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Abstract

We recorded and analyzed calls of Japanese rain frogs Hyla japon-

ica. While a single frog called nearly periodically, a pair of frogs called
alternately; namely we observed that after one frog called several times
(3 to 39 times) alone, another frog began to call, and two frogs called
alternately. The intervals of the calls when a frog called alternately
with another frog is longer than those when the same frog called alone.
We model these phenomena as the system of coupled phase oscillators;
namely the calls of one frog as a periodic phase oscillator and the
calls of two frogs as two coupled phase oscillators which synchronize in
anti-phase. We also discuss a possible biological meaning of the calling
behaviors.

1 Introduction

Mutual synchronization has been observed in many biological oscillators
such as male fireflies in southeast Asia[1], pacemaker cells of hearts[2], and
circadian rhythms[3]. For example, in certain parts of southeast Asia, thou-
sands of male fireflies congregate in trees and flash in synchrony, night after
night for weeks or even months, irrespective of air currents, air temperature,
moisture or any other meteorologic conditions[1].

The answers to the question ”What modes of temporal organization
could result from weak interactions in a population of innately oscillatory
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elements?” are found mathematically and numerically as natural nonlinear
phenomena of periodic processes and their interactions [3, 4]. Such theo-
retical analysis has been effective for understanding phenomena of synchro-
nization in biological oscillators, including synchronous behaviors of living
things.

In fact, synchronization of biological oscillators has been theoretically
analyzed in many systems. For example, Ermentrout and Rinzel proposed
a simple phase model for the entrainment of a firefly to stimuli[5]. They
modeled the periodic stimuli with the phase variable Θ with −π < Θ ≤ π,
namely Θ ∈ S

1 = (R mod 2π) = [−π, π]/{−π ≡ π} [6] as follows:

dΘ

dt
= Ω, (1)

where Ω is an intrinsic frequency of the stimuli, and Θ = 0 corresponds to
the flash of the stimuli. Then, they modeled firefly’s response to the stimuli
with the second internal phase variable θ with θ ∈ S

1 as follows:

dθ

dt
= ω +A sin(Θ − θ), (2)

where ω is an intrinsic frequency of the firefly, A is a positive coupling coeffi-
cient, and θ = 0 corresponds to the flash of this firefly. This model of Eqs. (1)
and (2) exhibits the property that if |Ω−ω| < A, the phase difference Θ− θ
locks to a fixed value, and if |Ω − ω| � A, these two oscillators synchronize
in nearly in-phase. Mirollo and Strogatz also analyzed synchronization of
pulse-coupled biological oscillators mathematically [7].

In particular, there have been some studies on synchronization of calls
of frogs. Loftus-Hills studied the synchronization in calling behaviors of
frogs Pseudacris streckeri [8], where tape-recorded calls were used to evoke
responses of frogs. Lemon and Struger studied acoustic entrainment to ran-
domly generated calls in frogs Hyla crucifer [9]. In the present paper, we
study spontaneously calling behaviors of Japanese rain frogs Hyla japonica.

2 Methods

In the evening to night, male Japanese rain frogs Hyla japonica which were
calling vividly were collected from breeding assemblages in paddy fields in
Kyoto, Japan. Collected frogs were individually housed in small plastic
cages with lengths 18cm and 8cm, and height 10cm, which were placed at
intervals of about 40cm. Each cage was dipped about 1cm in water of the
paddy fields where the frogs inhabited.

Experiments were performed immediately after collection. Spontaneous
mating calls were recorded with a video camera (DCR-TRV18, SONY).
Then, the data of the calls of a single frog or two frogs were picked up.
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The time series data were analyzed with a digital computer (DynaBook
T4, TOSHIBA) with respect to the waveforms and power spectrums (Raven
Lite 1.0), the Fourier Transform (FFT), and nonlinear time series analysis
[10, 11, 12].

3 Experimental Results

Figure 1 shows the calls recorded from (a) a single frog and (b) two frogs,
where the upper and lower panels in (a) and (b) show the waveforms and
the power spectrums in time windows of 1.8 s, respectively. A single frog
called nearly periodically as shown in Fig. 1(a). In the experiment shown in
Fig. 1 (b), after one frog called several times (3 to 39 times) alone, another
frog began to call, and two frogs called alternately. Figure 1 (b) exhibits
that the second frog began to call at 9.7s.

Figure 2 shows reconstructed orbits of the calls of (a) a single frog and
(b) two frogs in delay coordinates [10, 11, 12]. The orbits of Fig. 2 are
reconstructed from the data of amplitudes of the calls which are re-bined
with 500 points, where the total time length is 3.8 s both in (a) and (b).
Figure 2 shows that the calls of both a single frog and two frogs are nearly
periodic.

In order to examine the change in intervals or the fundamental frequency
of the calls of a single frog before and after the interactive calling of two
frogs, we further analyze the longer data of waveforms of the calls. Figure 3
shows the power spectrums of (a) the calls of a single frog which called alone
before two frogs started to call alternately and (b) those of two frogs which
called alternately; the horizontal and vertical axes are the frequency and the
power, respectively, where the total time length is 4.0s both in (a) and (b).
There is the main peak around 4.2Hz in Fig. 3(a). That is, this frog called
nearly periodically about 4.2 times in one second. On the other hand, there
is the main peak around 7.0Hz in Fig. 3(b), which means that two frogs
call alternately about 7.0 times in one second; namely, each frog call about
3.5 times in one second. The intervals of the calls of a single frog during
the interactive calls of two frogs is longer than those of the same frog which
called alone. At first this frog called about 4.2 times in one second, and
then while two frogs called alternately, the same frog called about 3.5 times
in one second.

4 Discussion

In the experiment, a single frog called nearly periodically, and a pair of
frogs called alternately. The intervals of the calls of a single frog during
the interactive calls is longer than those of the same frog which called alone.
Next, we model these phenomena as the system of coupled phase oscillators.

3



(a) (b)

Figure 1: The calls of (a) a single frog and (b) two frogs. The upper and
lower panels in (a) and (b) show the waveforms and the power spectrums in
time windows of 1.8s. Figure 1(b) shows that the second frog began to call
at 9.7s.
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Figure 2: Reconstruction of orbits in delay coordinates of the calls of (a)
a single frog and (b) two frogs, where the delay is set at 0.015s. The total
time length is 3.8s both in (a) and (b).
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Figure 3: Fourier analysis of (a) the calls of a single frog which called alone
before two frogs started to call alternately and (b) those of two frogs which
called alternately, where the total time length is 4.0s both in (a) and (b).
There are main peaks around 4.2Hz in (a) and 7.0Hz in (b).
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Then, we discuss a possible biological meaning of anti-phase synchronization
in the calls.

4.1 Analysis by phase oscillator models

We model the calls of frogs as a system of coupled phase oscillators, namely
the calls of one frog is regarded as a phase oscillator which behaves peri-
odically, and the calls of two frogs as two coupled phase oscillators which
synchronize in anti-phase. The calls of a single frog is described as a phase
oscillator with the phase variable θ with θ ∈ S

1 as follows:

dθ

dt
= ω, (3)

where ω is the intrinsic frequency. It is assumed that each call is generated at
θ = 0. This model represents the property that each frog calls periodically.

Then we model the calls of two frogs as the system of two coupled phase
oscillators. In the experiment, after one frog called periodically (3-39 times)
alone, another frog began to call, and two frogs called alternately. We
consider these phenomena with two processes; namely (1) the first process
that while one frog calls periodically, another frog hears the calls of the first
frog without calling by itself, and (2) the second process that two frogs call
alternately.

The first process is modeled by the system of two coupled phase oscilla-
tors with two phase variables θa and θb as follows [13]:

dθa

dt
= ωa, (4)

dθb

dt
= ωb − g(θa − θb − β), (5)

where θa ∈ S
1, θb ∈ S

1, ωa and ωb are the intrinsic frequencies of two frogs,
g is a 2π-periodic function of the argument that describes the one-directional
interaction, and β is a positive phase frustration parameter.

To examine whether two oscillators synchronize, we analyze the dynam-
ics of the phase difference φ ≡ θa − θb with φ ∈ S

1. Subtracting Eq. (5)
from Eq. (4) yields

dφ

dt
= (ωa − ωb) + g(φ− β). (6)

Here, we assume g to be a sinusoidal function for the sake of simplicity,
according to models of Kuramoto [13] and Strogatz [14], namely g(φ−β) =
K sin(φ− β) with a positive coupling coefficient K.

Then, if |ωa − ωb| � K, then this system has a stable equilibrium point
φ∗ =.. π+β = −π+β. Further, if β � π, a stable equilibrium point φ∗ nearly
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equals to π, which represents nearly anti-phase synchronization. This result
models the property that after one frog calls periodically, another frog begins
to call in nearly anti-phase. Generally speaking, when the system is at a
stable equilibrium point, the equation dφ

dt
= 0 holds. Hence, the equilibrium

point φ∗ of Eq. (6) satisfies the following equation:

ωa = ωb −K sin(φ∗ − β). (7)

Substituting Eq. (7) in Eq. (5) yields

dθa

dt

∣

∣

∣

∣

φ=φ∗

=
dθb

dt

∣

∣

∣

∣

φ=φ∗

= ωa. (8)

Next, we model the second process as the following system of two mu-
tually coupled phase oscillators:

dθa

dt
= ωa − gab(θb − θa − α), (9)

dθb

dt
= ωb − gba(θa − θb − β), (10)

where gab and gba are 2π-periodic functions that represent the mutual inter-
actions, α and β are positive frustration parameters. Subtracting Eq.(10)
from Eq. (9) gives

dφ

dt
= (ωa − ωb) + gba(φ− β) − gab(−φ− α). (11)

Here, we assume again as a simple model that gab(ψ) = gba(ψ) ≡ K sin(ψ)
[13, 14]. Then, Eq. (11) can be represented as follows:

dφ

dt
= (ωa − ωb) + 2K cos(

α+ β

2
) sin(φ+

α− β

2
). (12)

Thus, if

|ωa − ωb| � 2K cos(
α+ β

2
), (13)

then this system has the following stable equilibrium point:

φ∗ =.. π −
α− β

2
. (14)

Further, if α =.. β, a stable equilibrium point φ∗ nearly equals to π, which
represents almost anti-phase synchronization. This result represents the
property that two frogs call alternately. The stable equilibrium point φ∗ of
Eq. (12) satisfies the following equation:

ωa +K sin(φ∗ + α) = ωb −K sin(φ∗ − β). (15)
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Substituting Eqs. (14) and (15) in Eqs. (9) and (10), we have

dθa

dt

∣

∣

∣

∣

φ=φ∗

=
dθb

dt

∣

∣

∣

∣

φ=φ∗

= ωa −K sin(
α+ β

2
). (16)

.
In the modeling analysis above, anti-phase synchronization results from

the assumptions of |ωa − ωb| � K, β � π, α =.. β, and Eq. (13). It should
be noted that these assumptions are equivalent to |ωa − ωb| � K, α =.. β,
and α� π. Hence, Eq. (16) can be approximately represented as follows:

dθa

dt

∣

∣

∣

∣

φ=φ∗

= ωa −Kα+O(α3) (17)

=.. ωa −Kα. (18)

If 0 < Kα < ωa, Eqs. (8) and (18) show the change of the frequency of the
same frog before and after the synchronization. The frequency of the phase
oscillator θa becomes smaller from ωa

2π
to ωa−Kα

2π
after the synchronization.

In the experiment, the frequency of the single frog changed from 4.2Hz
to 3.5Hz. Hence, we can approximately estimate the relation between the
parameters K and α from the theoretical model and the experimental data
as follows:

Kα

2π
=.. 0.7(Hz). (19)

4.2 Possible biological meaning

If one male frog mates with one female in a one-to-one manner, it is impor-
tant for two males to make females distinguish them each other.

In fact, many kinds of frogs are known to mate in such a one-to-one
manner [15]. Especially, the mating behavior in Japanese rain frogs is in
this manner [16]. Thus, it is probable that Japanese male rain frogs call
alternately for each of them to make females distinguish oneself from the
nearest male.

5 Conclusion

5.1 Main results

We recorded and analyzed the calls of Japanese rain frogs. While a single
frog called nearly periodically, a pair of frogs called alternately; after one
frog called several times (3 to 39 times) alone, another frog began to call, and
two frogs called alternately. The intervals of the calls of the first frog during
the interactive calls of two frogs is longer than those of the same frog which
called alone. We model these phenomena as the system of coupled phase
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oscillators; namely the calls of one frog as a periodic phase oscillator and the
calls of two frogs as two mutually coupled phase oscillators which synchronize
in almost anti-phase. We suppose that it is biologically important for two
male frogs Hyla japonica to call alternately and make females distinguish
them each other.

5.2 Future problems

In order to further improve our models of calling behaviors of Japanese rain
frogs, we need to consider the following problems.

(1) In the mathematical models, we have assumed the coupling strength as
constant. It is probable, however, that frogs interact not continuously
but only when they call. If we modify the coupling strength to be
dependent on timing of calls of another frog, the phase model may be
more suitable as the model of calling behaviors of frogs.

(2) In the mathematical model, we described the interaction function as a
sinusoidal function for the sake of simplicity. It is an important future
problem to take real data of phase response curves experimentally, and
define the interaction function of the calls peculiar to Japanese rain
frogs.

(3) The relation between the coupling strength and the difference in the
intrinsic frequencies of two frogs is important for the understanding
of the dynamics of the system. We need to make an experiment to
elucidate the relation. In other words, we should record the calls
of each frog separately, and analyze intrinsic frequencies. Then, we
change the distance between frogs to change the coupling strength;
if frogs are put at a longer distance, the coupling strength should be
weaker.

(4) A frog may respond to the calls of another frog with a certain time
delay. We should explore the effects of time delay on the dynamics of
the synchronization.

(5) In the real situation, the natural frequencies of calls are not necessarily
very close. Then, we explore a possibility that one frog adjusts own
intrinsic frequency to that of another frog.
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