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Abstract: We propose an iterated local search algorithm for the vehicle routing problem with
time window constraints. We treat the time window constraint for each customer as a penalty
function, and assume that it is convex and piecewise linear. Given an order of customers each
vehicle to visit, dynamic programming (DP) is used to determine the optimal start time to
serve the customers so that the total time penalty is minimized. This DP algorithm is then
incorporated in the iterated local search algorithm to efficiently evaluate solutions in various
neighborhoods. The amortized time complexity of evaluating a solution in the neighborhoods is
a logarithmic order of the input size (i.e., the total number of linear pieces that define the penalty
functions). Computational comparisons on benchmark instances with up to 1000 customers show
that the proposed method is quite effective, especially for large instances.

Keywords: Vehicle routing problem with time windows, metaheuristics, dynamic programming

1 Introduction

The vehicle routing problem (VRP) is the problem of minimizing the total distance traveled by
a number of vehicles, under various constraints, where each customer must be visited exactly
once by a vehicle. This is one of the representative combinatorial optimization problems and
is known to be NP-hard. Among variants of VRP, the VRP with capacity and time window
constraints, called the vehicle routing problem with time windows (VRPTW), has been widely
studied in the last decade. The capacity constraint signifies that the total load on a route cannot
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1 INTRODUCTION 2

exceed the capacity of the vehicle serving the route. The time window constraint signifies that
each vehicle must start the service at each customer in the period specified by the customer.
The VRPTW has a wide range of applications such as bank deliveries, postal deliveries, school
bus routing and so on. For an extensive survey on heuristic and metaheuristic approaches for
the VRPTW, see references [5, 6] by Bräysy and Gendreau.

If the capacity and time window constraints must be satisfied strictly, such problem is called
the VRPHTW (H stands for hard). For this problem, even just finding a feasible solution with a
given number of vehicles is known to be NP-complete, because it includes the (one-dimensional)
bin packing problem [10] as a special case. Thus, it is inefficient to search only within the
feasible region of the VRPHTW, especially when the constraints are tight. Moreover, in many
real-world situations, these constraints can be violated to some extent. Considering these, we
treat these two types of constraints as soft (i.e., can be violated) in this paper. This problem
is called the VRPSTW (S stands for soft), and the amount of violation of soft constraints is
penalized by using penalty functions and added to the objective function. In this case, it is not
trivial to determine the optimal start time of services at all customers so that the total penalty
is minimized after fixing the order of customers for each vehicle to visit.

The time penalty function is the function that penalizes the amount of violation of time
window constraints for customers. In most of the previous work for the VRPTW [23, 28, 29, 31],
only one time window is allowed for each customer and in this case the time penalty function is
convex. In the literature [8, 11, 23, 31], algorithms for particular convex time penalty functions
were proposed in order to treat the time window constraint as a soft constraint. In [31], the
time penalty for each customer is +∞ for earliness and linear for tardiness, and an O(1) time
algorithm to compute approximately the optimal time penalty for a solution in neighborhoods
was proposed. In [8, 23], the time penalty is linear for both of earliness and tardiness, and
O(n2

k) time algorithms to compute the penalty of a given route of vehicle k were proposed,
where nk is the number of customers assigned to vehicle k. If the time penalty function for each
customer is the absolute deviation from a specified time, the problem to determine the optimal
start time of services at all customers is called the isotonic median regression problem, which
has been extensively studied. To our knowledge, the best time complexity for this problem (for
a vehicle k) is O(nk log nk) [1, 11, 17].

The problem with multiple time windows [9, 20] and other variants of VRPTW [16, 30] have
also been considered. In our previous paper [20], the time penalty function can be non-convex
and discontinuous as long as piecewise linear. Let δk be the total number of linear pieces of the
time penalty functions for the depot and all customers assigned to vehicle k, and let δmax be the
maximum of δk among all vehicles. We proposed a dynamic programming (DP) algorithm that
runs in O(nkδk) time when the problem of minimizing the time penalty of vehicle k is solved
from scratch. This DP algorithm was incorporated into metaheuristic algorithms based on local
search. We also designed a sophisticated data structure with which the optimal time penalty of
a solution in neighborhoods is computed in O(δmax) amortized time. However, this computation
time is still expensive when the number of customers becomes large, since δk usually depends
linearly on the number of customers assigned to vehicle k. Moreover, it is observed in many
practical situations that each customer has only one time window. In this paper, hence, the
time penalty function is assumed to be convex and piecewise linear.

One of the main contribution of this paper is to propose an efficient algorithm to deal with
convex time penalty functions. We use the DP technique in order to compute the optimal time
penalty of a vehicle that serves customers in a specified order. The time complexity of our DP
algorithm for convex time penalty functions is O(δk log δk) for each vehicle k, while the time to
evaluate a solution in various neighborhoods is O(log δmax) amortized time.
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The essential part of the VRP, i.e., assigning customers to vehicles and determining the
visiting order of each vehicle, is determined by a local search (LS) algorithm. We use basic
neighborhoods such as the cross exchange and 2-opt∗, limiting the neighborhood sizes by using
parameters. The LS based on these neighborhoods is then incorporated in the framework of
metaheuristics. Among many possible metaheuristics based on the LS, we utilize the iterated
local search (ILS) [21]. As it is not easy to specify appropriate weights of constraints a priori,
we introduce a mechanism of adaptively controlling penalty weights into the ILS, which turns
out to be very effective.

To see the performance of our algorithm, we conduct computational experiments on rep-
resentative benchmark instances of the VRPTW: (1) Solomon’s benchmark instances [29] and
(2) Gehring and Homberger’s benchmark instances [13]. For Solomon’s instances, the solu-
tion quality of our algorithm is competitive with those of recent algorithms developed for the
VRPTW. For Gehring and Homberger’s instances, our results are the best among the tested
algorithms. This tendency becomes clearer for larger scale instances such as ones with 800 or
1000 customers. It should be pointed out that these benchmark instances are special cases of
the instances that our algorithm can treat.

The remainder of this paper is organized as follows. In Section 2, we define the problem that
we consider in this paper. In Section 3, we explain the problem to determine the optimal start
time of services for a given route, and propose a DP algorithm. In Section 4, we propose local
search and metaheuristic algorithms for finding a good set of routes. In Section 5, we propose
some ideas to accelerate the speed of our local search algorithm. In Section 6, we show our
computational results on representative benchmark instances with up to 1000 customers. We
give concluding remarks and discuss some extensions of our algorithm in Section 7.

2 Problem

In this section, we formulate the vehicle routing problem with convex time penalty functions.
Let G = (V, E) be a complete directed graph with a vertex set V = {0, 1, . . . , n} and an edge set
E = {(i, j) | i, j ∈ V, i 6= j}, and M = {1, 2, . . . , m} be a set of vehicles. Vertex 0 is the depot
and other vertices are customers. The following parameters are associated with each customer
i ∈ V \ {0}, the depot, each edge (i, j) ∈ E, and each vehicle k ∈ M :

• an amount qi (≥ 0) of the resource to be delivered from the depot to customer i,

• a service time ui (≥ 0) at customer i,

• a time penalty function pi(t) (≥ 0) of the start time t of the service for customer i,

• a time penalty function pd
0(t) (≥ 0) of the departure time t from the depot,

• a time penalty function pa
0(t) (≥ 0) of the arrival time t at the depot,

• a distance dij (≥ 0) for edge (i, j),

• a travel time tij (≥ 0) for edge (i, j),

• a capacity Qk (≥ 0) for vehicle k.

Distances dij and travel times tij are asymmetric in general; i.e., dij 6= dji and tij 6= tji may
hold. Each time penalty function pi(t), pd

0(t) or pa
0(t) is nonnegative, convex and piecewise linear.
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For convenience, we assume mint pi(t) = 0, mint pd
0(t) = 0 and mint pa

0(t) = 0 without loss of
generality. It is also assumed that each function is represented by a linked list of linear pieces.

We define a route by a sequence of the customers served by one vehicle. Let σk denote the
route traveled by vehicle k, and σ = (σ1, σ2, . . . , σm). We denote by σk(h) the hth customer
in σk, and we define σk(0) = σk(nk + 1) = 0, where nk is the number of customers for vehicle
k ∈ M (i.e., each vehicle k starts from the depot, visits nk customers, and comes back to the
depot). We define 0-1 variables yik(σ) ∈ {0, 1} for i ∈ V \ {0} and k ∈ M by

yik(σ) = 1 ⇐⇒ ∃h ∈ {1, 2, . . . , nk}, i = σk(h).

That is, yik(σ) = 1 if and only if vehicle k visits customer i. Moreover, let si be the start time of
service at customer i, sd

k be the departure time of vehicle k from the depot and sa
k be the arrival

time of vehicle k at the depot, and let s = (s1, s2, . . . , sn, sd
1 , s

d
2 , . . . , s

d
m, sa

1, s
a
2, . . . , s

a
m). Note

that each vehicle is allowed to wait at customers before starting services. The total traveling
cost dsum(σ) of all vehicles, the total penalty psum(s) for time window constraints, and the total
amount qsum(σ) of capacity excess are expressed as

dsum(σ) =
∑

k∈M

nk∑

h=0

dσk(h)σk(h+1),

psum(s) =
∑

i∈V \{0}

pi(si) +
∑

k∈M

pd
0(s

d
k) +

∑

k∈M

pa
0(s

a
k),

qsum(σ) =
∑

k∈M

max





∑

i∈V \{0}

qiyik(σ) − Qk, 0



 .

The vehicle routing problem with convex time penalty functions is now formulated as follows:

minimize cost(σ, s) = dsum(σ) + psum(s) + qsum(σ) (1)

subject to
∑

k∈M

yik(σ) = 1, i ∈ V \ {0}, (2)

sd
k + tσk(0)σk(1) ≤ sσk(1), k ∈ M, (3)

sσk(h) + uσk(h) + tσk(h)σk(h+1) ≤ sσk(h+1), k ∈ M, h = 1, 2, . . . , nk − 1, (4)

sσk(nk) + uσk(nk) + tσk(nk)σk(nk+1) ≤ sa
k, k ∈ M. (5)

Constraint (2) means that every customer i ∈ V \ {0} must be served exactly once by a vehicle.
Constraints (3) and (4) require that the start time si of service for customer i must not be before
the arrival time at customer i, and constraint (5) means that each vehicle k can return to the
depot only after serving all the customers assigned to vehicle k. As for the objective function (1),
the time window and capacity constraints are treated as soft constraints, and their violations are
evaluated as the penalties psum(s) and qsum(σ), respectively, in the objective function. Note that
the weighted sum dsum(σ)+µppsum(s)+µqqsum(σ) with constants µp (≥ 0) and µq (≥ 0) might
seem more general; however, such a weighted sum can be represented in the above formulation
by regarding µppi(t), µppd

0(t), µppa
0(t), µqqi and µqQk (i ∈ V \ {0}, k ∈ M) as the given input,

and hence the weights are omitted for simplicity unless otherwise stated.
Note that we call a solution that satisfies constraints (2) to (5) a feasible solution throughout

the paper; i.e., a feasible solution does not necessarily satisfy the time window and capacity
constraints. If time window and/or capacity constraints are to be satisfied, the penalties psum(s)
and/or qsum(σ) should be set sufficiently large.



3 OPTIMAL START TIME OF SERVICES 5

Remark: Although the number m of vehicles is sometimes treated as a decision variable in the literature,
we consider it as a given constant in this paper for the following two reasons. (1) In many applications,
the number of vehicles m is fixed. (2) Algorithms become simpler if m is treated as a constant, since
route elimination operators will not be necessary. For problems where m is a decision variable, we need to
try various values of m to find a small feasible m; however, in many practical situations, an appropriate
range of m is known in advance.

3 Optimal start time of services

In this section, we consider the problem of determining the start time to serve the customers
in a given route σk so that the total time penalty is minimized. This problem can be solved
independently for each route. (How to determine a route σk will be discussed in Section 4.) We
call this problem the optimal start time problem, which is described as follows:

minimize pd
0(s

d
k) +

nk∑

i=1

pσk(i)(sσk(i)) + pa
0(s

a
k),

subject to sd
k + tσk(0)σk(1) ≤ sσk(1),

sσk(h) + uσk(h) + tσk(h)σk(h+1) ≤ sσk(h+1), h = 1, 2, . . . , nk − 1,

sσk(nk) + uσk(nk) + tσk(nk)σk(nk+1) ≤ sa
k.

Let δ(p) be the number of pieces in a piecewise linear function p(t), and let the total number
of pieces in the penalty functions for all customers in a route σk (including the depot) be
δk =

∑nk
h=1 δ(pσk(h)) + δ(pd

0) + δ(pa
0). We propose an O(δk log δk) time algorithm to solve this

problem by dynamic programming (DP). For this problem, there are several efficient algorithms
that have the same time complexity as the algorithm in this section [1, 17]. However, our DP
algorithm is simpler and utilized to design a more efficient algorithm for evaluating solutions in
various neighborhoods in Section 5.1.2.

3.1 Dynamic programming

We define functions fk
h (t) for h = 0, 1, . . . , nk + 1 to be the minimum sum of the penalty values

for customers σk(0), σk(1), . . . , σk(h) under the condition that all of them are served in this order
and the service for σk(h) starts by time t. We call this the forward minimum penalty function.
For convenience, we also define values

τk
h = uσk(h) + tσk(h)σk(h+1)

for customers h = 1, 2, . . . , nk; i.e., τk
h is the sum of the service time at the hth customer and the

travel time from this to the next customer. Based on the idea of DP, fk
h (t) can be computed by

fk
0 (t) = min

t′≤t
pd
0(t

′),

fk
h (t) = min

t′≤t

(
fk

h−1(t
′ − τk

h−1) + pσk(h)(t
′)
)
, h = 1, 2, . . . , nk,

fk
nk+1(t) = min

t′≤t

(
fk

nk
(t′ − τk

nk
) + pa

0(t
′)
)

,

(6)

where τk
0 = tσk(0)σk(1). The minimum time penalty value for the entire route σk (denoted by

p∗sum(σk)) can be obtained by
p∗sum(σk) = min

t
fk

nk+1(t). (7)
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Moreover, the optimal start time sσk(h) of the service for each customer σk(1), σk(2), . . . , σk(nk),
the departure time sd

k from the depot and the arrival time sa
k at the depot can be computed

backward by

sa
k = arg min

t
fk

nk+1(t),

sσk(h) = arg min
t≤sσk(h + 1)−τk

h

fk
h (t), h = nk, nk − 1, . . . , 1,

sd
k = arg min

t≤sσk(1)−τk
0

fk
0 (t),

(8)

where sσk(nk+1) = sa
k.

3.2 Algorithm and time complexity

In this section, we consider the data structure and algorithm for computing forward minimum
penalty functions fk

h in the recurrence formula (6).
We first consider some characteristics of fk

h . Since functions pi, pd
0 and pa

0 are convex and
piecewise linear, each fk

h is also convex and piecewise linear. Moreover, each fk
h is nonincreasing

by definition. The number of linear pieces for fk
h is O(δk).

In order to compute fk
h in the recurrence formula (6), we need the following three operations:

1. Computing f(t) := f(t − τ) (called shift operation).

2. Computing f(t) := f(t) + g(t) (called add operation).

3. Computing f(t) := mint′≤t f(t′) (called minimize operation).

Recall that functions f and g are convex and piecewise linear, and τ is a constant. Note also
that we represent function g by a linked list of linear pieces. To support the above operations
efficiently, we use the following data structure to represent function f :

• A balanced binary search tree with δ(f) leaves, whose height is denoted by htree and has a
value c (called tree value). Each leaf v has an interval [tlv, t

r
v], and each node v (including

internal nodes and leaves) of this tree has values av, bv and ζv.

• Each leaf of the tree represents a linear piece of function f , where the αth leaf in the
inorder corresponds to the αth linear piece of f counted from left.

We denote the root of the tree by v0, and the parent, the left child and the right child of a node v
by H(v), L(v) and R(v), respectively. We also denote the rightmost leaf in the descendants of
an internal node v by R̃(v), and we define R̃(v) = v for each leaf v. Each node v has pointers to
H(v), L(v), R(v) and R̃(v), if they exist. We represent the set of nodes in the path from a node v
to a node v′ as ℘(v, v′), where v′ is a descendant of v. Consider a linear piece of function f that
has a gradient a, an intercept b and an interval [tl, tr], which is assigned to leaf v. The interval
of leaf v satisfies [tlv, t

r
v] = [tl − c, tr − c], where c is the tree value. The values av′ and bv′ kept

in nodes v′ ∈ ℘(v0, v) satisfy the following equations:
∑

v′∈℘(v0,v)

av′ = a,
∑

v′∈℘(v0,v)

bv′ = b.

The tree value c, intervals [tlv, t
r
v] of leaves v, and values av and bv of nodes v are appropriately

updated during the algorithm as explained later.
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It is possible to shift a function f in O(1) time by updating the tree value c. For a given t,
we can find the linear piece whose interval [tl, tr] satisfies tl ≤ t < tr in O(htree) time: We first
set v := v0. For the leaf node R̃(L(v)), if t < trv + c holds, then we set v := L(v). Otherwise,
we set v := R(v). We repeat this operation until v becomes a leaf node of the tree, and then
output the linear piece corresponding to the leaf v.

As for the value ζv of each node v, we set

ζv =
∑

v′∈℘(v,R̃(v))

av′ .

It is also possible to find the rightmost linear piece whose gradient is less than a given constant
α in O(htree) time: We first set v := v0. The gradient of the linear piece corresponding to the
leaf node R̃(L(v)) can be computed by

∑

v′∈℘(v0,v)

av′ + ζL(v). (9)

If it is larger than or equal to α, we set v := L(v). Otherwise, we set v := R(v). We repeat this
operation until v becomes a leaf, and output the linear piece corresponding to the leaf v. The
computation of (9) can be done in constant time for each v, because we can use the value of∑

v′∈℘(v0,H(v)) av′ already computed for the parent.
We now explain how to calculate and store the function fk

h by using this data structure.
First, we show the procedure for the first equation of (6). We construct a balanced binary tree
with leaves corresponding to the linear pieces of pd

0 whose gradients are less than 0. For each
leaf v, we set an interval [tlv, t

r
v] and values av, bv for the corresponding linear piece. We add

another leaf v to the rightmost position of this tree; av is 0, trv is +∞, and we set bv and tlv so
that the resulting function becomes continuous. We set c = 0 for this tree, av = 0 and bv = 0
for all internal nodes v, and ζv = aR̃(v) for all nodes v. The time complexity of this computation
is O(δ(pd

0)).
We then explain the procedure for the second equation of (6). Since the procedure for the

third equation is similar, we omit its explanation. For the shift operation fk
h−1(t

′−τ), we update
the tree value by c := c + τ so that the intervals of the leaves are shifted. The add operation
fk

h−1(t
′ − τ) + pσk(h)(t′) is realized as follows. Our basic strategy for this operation is adding

each linear piece of g(t) (= pσk(h)(t′)) to function f(t) (= fk
h−1(t

′ − τ)) one by one. Consider a
situation of adding a linear piece having gradient a, intercept b and interval [tl, tr] to the binary
tree corresponding to the function f(t) with tree value c. We find the leaf vα (resp., vβ) satisfying
tlvα

≤ tl−c < trvα
(resp., tlvβ

< tr−c ≤ trvβ
). If tlvα

6= tl−c holds, we divide leaf vα into two leaves
which have intervals [tlvα

, tl − c] and [tl − c, trvα
], and call the new leaf with interval [tl − c, trvα

]
as vα. We divide leaf vβ into two leaves and define vβ similarly (if necessary). In order to add
the gradient a and intercept b to leaves whose intervals are [tl−c, trvα

], [trvα
, t′′], . . . , [tlvβ

, tr−c], we
add a and b to the values av and bv of nodes v that satisfy one of the following three conditions:

1. R(H(v)) = v, H(v) is not an ancestor of vβ but that of vα, v is not an ancestor of vα,

2. L(H(v)) = v, H(v) is not an ancestor of vα but that of vβ , v is not an ancestor of vβ ,

3. v = vα or v = vβ .

It is easy to see that the number of nodes whose values are changed is O(htree) and we can
change those values in O(htree) time. The resulting tree may not satisfy the conditions of a
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balanced tree; we apply a balancing procedure that runs in O(htree) time if necessary. Such
an insertion is conducted for all linear pieces of g(t). Thus, the time complexity of computing
f(t) + g(t) is O(δ(g)htree) time.

For the minimize operation mint′≤t

(
fk

h−1(t
′ − τ) + pσk(h)(t′)

)
, we find the rightmost linear

piece whose gradient is less than 0 in O(htree) time. Recall that function fk
h−1(t− τ) + pσk(h)(t)

is convex. We then remove the unnecessary portion of the tree (i.e., those with nonnegative
gradient), and add a new leaf v to the rightmost position of this tree; av is 0, trv is +∞, and we
set bv and tlv so that the resulting function becomes continuous. We apply a balancing procedure
for this tree (if necessary). The computational complexity for these operations is O(htree).

Now, we estimate the time complexity of our DP algorithm. We can compute fk
nk+1 in

O(δk log δk) time using the above procedures and operations, since htree = O(log δk) holds
throughout the algorithm.

For the computation of (8) and algorithms in Section 5, we must store fk
h for all h =

0, 1, . . . , nk +1. If we realize this naively, just by keeping the binary search trees of all functions
independently, we need O(nkδk) time and space. To avoid this, we share common parts among
the trees to save the computation time and memory. Consider the case of computing fk

h . We
first generate a tree with only the root node v0 and set L(v0) = L(v′0), R(v0) = R(v′0) and
R̃(v0) = R̃(v′0), where v′0 is the root of fk

h−1. Then, whenever we need to update some information
of a node in the process of computing fk

h , we duplicate the node and apply the updates only
on the copy, while sharing the other nodes with the tree of fk

h−1. As the number of new
nodes is proportional to the number of updates, we can calculate and store functions fk

h for all
h = 0, 1, . . . , nk + 1 in O(δk log δk) time and space.

After computing the functions fk
h by (6), we can compute the minimum time penalty value for

route σk in O(log δk) time by (7), and the optimal start time sσk(h) of services for all customers
in this route in O(nk log δk) time by (8).

4 Local search for finding a good set of routes

In this section, we describe a local search (LS) algorithm to find a good set of routes. The
following ingredients must be specified in designing the LS: Search space, how to generate an
initial solution, a function to evaluate solutions, neighborhoods and move strategy. The search
space of our LS is the set of all visiting orders σ = (σ1, σ2, . . . , σm) satisfying condition (2).
Note that a set of visiting orders σ is called a “solution” in Sections 4 and 5, while a solution
means (σ, s) in other parts of this paper. We generate an initial solution (i.e., an initial set of
visiting orders) randomly. The objective function is often used in the literature as the evaluation
function; however, we do not use the objective function directly in this paper. The details of
our evaluation function will be explained in Section 4.1. The neighborhood N(σ) of a feasible
solution σ is a set of solutions obtainable from σ by applying some specified operations. In
Section 4.2, we explain the neighborhoods utilized in our LS. As the move strategy, we adopt
(a slightly simplified version of) the aspiration plus strategy [14], which will be explained in
Section 5.1. We describe a metaheuristic algorithm based on the LS in Section 4.3.

4.1 Evaluation function

Let p∗sum(σ) be the minimum value of psum(s) among those s satisfying conditions (3) to (5) for
a given set of routes σ. Such an s can be computed by solving the optimal start time problem
for each route with the DP algorithm of Section 3. (A more efficient method will be presented
in Section 5.1.2.)
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Then the objective function (1) becomes

cost(σ) = dsum(σ) + p∗sum(σ) + qsum(σ). (10)

Using this objective function as an evaluation function of LS may not work well for problem
instances with hard time window and/or capacity constraints. In such cases, a large amount of
penalty should be imposed on the violation of the time window and/or capacity constraints to
satisfy them strictly, but it prevents the search from visiting the infeasible region of VRPHTW.
To avoid such phenomenon, we therefore adopt the following function eval(σ) instead of cost(σ)
to evaluate solutions in LS:

eval(σ) = dsum(σ) + κpp∗sum(σ) + κqqsum(σ), (11)

where κp (resp., κq) is a weight of p∗sum(σ) (resp., qsum(σ)). We change these weights whenever
a local search stops at a locally optimal solution. As for the control mechanism of parameters κp

and κq in our evaluation function eval, we control them as follows. If we find a solution whose
time penalty (resp., capacity penalty) is equal to 0 in LS, the time penalty weight κp (resp.,
the capacity penalty weight κq) is decreased to 0.9κp (resp., 0.9κq) after completion of LS in
order to emphasize the other part dsum(σ) + qsum(σ) (resp., dsum(σ) + p∗sum(σ)). Otherwise, κp

(resp., κq) is increased to min{1.1κp, 1} (resp., min{1.1κq, 1}) after completion of LS so that
the influence of p∗sum(σ) (resp., qsum(σ)) is reduced.

4.2 Neighborhoods

The neighborhood is a very important factor that determines the effectiveness of LS. In our
algorithm, we utilize some standard neighborhoods for the VRP such as the cross exchange and
2-opt∗ neighborhoods, limiting their sizes by using parameters.

Iopt neighborhood The iopt neighborhood [4] is a variant of Or-opt neighborhood [27] used
for the traveling salesman problem (TSP), which is a special case of the VRP in which the
number of vehicles is one. We define a path as a subroute; i.e., a sequence of some consecutive
customers served by one vehicle. An iopt operation removes a path of length at most Liopt

path (a
parameter) and inserts it into another position of the same route, where the position is limited
within the length Liopt

ins (a parameter) from the current position. For each insertion, we consider
the following two cases: (1) visiting order preserved (called a normal insertion), and (2) visiting
order reversed (called a reverse insertion). Note that the operation of just inverting the order of
a path at its current position is also an iopt operation. Let N iopt(σ, k) be the set of all solutions
obtainable by applying an iopt operation to route σk of the current solution σ = (σ1, σ2, . . . , σm),
and let N iopt(σ) =

⋃
k∈M N iopt(σ, k). The size of the iopt neighborhood is O(nLiopt

pathL
iopt
ins ).

2-opt neighborhood The 2-opt neighborhood is one of the well-known neighborhoods for the
TSP. A 2-opt operation removes a path whose length is at most L2opt (a parameter), and inserts
it into its current position with the reversed order. In other words, we remove two edges from a
route, and reconstruct a route with two other edges. Let N2opt(σ, k) be the set of all solutions
obtainable by applying a 2-opt operation to route σk, and let N2opt(σ) =

⋃
k∈M N2opt(σ, k). The

size of this neighborhood is O(nL2opt). Note that if Liopt
path ≥ L2opt−1, then N2opt(σ) ⊆ N iopt(σ)

holds. However, parameter Liopt
path is usually set small in order to keep |N iopt(σ)| small, and we

use N2opt(σ) with a large L2opt independently from N iopt(σ).
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2-opt∗ neighborhood The 2-opt∗ neighborhood, which was proposed in [28], is a variant of
the 2-opt neighborhood. A 2-opt∗ operation removes two edges from two different routes (one
from each) to divide each route into two parts, and exchanges the second parts of the two routes.
Let N2opt∗(σ, k, k′) be the set of all solutions obtainable by applying a 2-opt∗ operation to two
routes σk and σk′ of the current solution σ, and let N2opt∗(σ) =

⋃
k 6=k′ N2opt∗(σ, k, k′). The

size of the 2-opt∗ neighborhood is O(n2).

Path insertion neighborhood A path insertion operation removes a path of length at most
Lpins (a parameter) from a route σk, and insert it into a different route σk′ . Let Npins(σ, k, k′)
be the set of all solutions obtainable by applying a path insertion operation to two routes σk

and σk′ , and let Npins(σ) =
⋃

k 6=k′ Npins(σ, k, k′). The size of the path insertion neighborhood
is O(n2Lpins). If the length of the removed path is at most Lpins

rev (a parameter), we also consider
the reverse insertion, where Lpins

rev ≤ Lpins.

Cross exchange neighborhood The cross exchange neighborhood was proposed in [31]. A
cross exchange operation removes two paths from two different routes (one from each), whose
length is at most Lcross (a parameter), and exchanges them. If the length of removed paths
is at most Lcross

rev (a parameter), we also consider the (both or either) reverse insertion. Let
N cross(σ, k, k′) be the set of all solutions obtainable by applying a cross exchange operation to
two routes σk and σk′ , and let N cross(σ) =

⋃
k 6=k′ N cross(σ, k, k′). The size of this neighborhood

is O(n2(Lcross)2).

Combination of the neighborhoods It is often effective to combine some neighborhoods in
an LS algorithm. Our LS searches the above five types of neighborhoods in the order described
as follows: iopt, 2-opt, 2-opt∗, path insertion and cross exchange. Once we find a better solution
in a neighborhood, we return to the iopt neighborhood. When no improvement is achieved in
the five consecutive neighborhoods, this procedure outputs a locally optimal solution for the
neighborhoods and terminates.

4.3 Iterated local search

If the LS is applied only once, many solutions of better quality may remain unvisited in the
search space. To overcome this, we use the iterated local search (ILS) [21], which is one of the
basic frameworks of metaheuristics. In the ILS, the LS is executed iteratively and an initial
solution of each LS is generated by slightly perturbing a good solution found so far. In our
ILS, a random cross exchange operation, which randomly chooses two paths from two routes
and exchanges them each other, is utilized to generate initial solutions. In order to generate
a new initial solution, we choose r randomly from {1, 2, 3}, and apply random cross exchange
operations r times consecutively to the incumbent solution (i.e., the best solution found by
then).

5 Efficient implementation of local search

In this section, we explain various useful ideas to search the neighborhoods efficiently. In Sec-
tion 5.1, we propose ideas to speed up the evaluation of solutions in neighborhoods. In Sec-
tion 5.2, we show two ideas to prune the neighborhood. In Section 5.3, we propose other ideas
to accelerate the speed of our local search procedure.
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5.1 Evaluation of solutions in neighborhoods

Let ∆dsum (resp., ∆psum and ∆qsum) be the difference in the traveling cost dsum(σ) (resp.,
the time penalty p∗sum(σ) and the capacity excess qsum(σ)) between the current solution and a
solution in its neighborhood. Then, we define ∆eval as

∆eval = ∆dsum + κp∆psum + κq∆qsum, (12)

and move to a solution whose ∆eval is negative. In the subsequent subsections, we explain
how to evaluate ∆dsum, ∆psum and ∆qsum effectively, based on the following two facts: (1) A
neighborhood operation generates at most two different routes from the current solution, and
(2) each new route is generated by reconnecting a constant number of paths (more precisely, at
most four paths) in the current solution.

We now explain our basic strategy. At the beginning of a neighborhood search, we compute
some values and functions that will be used during the neighborhood search (called prepro-
cessing). We then evaluate each solution in the neighborhood quickly with those values and
functions. Thus, our computation consists of the preprocessing part and the evaluation part.
To avoid calling the preprocessing part too frequently, we adopt the aspiration plus strategy [14],
which is explained as follows. We evaluate solutions in the neighborhood until we evaluate all
the solutions in the neighborhood or we use (approximately) the same computation time that
was spent for the previous preprocessing. If we can find improved solutions during the search,
we move to the best solution among them. Otherwise, we continue the search for the remaining
neighbors, based on the first admissible move strategy.

5.1.1 Evaluation of ∆qsum and ∆dsum

At the beginning of a neighborhood search, we compute

γk
0 = 0,

γk
h = γk

h−1 + qσk(h), h = 1, 2, . . . , nk,

φk
0 = 0,

φk
h = φk

h−1 + dσk(h−1)σk(h), h = 1, 2, . . . , nk + 1,

φ̂k
nk+1 = 0,

φ̂k
h = φ̂k

h+1 + dσk(h+1)σk(h), h = nk, nk − 1, . . . , 1, 0,

for all k ∈ M . It is possible to compute all of them in O(n) time. We evaluate ∆qsum and ∆dsum

for each solution in the neighborhood using these γk
h, φk

h and φ̂k
h.

As for ∆qsum, we observe that ∆qsum is equal to 0 for all solutions in N iopt and N2opt,
and thus we only consider solutions in N2opt∗ , Npins and N cross. The sum

∑h′

l=h qσk(l) of the
amount of resources for the hth through the h′th customers can be computed in O(1) time by
γk

h′ − γk
h−1. Since there are only two different routes from the current solution and each new

route is generated by reconnecting at most three paths, the time complexity to evaluate ∆qsum

is O(1).
As for ∆dsum, the total distance

∑h′−1
l=h dσk(l)σk(l+1) of the hth through the h′th customers (in

the case of the normal insertion) can be computed in O(1) time by φk
h′ −φk

h. The total distance∑h′−1
l=h dσk(l+1)σk(l) of the h′th through the hth customers (in the case of the reverse insertion)

can be computed in O(1) time by φ̂k
h − φ̂k

h′ . Thus, ∆dsum is also computed in O(1) time for each
solution in the neighborhoods.
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Since the size of each neighborhood |N iopt|, |N2opt|, |N2opt∗ |, |Npins| or |N cross| is larger
than O(n) (time for preprocessing), the amortized time complexity to evaluate ∆qsum and ∆dsum

for a solution is O(1).

5.1.2 Evaluation of ∆psum

If ∆psum is computed according to (6) from scratch, it takes O(
∑

k∈M ′ δk log δk) time, where
M ′ is the set of indices of the vehicles related to a neighborhood operation. (Note that
|M ′| ≤ 2 holds for any neighborhood considered in this paper.) Instead of this, we propose
an O(

∑
k∈M ′ log δk) = O(log δmax) time algorithm that computes ∆psum for a solution σ′ in the

neighborhoods, where δmax = maxk∈M δk. We only explain the algorithm for cases where the
number of paths contained in a new route is two or three. However, this idea can be extended
to a new route obtainable by reconnecting a constant number of paths (e.g., by reconnecting
four paths).

In addition to the forward minimum penalty function fk
h (t) of (6), we define bk

h(t) as the
minimum sum of the time penalty values for customers σk(h), σk(h + 1), . . . , σk(nk), σk(nk + 1)
under the condition that all of them are served in this order and the service for σk(h) starts at
time t or later. We call this the backward minimum penalty function. In a symmetric manner
to the computation of fk

h (t), bk
h(t) can be computed by:

bk
nk+1(t) = min

t′≥t
pa
0(t

′),

bk
h(t) = min

t′≥t

(
pσk(h)(t

′) + bk
h+1(t

′ + τk
h )

)
, h = nk, nk − 1, . . . , 1,

bk
0(t) = min

t′≥t

(
pd
0(t

′) + bk
1(t

′ + τk
0 )

)
.

(13)

Each function bk
h(t) is convex, piecewise linear and nondecreasing. For a vehicle k, we can

calculate and store functions bk
h for all h = 0, 1, . . . , nk + 1 in O(δk log δk) time.

Reconnecting two paths Let us consider the computation of the minimum time penalty on
a new route

σ′
k = 〈0, σk1(h1)〉–〈σk2(h2), 0〉

generated by reconnecting two paths 〈0, σk1(h1)〉 and 〈σk2(h2), 0〉, where 〈σk(h), σk(h′)〉 repre-
sents the path from σk(h) to σk(h′) in route σk. Using the forward and backward minimum
penalty functions, p∗sum(σ′

k) can be computed by

min
t

(
fk1

h1
(t) + bk2

h2
(t + τ̃ (k1, k2, h1, h2))

)
, (14)

where
τ̃

(
k, k′, h, h′) = uσk(h) + tσk(h)σk′ (h

′).

If we compute mint (f(t) + b(t)) for two piecewise linear convex functions f and b naively, it
takes O(δ(f) + δ(b)) time. However, using the fact that the new function f(t) + b(t) is also
convex, we can compute the minimum value and the corresponding time t (denoted by s∗) in
O(log δ(f) + log δ(b)) time under the assumption that functions f and b are represented by
the balanced search trees defined in Section 3.2. (If the t that achieves the minimum value of
f(t) + b(t) is not unique, we define s∗ = min arg mint(f(t) + b(t)).) We note that our procedure
is easily extended for computing mint

∑r
i=1 gi(t) in O(

∑r
i=1 log δ(gi)) time.
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We compute mint (f(t) + b(t)) for two convex functions f and b by a variant of binary search
based on the following fact: Suppose that we have a linear piece of f(t) that has gradient af and
interval [lf , rf ], and another linear piece of b(t) with gradient ab and interval [lb, rb]. If af + ab

is less than 0, s∗ ≥ min{rf , rb} holds; otherwise, s∗ ≤ max{lf , lb} holds. For a node v in the
balanced search tree representing a function f or b, let a(v) and [l(v), r(v)] be the gradient and
interval of the linear piece that corresponds to the leaf R̃(L(v)) (resp., v) if v is an internal node
(resp., a leaf). We first set vf and vb to be the root nodes of the trees representing f and b,
respectively. Using the above fact, we repeat one of the following operations until both of vf

and vb become leaves: If a(vf ) + a(vb) < 0 holds, then we set vf := R(vf ) (i.e., vf moves to
its right child) if r(vf ) < r(vb) holds, or set vb := R(vb) otherwise (i.e., r(vf ) ≥ r(vb)). On
the other hand, if a(vf ) + a(vb) ≥ 0 holds, then we set vf := L(vf ) if l(vf ) > l(vb), or set
vb := L(vb) otherwise (i.e., l(vf ) ≤ l(vb)). The number these operations is bounded by the sum
of the heights of the trees representing f and b, since we replace vf or vb to its child node in
each iteration. The heights of the trees are O(log δ(f)) and O(log δ(b)), respectively, and each
iteration takes O(1) time. Hence the total computation time to compute mint (f(t) + b(t)) and
s∗ is O(log δ(f) + log δ(b)).

Reconnecting three paths Let us consider the computation of the minimum time penalty
of a new route

σ′
k = 〈0, σk1(h1)〉–〈σk2(h2), σk2(h3)〉–〈σk3(h4), 0〉 (15)

generated by reconnecting three paths. For simplicity, we consider only the case where a new
route is constructed with a normal insertion. For this computation, we use the forward and
backward minimum penalty functions, τk

h and τ̃ (k, k′, h, h′). Moreover, for all candidates of the
intermediate path (e.g., 〈σk2(h2), σk2(h3)〉), we compute two types of new functions f̃k

h,h′(t) and
b̃k
h,h′(t), and values χ(k, h, h′). The function f̃k

h,h′(t) (resp., b̃k
h,h′(t)) is the minimum sum of the

time penalty values for customers σk(h), σk(h + 1), . . . , σk(h′) if these customers are served in
this order and the service for customer σk(h′) (resp., σk(h)) starts by (resp., starts on or after)
time t. Based on the idea of DP, f̃k

h,h′(t) and b̃k
h,h′(t) can be computed by

f̃k
h,h(t) = min

t′≤t
pσk(h)(t

′), h = 1, 2, . . . , nk,

f̃k
h,h′(t) = min

t′≤t

(
f̃k

h,h′−1(t
′ − τk

h′−1) + pσk(h′)(t
′)
)
,

h = 1, 2, . . . , nk − 1, h′ = h + 1, h + 2, . . . ,min{h + Lmax − 1, nk},

(16)

b̃k
h,h(t) = min

t′≥t
pσk(h)(t

′), h = 1, 2, . . . , nk,

b̃k
h,h′(t) = min

t′≥t

(
pσk(h)(t

′) + b̃k
h+1,h′(t′ + τk

h )
)
,

h′ = 2, 3, . . . , nk, h = h′ − 1, h′ − 2, . . . ,max{h′ − Lmax + 1, 1},

(17)

for all k ∈ M , where Lmax = max{Lcross, Lpins}. Since pi(t), pd
0(t) and pa

0(t) are convex func-
tions, f̃k

h,h′(t) (resp., b̃k
h,h′(t)) is also convex and is nonincreasing (resp., nondecreasing). We

calculate and store these functions as well as fk
h (t) and bk

h(t). This computation is possible in
O(Lmaxδk log δk) time for each vehicle k. The value χ(k, h, h′) is the minimum time needed to
serve customers σk(h), σk(h + 1), . . . , σk(h′) in this order; that is,

χ(k, h, h′) =
h′−1∑

h′′=h

τk
h′′ . (18)



5 EFFICIENT IMPLEMENTATION OF LOCAL SEARCH 14

Note that we can also define f̃k
h,h′(t), b̃k

h,h′(t) and χ(k, h, h′) for the paths of reverse direction in a
symmetric manner, and we use them to evaluate new routes constructed with reverse insertions.

We now explain how to compute the minimum time penalty value of the new route σ′
k of (15).

First, we consider the following two paths

〈0, σk1(h1)〉–〈σk2(h2), σk2(h3)〉

and
〈σk2(h2), σk2(h3)〉–〈σk3(h4), 0〉.

For these two paths, we independently calculate the minimum time penalty values and the
corresponding times s∗h2

and s∗h3
, which are respectively defined as follows:

s∗h2
= min arg min

t

(
fk1

h1
(t − τ̃ (k1, k2, h1, h2)) + b̃k2

h2,h3
(t)

)
,

s∗h3
= max arg min

t

(
f̃k2

h2,h3
(t) + bk3

h4
(t + τ̃ (k2, k3, h3, h4))

)
.

(19)

Now we compute the minimum time penalty of σ′
k. If

s∗h3
− s∗h2

≥ χ(k2, h2, h3) (20)

holds, it is given by

fk1
h1

(
s∗h2

− τ̃ (k1, k2, h1, h2)
)

+ b̃k2
h2,h3

(
s∗h2

)

+ f̃k2
h2,h3

(s∗h3
) + bk3

h4
(s∗h3

+ τ̃ (k2, k3, h3, h4)) − min
t

f̃k2
h2,h3

(t).
(21)

On the other hand, if
s∗h3

− s∗h2
< χ(k2, h2, h3) (22)

holds, it can be computed by

min
t

{
fk1

h1
(t − τ̃ (k1, k2, h1, h2)) + b̃k2

h2,h3
(t)

+ f̃k2
h2,h3

(t + χ(k2, h2, h3))

+ bk3
h4

(t + χ(k2, h2, h3) + τ̃ (k2, k3, h3, h4))
}

− min
t′

f̃k2
h2,h3

(t′).

(23)

We now show the correctness of (21) and (23). The following lemma is crucial for this
purpose, whose proof will be given later in this section.

Lemma 5.1 Suppose th3 − th2 ≥ χ(k2, h2, h3). Then b̃k2
h2,h3

(th2) + f̃k2
h2,h3

(th3) − mint f̃k2
h2,h3

(t)
gives the minimum total time penalty of all customers in the path 〈σk2(h2), σk2(h3)〉, provided
that σk2(h2) is served after time th2 and σk2(h3) is served by time th3.

From this lemma, it is clear that

min
th3

−th2
≥χ(k2,h2,h3)

{
fk1

h1
(th2 − τ̃ (k1, k2, h1, h2)) + b̃k2

h2,h3
(th2)

+ f̃k2
h2,h3

(th3) + bk3
h4

(th3 + τ̃ (k2, k3, h3, h4))
}
− min

t
f̃k2

h2,h3
(t)

(24)

gives the minimum total time penalty for all customers in the route

σ′
k = 〈0, σk1(h1)〉–〈σk2(h2), σk2(h3)〉–〈σk3(h4), 0〉.
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As for the start time sh2 and sh3 of the service for customers σk2(h2) and σk2(h3),

sh3 − sh2 ≥ χ(k2, h2, h3) (25)

is necessary and sufficient for a feasible time schedule to exist. In the above procedure, we con-
sider two cases in which s∗h2

and s∗h3
satisfy condition (25) or not. When s∗h2

and s∗h3
satisfy (25),

we will have (20). As s∗h2
and s∗h3

defined by (19) minimize disjoint terms in (24) independently
without considering condition (25), they give the minimum value to (24) in this case. On the
other hand, when s∗h2

and s∗h3
do not satisfy (25), the optimal start time sopt

h2
and sopt

h3
of the

service for customers σk2(h2) and σk2(h3) must satisfy sopt
h3

− sopt
h2

= χ(k2, h2, h3). Then (23)
clearly gives the minimum value in this case.

We now give a proof to Lemma 5.1.

Proof of Lemma 5.1. Let ŝh2 , ŝh2+1, . . . , ŝh3 be a sequence of start times of the ser-
vice for customers in 〈σk2(h2), σk2(h3)〉 that achieves mint f̃k2

h2,h3
(t). Note that mint f̃k2

h2,h3
(t) =

mint b̃k2
h2,h3

(t) =
∑h3

h=h2
pσk2

(h)(ŝh) holds by definition. For h2 ≤ h ≤ h′ ≤ h3, we call a sequence

(h, h + 1, . . . , h′) of indices a block if it is maximal among those that satisfy ŝh′′ + τk2
h′′ = ŝh′′+1

for all h′′ = h, h + 1, . . . , h′ − 1. Let a+
h (t) = limε→+0{pσk2

(h)(t + ε) − pσk2
(h)(t)}/ε and a−h (t) =

limε→+0{pσk2
(h)(t) − pσk2

(h)(t − ε)}/ε. Then, for any block (h, h + 1, . . . , h′) and h′′ ∈ [h, h′],
both a+

h′′(ŝh′′) + a+
h′′+1(ŝh′′+1) + · · ·+ a+

h′(ŝh′) ≥ 0 and a−h (ŝh) + a−h+1(ŝh+1) + · · ·+ a−h′′(ŝh′′) ≤ 0
hold, since otherwise ŝh2 , ŝh2+1, . . . , ŝh3 cannot be optimal. Moreover, from convexity of time
penalty functions, a+

h (t) and a−h (t) are monotonically nondecreasing with t. For a given th2 , let

s̃h = max{ŝh, th2 + χ(k2, h2, h)}

for h = h2, h2 + 1, . . . , h3. This time schedule s̃h2 , s̃h2+1, . . . , s̃h3 achieves the minimum total
time penalty b̃k2

h2,h3
(th2) of customers in 〈σk2(h2), σk2(h3)〉 under the constraint that σk2(h2)

must be served after time th2 for the following reasons. Consider the blocks defined for this time
schedule. From the above observation, for any block (h, h + 1, . . . , h′) and h′′ ∈ [h, h′], we have
a+

h′′(s̃h′′)+a+
h′′+1(s̃h′′+1)+· · ·+a+

h′(s̃h′) ≥ 0, and also have a−h (s̃h)+a−h+1(s̃h+1)+· · ·+a−h′′(s̃h′′) ≤ 0
or s̃h′′ = th2 + χ(k2, h2, h

′′). These indicate that any sufficiently small change to this schedule
that keeps its feasibility will not decrease the total time penalty. As the problem of minimizing
the total time penalty is a convex programming problem (i.e., its objective function and feasible
region are convex), this is sufficient to confirm its optimality. Similarly, we can obtain a time
schedule s̄h2 , s̄h2+1, . . . , s̄h3 that achieves the minimum total time penalty f̃k2

h2,h3
(th3) of customers

in 〈σk2(h2), σk2(h3)〉 under the constraint that σk2(h3) must be served by time th3 by

s̄h = min{ŝh, th3 − χ(k2, h, h3)}

for h = h2, h2 + 1, . . . , h3. For the same reason, noting that th3 − th2 ≥ χ(k2, h2, h3) implies
th2 + χ(k2, h2, h) ≤ th3 − χ(k2, h, h3), a time schedule

šh = median{ŝh, th2 + χ(k2, h2, h), th3 − χ(k2, h, h3)}

for h = h2, h2 + 1, . . . , h3 is feasible and achieves the minimum total time penalty of customers
in the path under the constraint that σk2(h2) must be served after time th2 and σk2(h3) must
be served by time th3 . If th2 + χ(k2, h2, h) ≤ ŝh ≤ th3 − χ(k2, h, h3) holds, ŝh = s̃h = s̄h = šh

holds. If ŝh ≤ th2 + χ(k2, h2, h) ≤ th3 − χ(k2, h, h3) holds, ŝh = s̄h and s̃h = šh hold. If
th2 + χ(k2, h2, h) ≤ th3 − χ(k2, h, h3) ≤ ŝh holds, ŝh = s̃h and s̄h = šh hold. Thus, for all
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h = h2, h2 + 1, . . . , h3, pσk2
(h)(šh) = pσk2

(h)(s̃h) + pσk2
(h)(s̄h) − pσk2

(h)(ŝh) holds, which implies
the lemma.

Finally, we estimate the time complexity of our procedure to compute ∆psum. Our proce-
dure consists of two types of computation; computing f̃k

h,h′(t), b̃k
h,h′(t) and χ(k, h, h′) for prepro-

cessing before starting a neighborhood search, and computing (19), (21) and (23) to evaluate
each solution in our neighborhoods. As we described before, we can compute the former in
O(Lmaxδk log δk) time for each vehicle k. We can compute the latter in O(

∑
k∈M ′ log δk) time,

where M ′ is the set of indices of the vehicles related to new route σ′
k. Lmaxδk is usually smaller

than the size of neighborhoods, and under this assumption, the amortized computation time to
compute ∆psum for a solution in neighborhoods becomes O(

∑
k∈M ′ log δk) = O(log δmax).

5.2 Pruning the neighborhoods

In this section, we propose two types of neighbor-lists, called distance-oriented and time-oriented
neighbor-lists, which are used in our local search algorithm to prune the neighborhoods.

The distance-oriented neighbor-list was successfully applied to the TSP [22]. At the be-
ginning of our algorithm, for each customer i, we construct a list of Ldlist nearest customers
from customer i, where Ldlist is a parameter. It is possible to construct these lists for all cus-
tomers in O(n2Ldlist) time and to store these lists in O(nLdlist) space. Using this neighbor-
list, our neighborhood search is limited to those operations that connect a customer i to
one of the customers in its list. By using this idea, the size of neighborhood N2opt∗ (resp.,
Npins, N cross) is reduced from O(n2) (resp., O(n2Lpins),O(n2(Lcross)2)) to O(nLdlist) (resp.,
O(nLdlistLpins),O(nLdlist(Lcross)2)). To reduce the size of neighborhoods further, we add an-
other rule: We do not evaluate a solution if the distance of a new edge is ωdlist times larger than
the distance of the current edge, where ωdlist is another parameter.

Taking into account the time window constraints, we propose another technique to prune the
neighborhoods on the basis of the start time of services at customers. In our local search algo-
rithm, three types of neighborhood operations (i.e., 2-opt∗, path insertion and cross exchange)
are conducted on a pair of routes. After fixing a pair of routes σk and σk′ , we construct a list of
customer pairs whose start times of service are close to each other in the following manner. For
each customer σk(h) in route σk, we find the customer σk′(h′) whose start time sσk′ (h

′) of service
is the closest to sσk(h) among the customers assigned to route σk′ , and then, store customer
pairs (σk(h), σk′(h′ − Ltlist)), (σk(h), σk′(h′ − Ltlist + 1)), . . . , (σk(h), σk′(h′ + Ltlist)), where
Ltlist is a parameter. Since start times of service for customers in a route are nondecreasing, we
can compute all such pairs in O(Ltlistnk + nk′) time for route σk. This procedure is conducted
for the customers assigned to route σk′ similarly, and we merge those lists in order to eliminate
double entries. We prune the neighborhood using the above time-oriented neighbor-list. For
each pair of routes σk and σk′ , the number of solutions generated by 2-opt∗, path insertion
and cross exchange operations are reduced from O(nknk′), O(nknk′Lpins), O(nknk′(Lcross)2) to
O(Ltlist(nk +nk′)), O(Ltlist(nk +nk′)Lpins), O(Ltlist(nk +nk′)(Lcross)2). The time complexity of
constructing the time-oriented neighbor-list for a pair of routes σk and σk′ is O(Ltlist(nk +nk′));
this computation time does not affect the total computational time. The two types of neigh-
borhoods resulting from distance-oriented and time-oriented neighbor-lists are then searched
sequentially.
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5.3 Other speed up techniques

In this section, we propose two other ideas, which do not change the worst case time complexity,
but accelerate the speed in practical sense. As mentioned in Section 5.1, we can compute ∆qsum

and ∆dsum in constant time, while it takes O(
∑

k∈M ′ log δk) time to compute ∆psum.
The first idea is to reduce the number of linear pieces of functions fk

h (t), bk
h(t), f̃k

h,h′(t) and
b̃k
h,h′(t). Since fk

h (t) and f̃k
h,h′(t) (resp., bk

h(t) and b̃k
h,h′(t)) are nonincreasing (resp., nondecreas-

ing), fk
h (t) and f̃k

h,h′(t) (resp., bk
h(t) and b̃k

h,h′(t)) usually have many pieces with extremely large
value for small (resp., large) t. Without missing any improved solutions, we delete unnecessary
linear pieces as follows. Let σ0 be the initial solution of our local search algorithm, and let
UB := eval(σ0). We then delete those pieces whose minimum values are not less than UB/κp.
For a vehicle k, this deletion procedure of unnecessary pieces can be done in O(log δk) time.
Whenever the current solution σ is improved during the search, we update UB to eval(σ) and
call the deletion procedure.

The second idea is to compute a lower bound of p∗sum(σ′
k) for each new route σ′

k in constant
time so that we skip the evaluation of hopeless solutions. For each function fk

h (t), bk
h(t), f̃k

h,h′(t)
and b̃k

h,h′(t), we compute and store mint fk
h (t), mint bk

h(t),mint f̃k
h,h′(t) and mint b̃k

h,h′(t) when
we construct a binary search tree for each function. By using these values, we can obtain a
lower bound of the minimum time penalty for each route. For example, a lower bound of the
minimum time penalty for a new route σ′

k = 〈0, σk1(h1)〉–〈σk2(h2), 0〉 generated by reconnecting
two paths is calculated by mint fk1

h1
(t)+mint bk2

h2
(t), and a lower bound for another new route σ′

k =
〈0, σk1(h1)〉–〈σk2(h2), σk2(h3)〉–〈σk3(h4), 0〉 generated by reconnecting three paths is calculated
by mint fk1

h1
(t)+mint f̃k2

h2,h3
(t)+mint bk3

h4
(t). Moreover, for a new route generated by reconnecting

three paths, we can use another lower bound

fk1
h1

(s∗h2
− τ̃ (k1, k2, h1, h2)) + b̃k2

h2,h3
(s∗h2

) + min
t

bk3
h4

(t)

after computing s∗h2
for the first equation of (19).

6 Computational experiments

We conducted various computational experiments to evaluate the proposed algorithm. The
algorithm was coded in C language and run on an IBM-compatible PC (Intel Pentium 4, 2.8 GHz,
1 GB memory). We used the following benchmark instances of the VRPHTW: (1) Solomon’s
benchmark instances [29], and (2) Gehring and Homberger’s benchmark instances [13].

6.1 Benchmark instances

The benchmark instances by Solomon [29] are widely used in the literature. The number of
customers in each instance is 100, and their locations are distributed in the square [0, 100]2 in
the plane. The distances between customers are measured by Euclidean distance (in double
precision), and the traveling times are proportional to the corresponding distances. Each cus-
tomer i has one time window [wl

i, w
r
i ], an amount of requirement q′i and a service time ui. The

depot is located at the center of the square and it also has one time window [wl
0, w

r
0]; that is,

each vehicle departs from the depot at wl
0 and must return to the depot by wr

0. All vehicles have
an identical capacity Q′. Both time window and capacity constraints must be satisfied strictly.
The number of vehicles m is also a decision variable, and the objective is to find a solution
with the minimum (m, dsum(σ)) in the lexicographical order. Solomon’s benchmark instances
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consist of six different sets of problem instances named C1, C2, R1, R2, RC1 and RC2, respec-
tively. Customers are clustered in groups in type C and are uniformly distributed in type R,
and type RC has these two characteristics. For instances of type 1, the time window is narrow
at the depot, and hence only a small number of customers can be served by one vehicle. On the
other hand, for instances of type 2, the time window at the depot is wide, and many customers
can be served by one vehicle. Recently, 300 instances with a larger number of customers have
been added by Gehring and Homberger [13], where these instances are divided into five groups
by the number of customers; 200, 400, 600, 800 and 1000, and each group has 60 instances (more
precisely, 10 instances for each of six sets C1, C2, R1, R2, RC1 and RC2).

6.2 Parameters

In order to solve the above instances by our algorithm, we define the penalty functions as follows.
For each customer i, one time window [wl

i, w
r
i ] is given, and the service for customer i must be

started in this period. Based on the given time window, we define the time penalty function pi(t)
by the following equation:

pi(t) =





100000(−t + wl
i), −∞ ≤ t < wl

i,
0, wl

i ≤ t ≤ wr
i ,

100000(t − wr
i), wr

i < t ≤ +∞.

The time penalty functions for the depot, pd
0(t) and pa

0(t), are defined as follows:

pd
0(t) = max{100000(−t + wl

0), 0},
pa
0(t) = max{100000(t − wr

0), 0},

where the depot has an identical time window [wl
0, w

r
0] for all vehicles. As for the capacity

constraint, we set qi := 100000q′i and Qk := 100000Q′ for the given input q′i and Q′.
We then consider how to determine the number of vehicles for each instance; it is a given input

for our formulation but a decision variable for the test instances used in our experiments. We first
set the number of vehicles to the previous best known values as of May 11, 2006, presented in the
web site (http://www.sintef.no/static/am/opti/projects/top/vrp/benchmarks.html). If
we cannot find a solution which satisfies the time window and capacity constraints, we increase
the number of vehicles by one and conduct another experiment. Such experiments are repeated
until we can find a feasible solution for VRPHTW. On the other hand, if we can find a feasible
solution of VRPHTW with the best known m and the current m is larger than the trivial lower
bound

⌈∑
i∈V \{0} qi/Q

⌉
, we decrease the number of vehicles by one and conduct another exper-

iment. Such experiments are repeated until we cannot find a feasible solution for VRPHTW.
As initial values of κp and κq, we conducted two types of experiments: (1) κp = 1/100000

and κq = 1/100000 (called ILS-1), and (2) κp = 1 and κq = 1 (called ILS-2). The best solution
found in our algorithm may not be a feasible solution of VRPHTW even if we can find feasible
solutions of VRPHTW in our search process. To overcome such a situation, we also store the
best feasible solution of VRPHTW found in our algorithm. We set other parameter values
as follows: Liopt

path = 3, Liopt
ins = 10, L2opt = 10, Lpins = 3, Lpins

rev = 3, Lcross = 3, Lcross
rev = 3,

Ldlist = 20, ωdlist = 1.5 and Ltlist = 1 for all experiments. The time limit of our metaheuristic
algorithm for instances with 100, 200, 400, 600, 800 and 1000 customers are 1000, 2000, 4000,
6000, 8000 and 10000 seconds, respectively.
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6.3 Computational results

We compare the solutions obtained by our algorithm with existing results. The results for the
Solomon’s instances are shown in Table 1, and the results for the Gehring and Homberger’s
instances are shown in Tables 2, 3, 4, 5 and 6. Each row C1, C2, R1, R2, RC1 and RC2 denotes
the problem set. The upper part of each cell represents the mean number of vehicles (called
MNV) with respect to all instances in the set, and the lower part of each cell represents the mean
total distance (called MTD). “CNV” stands for the cumulative number of vehicles, and “CTD”
stands for the cumulative total distance, which are usually used in the literature to compare the
results on these instances. “Computer” describes the spec of computers used in the experiments,
where “P”, “S” and “A” mean Pentium, SUN Ultra and Advanced Micro Devices, respectively,
and the number in this row means the clock frequency of the CPU (e.g., S 10M means SUN Ultra
10 MHz and P 2.8G means Pentium 2.8 GHz). “CPU” and “Runs” describe the average CPU
time in minutes and the number of independent runs for each instance, reported in each article.
Using the spec data presented in the web page (http://www.specbench.org/), we estimate
the total computation time used for one instance if each algorithm will be run on a PC with
Pentium 2.8 GHz processor. “Estimated time” represents this estimated time in minutes. An
asterisk “∗” in the row MNV (resp., CNV) means that it is the smallest without ties in the row,
and thus the algorithm marked “∗” gives the best performance for the instance set. When there
are ties for the number of vehicles, we give an asterisk on the corresponding distance value that
is the smallest among those ties.

In Table 1, columns “B” is the result of algorithm RVNS(2) proposed by Bräysy [4], “BBB”
is the result by Berger et al. [3], “BVH” is the result by Bent and Van Hentenryck [2], “GH02” is
the result of algorithm HM4C proposed by Gehring and Homberger [12], “HG99” is the result by
Homberger and Gehring [18], “HG05” is the result by Homberger and Gehring [19], “IIKTUY”
is the result of algorithm ILS(15000s) by Ibaraki et al. [20], “ILS-1” and “ILS-2” are the results
of our algorithm with different initial values κp and κq. Computation time of “HG05” is not
clearly stated in [19]. In this table, we can see that our algorithms (ILS-1 and ILS-2) perform
slightly worse than the other algorithms.

In Tables 2 to 6, columns “BHD” is the result by Bräysy et al. [7], “BVH” is the result by
Bent and Van Hentenryck [2], “GH99” is the result by Gehring and Homberger [13], “GH02” is
the result by Gehring and Homberger [12], “LC” is the result by Le Bouthillier and Crainic [24],
“LL” is the result by Li and Lim [25], “MB” is the result by Mester and Bräysy [26], “ILS-1”
and “ILS-2” are the results of our algorithm. Computation time of “BVH” is not clearly stated
in [2]. The solution quality of our algorithm for 200 customer instances is competitive with
the best quality attained by Mester and Bräysy [26]; however, we use more computation time.
The solution quality of our algorithm for larger instances is much better than the other al-
gorithms in Tables 3, 4, 5 and 6. For all of these instance sets, we succeeded in reducing
the best-known CNV. These results indicates that our algorithm is highly efficient to solve
the vehicle routing problem with hard time windows, in spite of its generality, especially for
large scale instances. More details of our computational results and the best known solutions
found by our algorithm on Gehring and Homberger’s instances are presented in our web page
(http://www.al.cm.is.nagoya-u.ac.jp/~yagiura/papers/vrpctw abst.html).

7 Conclusions and discussions

In this paper, we considered the vehicle routing problem with convex time penalty functions and
proposed a metaheuristic algorithm. We utilized the iterated local search to assign customers



7 CONCLUSIONS AND DISCUSSIONS 20

Table 1: The results for 100-customer benchmark instances

B BBB BVH GH02 HG99 HG05 IIKTUY ILS-1 ILS-2
C1 10 10 10 10 10 10 10 10 10

828.38* 828.48 828.38* 828.63 828.38* 828.38* 828.38* 828.38* 828.38*
C2 3 3 3 3 3 3 3 3 3

589.86* 589.93 589.86* 590.33 589.86* 589.86* 589.86* 589.86* 589.86*
R1 11.92 11.92 11.92 12 11.92 11.92 11.92 12 12.08

1222.12 1221.1 1213.25 1217.57 1228.06 1212.73* 1217.4 1217.99 1212.09
R2 2.73 2.73 2.73 2.73 2.73 2.73 2.73 2.73 2.73

975.12 975.43 966.37 961.29 969.95 955.03* 959.11 967.97 960.95
RC1 11.5 11.5 11.5 11.5 11.63 11.5 11.5 11.63 11.5

1389.58 1389.89 1384.22* 1395.13 1392.57 1386.44 1391.03 1384.67 1391.46
RC2 3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25

1128.38 1159.37 1141.24 1139.37 1144.43 1123.17 1122.79*1128.77 1127
CNV 405 405 405 406 406 405 405 407 407
CTD 57710 57952 57567 57641 57876 57309* 57444 57545 57437

Computer P 200M P 400M S 10M P 400M P 200M unknown P 1G P 2.8G P 2.8G
CPU (min) 87 30 120 4×20.9 13.8 n/a 250 16.7 16.7

Runs 1 3 5 5 10 n/a 1 1 1
Estimated time 3.8 9.4 104.3 43.6 6 n/a 108.7 16.7 16.7

Table 2: The results for 200-customer benchmark instances

BHD BVH GH99 GH02 LC LL MB ILS-1 ILS-2
C1 18.9 18.9 18.9 18.9 18.9 19.1 18.8* 18.9 18.9

2749.83 2726.63 2782 2842.08 2743.66 2728.6 2717.21 2732.03 2734.42
C2 6 6 6 6 6 6 6 6 6

1842.65 1860.17 1846 1856.99 1836.1 1854.9 1833.57 1834.83 1833.37*
R1 18.2 18.2 18.2 18.2 18.2 18.3 18.2 18.2 18.2

3718.3 3677.96 3705 3855.03 3676.95 3736.2 3618.68*3665.77 3655.24
R2 4 4.1 4 4 4 4.1 4 4 4

3014.28 3023.62 3055 3032.49 2986.01 3023 2942.92*2965.64 2958.56
RC1 18 18 18 18.1 18 18.3 18 18 18

3329.62 3279.99 3555 3674.91 3449.71 3385.8 3221.34*3287.61 3275.38
RC2 4.4 4.5 4.3 4.4 4.3 4.9 4.4 4.3 4.3

2585.89 2603.08 2675 2671.34 2613.75 2518.7 2519.79 2562.56*2576.12
CNV 695 697 694 696 694 707 694 694 694
CTD 172406 171715 176180 179328 173061 172472 168573* 170484 170331

Computer A 700M S 10M P 200M P 400M P 933M P 545M P 2G P 2.8G P 2.8G
CPU (min) 2.4 n/a 4×10 4×2.1 5×10 182.1 8 33.3 33.3

Runs 3 n/a 1 3 1 3 1 1 1
Estimated time 2.1 n/a 2.4 3.8 21.7 112.4 5.9 33 33
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Table 3: The results for 400-customer benchmark instances

BHD BVH GH99 GH02 LC LL MB ILS-1 ILS-2
C1 37.9 38 38 38 37.9 38.7 37.9 37.7 37.6*

7230.48 7220.96 7584 7855.82 7447.09 7181.4 7148.27 7282.15 7302.50
C2 12 12 12 12 12 12.1 12 12 11.8*

3894.48 4154.4 3935 3940.19 3940.87 4017.1 3840.85 3851.96 3985.21
R1 36.4 36.4 36.4 36.4 36.5 36.6 36.3* 36.4 36.4

8692.17 8713.37 8925 9478.22 8839.28 8912.4 8530.03 8746.94 8788.54
R2 8 8 8 8 8 8 8 8 8

6382.63 6959.75 6502 6650.28 6437.68 6610.6 6209.94* 6269.9 6251.54
RC1 36 36.1 36.1 36.1 36 36.5 36 36 36

8305.55 8330.98 8763 9294.99 8652.01 8377.9 8066.44*8405.32 8471.85
RC2 8.9 8.9 8.6 8.8 8.6 9.5 8.8 8.6 8.6

5407.87 5631.7 5518 5629.43 5511.22 5466.2 5243.06 5337.5 5328.84*
CNV 1391 1393 1390 1392 1390 1414 1389 1387 1384*
CTD 399132 410112 412270 428489 408281 405656 390386 398938 401285

Computer A 700M S 10M P 200M P 400M P 933M P 545M P 2G P 2.8G P 2.8G
CPU (min) 7.9 n/a 4×20 4×7.1 5×20 359.8 17 66.6 66.6

Runs 3 n/a 1 3 1 3 1 1 1
Estimated time 6.8 n/a 4.8 13 43.3 221.8 12.5 66.6 66.6

Table 4: The results for 600-customer benchmark instances

BHD BVH GH99 GH02 LC LL MB ILS-1 ILS-2
C1 57.8 57.8 57.9 57.7 57.9 58.2 57.8 57.5 57.5

14165.9 14357.11 14792 14817.25 14205.58 14267.3 14003.09 14116.97*14128.87
C2 18 17.8 17.9 17.8 17.9 18.2 17.8 17.4 17.4

7528.73 8259.04 7787 7889.96 7743.92 8202.6 7455.83 7945.56* 7991.70
R1 54.5 55 54.5 54.5 54.8 55.2 54.5 54.5 54.5

19081.18 19308.62 20854 21864.47 19869.82 19744.8 18358.68*19844.39 19963.56
R2 11 11 11 11 11.2 11.1 11 11 11

13054.83 14855.43 13335 13656.15 13093.97 13592.4 12703.52 12539.78 12496.54*
RC1 55 55.1 55.1 55 55.2 55.5 55 55 55

16994.22 17035.91 18411 19114.02 17678.13 17320 16418.63*17278.81 17395.51
RC2 12.1 12.4 11.8 11.9 11.8 13 12.1 11.6 11.6

11212.36 11987.89 11522 11670.29 11034.71 11204.9 10677.46 10791.7 10743.03*
CNV 2084 2091 2082 2079 2088 2112 2082 2070 2070
CTD 820372 858040 867010 890121 836261 843320 796172 825172* 827192

Computer A 700M S 10M P 200M P 400M P 933M P 545M P 2G P 2.8G P 2.8G
CPU (min) 16.2 n/a 4×30 4 × 12.9 5× 30 399.8 40 100 100

Runs 3 n/a 1 3 1 3 1 1 1
Estimated time 13.9 n/a 7.1 23.5 65 246.4 29.4 100 100.0
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Table 5: The results for 800-customer benchmark instances

BHD BVH GH99 GH02 LC LL MB ILS-1 ILS-2
C1 76.3 76.1 76.7 76.1 76.3 77.4 76.2 75.7* 75.8

25170.88 25391.67 26528 26936.68 25668.82 25337.02 25132.27 25487.55 25337.93
C2 24.2 24.4 24 23.7 24.1 24.4 23.7 23.4* 23.5

11648.92 14253.83 12451 11847.92 11985.11 11956.6 11352.29 11860.9 11726.25
R1 72.8 72.7* 72.8 72.8 73.1 73 72.8 72.8 72.8

32748.06 33337.91 34586 34653.88 33552.4 33806.34 31918.47 33275.72 33413.41
R2 15 15 15 15 15 15.1 15 15 15

21170.15 24554.63 21697 21672.85 21157.56 21709.39 20295.28 20209.92 20174.32*
RC1 73 73 72.4 72.3 72.3 73.2 73 72.4 72.4

30005.95 30500.15 38509 40532.35 37722.62*31282.54 30731.07 34621.63 35296.29
RC2 16.3 16.6 16.1 16.1 15.8 17.1 15.8 15.7* 15.8

17686.65 18940.84 17741 17941.23 17441.6 17561.22 16729.18 16666.76 16665.08
CNV 2776 2778 2770 2760 2766 2802 2765 2750* 2753
CTD 1384306 1469790 1515120 1535849 1475281 1416531 1361586 1421225 1426133

Computer A 700M S 10M P 200M P 400M P 933M P 545M P 2G P 2.8G P 2.8G
CPU (min) 26.2 n/a 4×40 4×23.2 5×40 512.9 145 133.3 133.3

Runs 3 n/a 1 3 1 3 1 1 1
Estimated time 22.5 n/a 9.5 42.3 86.6 316.1 106.5 133.3 133.3

Table 6: The results for 1000-customer benchmark instances

BHD BVH GH99 GH02 LC LL MB ILS-1 ILS-2
C1 95.8 95.1 96 95.4 95.3 96.3 95.1 94.5* 94.6

42086.77 42505.35 43273 43392.59 43283.92 42428.5 41569.67 42459.35 42329.33
C2 30.6 30.3 30.2 29.7 29.9 30.8 29.7 29.4* 29.5

17035.88 18546.13 17570 17574.72 17443.5 17294.9 16639.54 16986.46 16679.76
R1 92.1 92.8 91.9 91.9 92.2 92.7 92.1 91.9 91.9

50025.64 51193.47 57186 58069.61 55176.95 50990.8 49281.48 53366.10*54909.63
R2 19 19 19 19 19.2 19 19 19 19

31458.23 36736.97 31930 31873.62 30919.77 31990.9 29860.32 29546.19*29589.71
RC1 90 90.2 90 90.1 90 90.4 90 90 90

46736.92 48634.15 50668 50950.14 49711.36 48892.4 45396.41* 48275.2 48768.87
RC2 19 19.4 19 18.5 18.5 19.8 18.7 18.3* 18.4

25994.12 29079.78 27012 27175.98 26001.11 26042.3 25063.51 24904.08 24667.92
CNV 3465 3468 3461 3446 3451 3490 3446 3431* 3434
CTD 2133376 2266959 2276390 2290367 2225366 2176398 2078110 2155374 2169452

Computer A 700M S 10M P 200M P 400M P 933M P 545M P 2G P 2.8G P 2.8G
CPU (min) 39.6 n/a 4×50 4×30. 5×50 606.3 600 166.7 166.7

Runs 3 n/a 1 3 1 3 1 1 1
Estimated time 34 n/a 11.9 54.9 108.3 373.5 440.8 166.7 166.7



to vehicles and to determine the visiting order for each vehicle. To make our local search
efficient, we introduced some ideas to prune the neighborhoods. We also proposed an algorithm
of dynamic programming to compute the optimal start time of services at customers in a given
route. The time complexity of our DP algorithm is O(δk log δk) for each vehicle k, where δk is
the total number of linear pieces in the penalty functions for all the customers in a route σk.
We proposed another DP algorithm to evaluate solutions in our neighborhoods efficiently; the
amortized time complexity of this algorithm is O(log δk) for each new route σk under appropriate
assumptions.

The objective function of our formulation is the sum of the total distance and penalties
caused by violations of the time window and capacity constraints. In order to treat both of
the VRPHTW and the VRPSTW effectively, we incorporated some ideas in our algorithm. To
evaluate solutions in neighborhoods, we utilized an evaluation function, which is slightly different
from the original objective function and equipped with an adaptive mechanism to control the
penalty weights.

We conducted computational experiments on representative benchmark instances of the VRP
with capacity and time window constraints, and compared our algorithm with some existing
algorithms for this problem. Our results for larger scale instances such as those with 400, 600,
800 or 1000 customers are the best among the recent results for these benchmark instances.

For simplicity of the paper, we did not explain some ideas to treat more general problems,
which we have implemented. We have assumed that all vehicles have the same time penalty
functions pd

0 and pa
0 for departure from the depot and arrival at the depot. However, we can

treat a situation where each vehicle has its own time penalty function for departure and arrival,
without increasing the time complexity. In this case, however, we cannot use the 2-opt∗ operation
in the form explained in Section 4.2, since the operation connects the first part and the last part
of two different routes. Therefore, we should treat a 2-opt∗ operation as a special case of the
cross exchange operations. We have also assumed that each customer i has an amount qi of
the resource to be delivered from the depot in this paper. We can treat some general problems
as for the capacity constraint with slight modifications of our framework; e.g., the VRP with
multi-resource and the VRP with backhauls [15].
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