ′
i2

]. Hence dA(X ′, Y ′) = dA(X,Y ).

With considering that Case 2 occurs with probability 2/(n(n − 1)), we obtain that

E[dA(X ′, Y ′)] ≤
(

1 − 2
n(n − 1)

)
dA(X,Y ).

Since the diameter of H is bounded by N , Theorem 3.4 (Path Coupling Theorem) implies that the
mixing time τ(ε) satisfies

τ(ε) ≤ n(n − 1)
2

ln(Nε−1).

¤

3.3 Monte Carlo integration

In this section, we give an FPRAS for calculating the normalizing constant G(K) of product form
solution for a closed Jackson network. Since we already have an approximate sampler via the
Markov chain MA(N ; c), we can estimate G(Kr; cr)/Fi(Kr; cr) for r ∈ {0, 1, . . . , R − 1} by the
Monte Carlo method. The whole algorithm is as follows,

Algorithm 1 (Randomize Approximation Scheme with Approximate Sampler)

Step 0. Set r := 0, N := K, and c := 0.
Step 1. While N ≥ 1, repeat the followings from i to iv.

i. Generate Q samples, each of which is obtained by simulating MA(N ; c) for TA(N) steps.
ii. For each i ∈ {1, . . . , n}, Ui denotes the number of samples satisfying xi ≥ N/n.
iii. Let I ∈ {1, . . . , n} be an index with UI = max{U1, . . . , Un}. Set Zr := UI/Q.
iv. Set c := c + dN/ne · eI , N := N − dN/ne, and r := r + 1.

Step 2. Output Z := α(c) ·
∏R−1

r=0 1/Zr.

Our algorithm generates Q samples by simulating MA(N ; c) for TA(N) steps for each sample.
By setting Q = 150nR2ε−2 ln(2nR/δ) and TA(k) =

⌈
n(n−1)

2 ln 10nRk
ε

⌉
, we obtain the following

theorem. Note that, the definition of Step 1 iii of Algorithm 1 implies UI ≥ N/n and Zr ≥ 1/n for
each iteration.

Theorem 3.5 If we set Q = 150nR2ε−2 ln(2nR/δ) and TA(k) =
⌈

n(n−1)
2 ln 10nRk

ε

⌉
, then our ran-

domized approximation scheme (Algorithm 1 ) returns Z satisfying

Pr [|Z − G(K)| ≤ εG(K)] ≥ 1 − δ. (3.13)

Proof: First we consider r-th iteration (where r ∈ {0 . . . , R − 1}) of Step 1 in Algorithm 1 and
show the following Claims 1 to 4. Suppose the index I, integer N and the vector c are chosen in
the r-th iteration of Step 1 of Algorithm 1, and we define ωr by

ωr def.=
FI(N ; c)
G(N ; c)

.

We denote pi for i ∈ {1, . . . , n} as a probability that a sample satisfies xi ≥ N/n where x is obtained
by using Markov chian MA(N ; c) after TA(N) steps. Particularly we define ω̂r def.= pI . Note that ω̂r

approximates ωr.

9



Claim 1. For each r ∈ {0, . . . , R − 1}, Pr
[
ω̂r ≤ 1

2n

]
< δ

2R holds.

Let S ⊂ {1, . . . , n} be the set of indices defined by S
def.= {i | pi ≤ 1/(2n)}. Note that |S| ≤ n−1.

For an arbitrary i ∈ S, the probability of the event Ui/Q ≥ 1/n satisfies

Pr
[
Ui

Q
≥ 1

n

]
= Pr

[
Ui

Q
≥

(
1 +

(
1

npi
− 1

))
pi

]
≤ e−

1
3

“

1
npi

−1
”2

Qpi ≤ e−
1
3
12Q 1

2n < e− ln 2nR
δ ≤ δ

2nR

where the first inequality is obtained by using the Chernoff bound (see [23], p. 64 for example).
Since UI/Q ≥ 1/n, the probability of the event I ∈ S satisfies

Pr[I ∈ S] =
∑
i∈S

Pr[I = i] ≤
∑
i∈S

Pr
[
Ui

Q
≥ 1

n

]
≤

∑
i∈S

δ

2nR
≤ (n − 1) · δ

2nR
<

δ

2R

with considering |S| ≤ n − 1, and we obtain Claim 1.

Claim 2. For each r ∈ {0, . . . , R − 1}, if ω̂r > 1
2n then |ωr − ω̂r| ≤ ε

5R ω̂r holds.
With considering the definition of the mixing time (3.5) and the total variation distance (3.4),

Theorem 3.2 and the definition of TA(N) imply

|ωr − ω̂r| ≤ dTV

(
P

TA(N)
y , π

)
≤ ε

10nR

where P
TA(N)
y denote the distribution of a sample obtained by Markov chain MA(N ; c) after TA(N)

steps with an initial state y ∈ ∆(N). Thus if ω̂r > 1
2n , then

|ωr − ω̂r| ≤ ε

10nR
=

ε

5R
· 1
2n

≤ ε

5R
ω̂r

hold and we obtain Claim 2.

Claim 3. For each r ∈ {0, . . . , R − 1}, if ω̂r > 1
2n then the conditional probability

Pr
[
|Zr − ω̂r| ≥ ε

5R ω̂r
∣∣ ω̂r > 1

2n

]
≤ δ

2R holds, where Zr is defined in Step 1 iii of Algorithm 1.
By using Chernoff bound, n ≥ 2 implies

Pr
[
|Zr − ω̂r| ≥ ε

5R
ω̂r

∣∣∣∣ ω̂r >
1
2n

]
≤ 2e

−
( ε

5R

)2 1
3
150nR2ε−2 ln

2nR

δ
ω̂r

= 2e−2n ln 2nR
δ

bωr ≤ 2e−2n ln 2nR
δ

1
2n = 2e− ln 2nR

δ =
2δ

2nR
≤ δ

2R

and we obtain the Claim 3.

From Claims 1, 2 and 3, we obtain the following claim.

Claim 4. For each r ∈ {0, . . . , R − 1}, Pr
[(

1 + ε
2R

)−1 ≤ ωr

Zr ≤
(
1 + ε

2R

)]
≥ 1 − δ

R holds.

When ω̂r > 1
2n , Claim 2 implies(

1 − ε

5R

)
ω̂r ≤ ωr ≤

(
1 +

ε

5R

)
ω̂r (∀r ∈ {1, . . . , R − 1}) (3.14)
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and, Claim 3 also implies

Pr
[(

1 + ε
5R

)−1
Zr ≤ ω̂r ≤

(
1 − ε

5R

)−1
Zr

∣∣ ω̂r > 1
2n

]
≥ 1 − δ

2R
(∀r ∈ {1, . . . , R − 1}) . (3.15)

Thus if ω̂r > 1
2n , inequalities (3.14) and (3.15) imply that for each r ∈ {1, . . . , R − 1},(

1 − ε

5R

)(
1 +

ε

5R

)−1
≤ ωr

Zr
≤

(
1 +

ε

5R

)(
1 − ε

5R

)−1
(3.16)

hold with the probability higher than 1 − δ
2R . The right-hand side of (3.16) satisfies

(r.h.s.) =
(
1 +

ε

5R

)(
1 − ε

5R

)−1
=

(
1 +

2ε

5R − ε

)
≤

(
1 +

2ε

4R

)
=

(
1 +

ε

2R

)
and the left-hand side of (3.16) satisfies

(l.h.s.) =
(
1 − ε

5R

)(
1 +

ε

5R

)−1
= (r.h.s.)−1 ≥

(
1 +

ε

2R

)−1
.

Thus, from the above discussion and Claim 1,

Pr
[(

1 +
ε

2R

)−1
≤ ωr

Zr
≤

(
1 +

ε

2R

)]
≥ Pr

[(
1 + ε

5R

)−1
Zr ≤ ωr ≤

(
1 + ε

5R

)
Zr

∣∣ ω̂r > 1
2n

]
· Pr

[
ω̂r > 1

2n

]
≥

(
1 − δ

2R

)(
1 − δ

2R

)
≥ 1 − δ

R

hold and we obtain Claim 4.

From Claim 4, we obtain the following.

Claim 5. The random variables Z0, . . . , ZR−1 in Algorithm 1 satisfies

Pr
[
(1 − ε) ≤ ω0 · · ·ωR−1

Z0 · · ·ZR−1
≤ (1 + ε)

]
≥ 1 − δ.

By multiplying inequalities in Claim 4, we obtain

Pr
[(

1 +
ε

2R

)−R
≤ ω0 · · ·ωR−1

Z0 · · ·ZR−1
≤

(
1 +

ε

2R

)R
]
≥

(
1 − δ

R

)R

≥ 1 − δ.

Since
(
1 + ε

2R

)R ≤ 1 + ε and
(
1 + ε

2R

)−R ≥ (1 + ε)−1 ≥ 1 − ε, Claim 5 is now clear.

Lastly, we conclude the proof of Theorem 3.5. Let c be the vector in Step 2 of Algorithm 1,
then the equality (3.3) implies α(c)/(ω0 · · ·ωR−1) = G(K), and the output of Algorithm 1 is
Z = α(c)/(Z0 · · ·ZR−1). Thus Claim 5 implies

Pr
[
(1 − ε) ≤ Z

G(K)
≤ (1 + ε)

]
≥ 1 − δ.

Hence we obtain the theorem. ¤
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4 Perfect Sampler

In this section, we propose another sampler for JN
c , which is a perfect sampler based on monotone

CFTP. We propose another Markov chain MP(N ; c), which is a modified version of MA(N ; c),
and show that the chain is monotone. In the proof of monotonicity, Lemma 3.3 in the previous
section plays a key roll again. Note that the problem of sampling from the product-form solution
JK(= JK

0 ) of closed Jackson networks (2.1) is included as a special case.

4.1 Monotone coupling from the past

Here we review CFTP briefly [25]. Suppose that we have an ergodic Markov chain M with a
finite state space Ω and a transition matrix P . The transition rule of the Markov chain X 7→ X ′

can be described by a deterministic function φ : Ω × [0, 1) → Ω, called update function, as
follows. Given a random number Λ uniformly distributed over [0, 1), update function φ satisfies
that Pr(φ(x,Λ) = y) = P (x, y) for any x, y ∈ Ω. We can realize the Markov chain by setting X ′ =
φ(X, Λ). Clearly, update functions corresponding to the given transition matrix P are not unique.
The result of transitions of the chain from the time t1 to t2 (t1 < t2) with a sequence of random
numbers λ = (λ[t1], λ[t1 +1], . . . , λ[t2−1]) ∈ [0, 1)t2−t1 is denoted by Φt2

t1
(x,λ) : Ω× [0, 1)t2−t1 → Ω

where Φt2
t1

(x,λ) def.= φ(φ(· · · (φ(x, λ[t1]), . . . , λ[t2−2]), λ[t2−1]). We say that a sequence λ ∈ [0, 1)|T |

satisfies the coalescence condition, when ∃y ∈ Ω, ∀x ∈ Ω, y = Φ0
T (x,λ).

Suppose that there exists a partial order “º” on the set of states Ω, and that a unique pair of
states (xmax, xmin) exists in the partially ordered set (Ω,º), satisfying xmax º x º xmin, ∀x ∈ Ω.
A transition rule expressed by a deterministic update function φ is called monotone (with respect
to “º”) if ∀λ ∈ [0, 1), ∀x,∀y ∈ Ω, x º y ⇒ φ(x, λ) º φ(y, λ). We also say that a chain is monotone
if the chain has a monotone update function.

With these preparations, a standard monotone CFTP algorithm is expressed as follows.

Algorithm 2 (Monotone CFTP Algorithm [25])

Step 1. Set the starting time period T := −1 to go back, and set λ be the empty sequence.
Step 2. Generate random real numbers λ[T ], λ[T + 1], . . . , λ[dT/2e − 1] ∈ [0, 1), and insert them
to the head of λ in order, i.e., put λ := (λ[T ], λ[T + 1], . . . , λ[−1]).
Step 3. Start two chains from xmax and xmin, respectively, at time period T , and run each chain
to time period 0 according to the update function φ with the sequence of numbers in λ. (Here we
note that every chain uses the common sequence λ.)
Step 4. [ Coalescence check ] The state obtained at time period 0 is denoted by Φ0

T (x,λ).
(a) If ∃y ∈ Ω, y = Φ0

T (xmax, λ) = Φ0
T (xmin, λ), then return y.

(b) Else, update the starting time period T := 2T , and go to Step 2.

Theorem 4.1 (Monotone CFTP Theorem [25]) Suppose that a Markov chain defined by an update
function φ is monotone with respect to a partially ordered set of states (Ω,º), and ∃xmax,∃xmin ∈ Ω,
∀x ∈ Ω, xmax º x º xmin. Then the monotone CFTP algorithm (Algorithm 2 ) terminates with
probability 1, and obtained value is a realization of a random variable exactly distributed according
to the stationary distribution. ¥

Theorem 4.1 says that Algorithm 2 is a (probabilistically) finite time algorithm for infinite time
simulation.
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4.2 Monotone Markov chain

In this section we propose another Markov chain MP(N ; c) with a state space ∆(N) for the
probability distribution JN

c . We abbreviate ∆(N) as ∆ in the following. The transition rule of
MP(N ; c) is defined by the following update function φ : ∆ × [1, n) → ∆. For a current state
X ∈ ∆, the next state X ′ = φ(X,λ) ∈ ∆ with respect to a uniformly random number λ ∈ [1, n) is
defined by

X ′
i =


l (for i = bλc),
k − l (for i = bλc + 1),
Xi (otherwise),

where k = Xbλc + Xbλc+1 and l ∈ {0, 1, . . . , k} satisfies

g
[k,c]
bλc(bλc+1)(l − 1) ≤ λ − bλc < g

[k,c]
bλc(bλc+1)(l),

where g
[k,c]
ij is defined by (3.6). In the following, we abbreviate g

[k,c]
ij as gk

ij in the same manner
as the previous section. Our chain MP(N ; c) is a modified version of MA(N ; c), obtained by
restricting to choose only a consecutive pair of indices. Clearly, MP(N ; c) is ergodic. The chain
has a unique stationary distribution JN

c defined by (3.2).
In the following, we show the monotonicity of MP(N ; c). Here we introduce a partial order “º”

on ∆. For any state x ∈ ∆, we define cumulative sum vector hx = (hx(0), hx(1), . . . , hx(n)) ∈
Zn+1

+ by

hx(i) def.=
{

0 (for i = 0),∑i
j=1 xj (for i ∈ {1, 2, . . . , n}).

For any pair of states x, y ∈ ∆, we say x º y if and only if hx ≥ hy. Next, we define two special

states xmax, xmin ∈ ∆ by xmax
def.= (N, 0, . . . , 0) and xmin

def.= (0, . . . , 0, N). Then we can easily see
that ∀x ∈ ∆, xmax º x º xmin.

Theorem 4.2 Markov chain MP(N ; c) is monotone with respect to the partially ordered set (∆,º),
i.e., ∀λ ∈ [1, n), ∀X, ∀Y ∈ ∆, X º Y ⇒ φ(X,λ) º φ(Y, λ).

Proof: We say that a state X ∈ ∆ covers Y ∈ ∆ (at j), denoted by X ·ÂY (or X ·ÂjY ), when

Xi − Yi =


+1 (for i = j),
−1 (for i = j + 1),
0 (otherwise).

We show that if a pair of states X,Y ∈ ∆ satisfies X ·ÂjY , then ∀λ ∈ [1, n), φ(X,λ) º φ(Y, λ).
We denote φ(X,λ) by X ′ and φ(Y, λ) by Y ′ for simplicity. For any index i 6= bλc, it is easy to see
that hX(i) = hX′(i) and hY (i) = hY ′(i), and so hX′(i) − hY ′(i) = hX(i) − hY (i) ≥ 0 since X º Y .
In the following, we show that hX′(bλc) ≥ hY ′(bλc).

Case 1: If bλc 6= j − 1 and bλc 6= j + 1. Let k = Xbλc + Xbλc+1, then it is easy to see that
Ybλc + Ybλc+1 = k. Accordingly X ′

bλc = Y ′
bλc = l where l satisfies

gk
bλc(bλc+1)(l − 1) ≤ λ − bλc < gk

bλc(bλc+1)(l),

13



and hence hX′(bλc) = hY ′(bλc).
Case 2: Consider the case that bλc = j − 1. Let k + 1 = Xj−1 + Xj , then Yj−1 + Yj = k, since
X ·ÂjY . From the definition of cumulative sum vector,

hX′(bλc) − hY ′(bλc)
= hX′(j − 1) − hY ′(j − 1)
= hX′(j − 2) + X ′

j−1 − hY ′(j − 2) − Y ′
j−1

= hX(j − 2) + X ′
j−1 − hY (j − 2) − Y ′

j−1

= X ′
j−1 − Y ′

j−1.

Thus, it is enough to show that X ′
j−1 ≥ Y ′

j−1. Now suppose that l ∈ {0, 1, . . . , k} satisfies gk
(j−1)j(l−

1) ≤ λ−bλc < gk
(j−1)j(l) for λ. Then gk+1

(j−1)j(l− 1) ≤ λ−bλc < gk+1
(j−1)j(l + 1), since the alternating

inequalities in Lemma 3.3 imply that gk+1
(j−1)j(l − 1) ≤ gk

(j−1)j(l − 1) < gk+1
(j−1)j(l) ≤ gk+1

(j−1)j(l + 1).
Thus we have that if Y ′

j−1 = l then X ′
j−1 is equal to l or l + 1. In other words,(

X ′
j−1

Y ′
j−1

)
∈

{(
0
0

)
,

(
1
0

)
,

(
1
1

)
, . . . ,

(
k

k

)
,

(
k + 1

k

)}
and hence X ′

j−1 ≥ Y ′
j−1 holds in all cases. Accordingly, we have that hX′(bλc) ≥ hY ′(bλc).

Case 3: Consider the case that bλc = j + 1. We can show hX′(bλc) ≥ hY ′(bλc) in a similar way
to Case 2.

For any pair of states X,Y satisfying X º Y , it is easy to see that there exists a sequence
of states Z1, Z2, . . . , Zr satisfying X = Z1 ·ÂZ2 ·Â · · · ·ÂZr = Y . Then applying the above claim
repeatedly, we obtain that φ(X,λ) = φ(Z1, λ) º φ(Z2, λ) º · · · º φ(Zr, λ) = φ(Y, λ). ¤

Since MP(N ; c) is a monotone chain, we can design a perfect sampler based on monotone CFTP.
We could also employ Wilson’s read once algorithm [27] and Fill’s interruptible algorithm [9, 10],
each of which also gives a perfect sampler.

4.3 Expected running time

Here, we assume the following condition, which leads that our perfect sampling algorithm terminates
in an expected polynomial time.

Condition 1 For all i ∈ {1, 2, . . . , n − 1},
k∑

l=0

(
gk
i(i+1)(l) − gk+1

i(i+1)(l)
)
≥ 1

2

hold for any k ∈ {0, 1, . . . ,K}.

As a particular case, when we deal with a closed Jackson network with single servers model (i.e.,
si = 1 for each i ∈ {1, . . . , n}), we can assume Condition 1 by arranging indices of servers to satisfy
θi/µi ≥ θi+1/µi+1 (∀i ∈ {1, . . . , n − 1}).

Theorem 4.3 Under Condition 1, the expectation of coalescence time T∗ ∈ Z++ of MP(N ; c)
defined by T∗

def.= min{t > 0 | ∃y ∈ ∆, ∀x ∈ ∆, y = Φ0
−t(x,Λ)} is bounded O(n3 lnN). The whole

number of transitions in our perfect sampler is also bounded by O(n3 lnN).

Note that the coalescence time T∗ is a random variable.
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Proof: Let H = (∆, E) be the graph defined in the proof of Theorem 3.2; i.e., H is an undirected
simple and connected graph with vertex set ∆ and edge set E defined as follows. A pair of vertices
{X,Y } is an edge if and only if (1/2)

∑n
i=1 |Xi − Yi| = 1. For each edge e = {X,Y } ∈ E , there

exists a unique pair of indices j1, j2 ∈ {1, . . . , n}, called the supporting pair of e, satisfying

|Xi − Yi| =
{

1 (i = j1, j2),
0 (otherwise).

We define the length lP(e) of an edge e = {X,Y } ∈ E by lP(e) def.= (1/(n − 1))
∑j∗−1

i=1 (n − i) where
j∗ = max{j1, j2} ≥ 2 and {j1, j2} is the supporting pair of e. Note that 1 ≤ mine∈E lP(e) ≤
maxe∈E lP(e) ≤ n/2. For each pair X,Y ∈ ∆, we define the distance dP(X,Y ) be the length of
a shortest path between X and Y on H. Clearly, the diameter of H, i.e., max(X,Y )∈∆2 dP(X,Y ),
is bounded by Nn/2, since dP(X,Y ) ≤ (n/2)

∑n
i=1(1/2)|Xi − Yi| ≤ (n/2)N for any (X,Y ) ∈ ∆2.

The definition of edge length implies that for any edge {X,Y } ∈ E , dP(X,Y ) = lP({X,Y }).
Now we show that E[dP(φ(X, Λ), φ(Y,Λ))] ≤

(
1 − 1

n(n−1)2

)
· dP(X,Y ) for any pair {X,Y } ∈

E . In the following, we denote the supporting pair of {X,Y } by {j1, j2}, and X ′ = φ(X, Λ),
Y ′ = φ(Y,Λ) for the convenience. Without loss of generality, we can assume that j1 < j2, and
Xj2 + 1 = Yj2 .
Case 1: When bΛc = j2 − 1, we will show that

E[dP(X ′, Y ′) | bΛc = j2 − 1] ≤ dP(X,Y ) − (1/2)(n − j2 + 1)/(n − 1).

In case j1 = j2 − 1, X ′ = Y ′ with conditional probability 1. Hence dP(X ′, Y ′) = 0. In the
following, we consider the case j1 < j2 − 1. Put k = Xj2−1 + Xj2 then Yj2−1 + Yj2 = k + 1 since
Xj2 + 1 = Yj2 . In the same argument of Case 2 in the proof of Theorem 4.2, Lemma 3.3 implies
that when l ∈ {0, 1, . . . , k} satisfy gk

(j−1)j(l − 1) ≤ Λ − bΛc < gk
(j−1)j(l), then X ′ = l and Y ′ = l

or l + 1, since gk+1
(j−1)j(l − 1) ≤ gk

(j−1)j(l − 1) ≤ Λ − bΛc < gk
(j−1)j(l) ≤ gk+1

(j−1)j(l + 1) hold. In other
words, (

X ′
j2−1

Y ′
j2−1

)
∈

{(
0
0

)
,

(
0
1

)
,

(
1
1

)
,

(
1
2

)
, . . . ,

(
k
k

)
,

(
k
k + 1

)}
hold. If X ′

j2−1 = Y ′
j2−1, the supporting pair of {X ′, Y ′} is {j1, j2} and so dP(X ′, Y ′) = dP(X,Y ). If

X ′
j2−1 6= Y ′

j2−1, the supporting pair of {X ′, Y ′} is {j1, j2 − 1} and so dP(X ′, Y ′) = dP(X,Y )− (n−
j2 + 1)/(n − 1).

Condition 1 implies that

Pr
[
X ′

j2−1 6= Y ′
j2−1 | bΛc = j2 − 1

]
=

∑k
l=0

(
gk
i(i+1)(l) − gk+1

i(i+1)(l)
)

≥ 1/2, and,

Pr
[
X ′

j2−1 = Y ′
j2−1 | bΛc = j2 − 1

]
≤ 1/2.

Thus we obtain that

E[dP(X ′, Y ′)|bΛc = j2 − 1] ≤ (1/2)dP(X,Y ) + (1/2)(dP(X,Y ) − (n − j2 + 1)/(n − 1))
= dP(X,Y ) − (1/2)(n − j2 + 1)/(n − 1).

Case 2: When bΛc = j2, we can show that E[dP(X ′, Y ′)|bΛc = j2] ≤ dP(X,Y )+(1/2)(n−j2)/(n−1)
in a similar way to Case 1.
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Case 3: When bΛc 6= j2 − 1 and bΛc 6= j2, it is easy to see that the supporting pair {j′1, j′2} of
{X ′, Y ′} satisfies j2 = max{j′1, j′2}. Thus dP(X,Y ) = dP(X ′, Y ′).

The probability of appearance of Case 1 is equal to 1/(n − 1), and that of Case 2 is less than
or equal to 1/(n − 1). From the above,

E[dP(X ′, Y ′)] ≤ dP(X,Y ) − 1
n − 1

· 1
2
· n − j2 + 1

n − 1
+

1
n − 1

· 1
2
· n − j2

n − 1
= dP(X,Y ) − 1

2(n − 1)2

≤
(

1 − 1
2(n − 1)2

· 1
max{X,Y }∈E{dP(X,Y )}

)
dP(X,Y ) =

(
1 − 1

n(n − 1)2

)
dP(X,Y )

hold for any pair (X,Y ) ∈ E .
Next we estimate the expectation of the coalescence time T∗ of MP. Since the metric dP is

defined as the shortest path in the graph H, we also obtain

dP(X ′, Y ′) ≤
(
1 − 1

n(n−1)2

)
dP(X,Y ) (∀X,Y ∈ ∆)

hold with the analogous argument of path coupling [4]. We define D
def.= d(xmax, xmin) and τ0

def.=
n(n − 1)2(1 + lnD), then we have

Pr[T∗ > τ0] = Pr
[
Φ0
−τ0(xmax,Λ) 6= Φ0

−τ0(xmin,Λ)
]

= Pr [Φτ0
0 (xmax,Λ) 6= Φτ0

0 (xmin,Λ)]
≤

∑
(X,Y )∈∆2 dP(X,Y )Pr [X = Φτ0

0 (xmax,Λ), Y = Φτ0
0 (xmin,Λ)]

= E [dP (Φτ0
0 (xmax,Λ),Φτ0

0 (xmin,Λ))] ≤
(

1 − 1
n(n − 1)2

)τ0

dP(xmax, xmin)

=
(

1 − 1
n(n − 1)2

)n(n−1)2(1+ln D)

D ≤ e−1e− ln DD =
1
e
.

The submultiplicativity of coalescence time ([25]) implies that Pr[T∗ > kτ0] ≤ (Pr[T∗ > τ0])
k ≤

(1/e)k for any k ∈ Z+. Thus

E[T∗] =
∑∞

t=0 t · Pr[T∗ = t] ≤ τ0 + τ0 · Pr[T∗ > τ0] + τ0 · Pr[T∗ > 2τ0] + · · ·
≤ τ0 + τ0/e + τ0/e2 + · · · = τ0/(1 − 1/e) ≤ 2τ0.

Clearly D ≤ Nn, and thus we obtain the result about the expected coalescence time that

E[T∗] ≤ 2n(n − 1)2(1 + ln(Nn)) = O(n3 lnNn).

Finally we estimate the whole number of transitions required in our sampling algorithm. Put
m = dlog2 T∗e. Algorithm 2 terminates when we set the starting time period T = −2m at (m+1)st
iteration. Then the total number of simulated transitions is bounded by 2·(20+21+22+· · ·+2m) <
2 ·2 ·2m ≤ 8T∗, since we need to execute two chains from both xmax and xmin. Thus the expectation
of total number of transitions of MP(N ; c) is bounded by O(E[8T∗]) = O(n3 lnNn). ¤

Corollary 4.4 Under Condition 1, the mixing time of MP(N ; c) is bounded by n(n− 1)2 ln(Nn).
¥
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