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Abstract

For a sampling formula with the sinc-Gaussian kernel Qian et al. have recently given
an error estimate for the class of band-limited functions with the aid of tools from Fourier
analysis. By complex analytic approach, we give in this paper an error estimate for a wider
class of functions including unbounded ones on R. Part of the result of Qian et al. can
be derived from ours as an immediate corollary. Computational results show a fairly good
agreement with the theoretical convergence rates.

1 Introduction

Shannon’s sampling theorem [5] is fundamental in the field of information processing. Let

Bσ = {f ∈ L2(R) | |ω| > σ ⇒ f̂(ω) = 0}, (1.1)

which denotes a set of band-limited functions, where σ > 0 and f̂ is the Fourier transform of f .
The sampling theorem states that an identity

f(x) =
∞∑

k=−∞
f(kh) sinc(x/h − k) (x ∈ R) (1.2)

is valid for f ∈ Bσ, where h = π/σ and

sinc(x) =





sin(πx)
πx

(x 6= 0),

1 (x = 0).
(1.3)

The sampling formula (1.2) shows that the function f can be reconstructed from the sampled
values f(kh) (k ∈ Z).
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Recently, this sampling formula has been put to use for numerical computation. A naive
formula

f(x) ≈
dx/he+N∑

k=bx/hc−N

f(kh) sinc(x/h − k), (1.4)

however, requires a prohibitively large number of sampling points due to the fact that the sinc
function does not decrease rapidly at infinity. To overcome this difficulty, the following two
methods are contrived.

The first is to transform f(x) so that the transformed function f(ϕ(t)) may decrease rapidly
at infinity through an appropriate change of variable x = ϕ(t). Then a simple formula

f(x) ≈
N∑

k=−N

f(kh) sinc(x/h − k) (1.5)

is applied to the transformed function. The truncation error incurred in this approximation
is bounded by

∑
|k|>N |f(ϕ(kh))|. If f(ϕ(t)) decreases rapidly at infinity, say, exponentially,

the truncation error decreases exponentially with respect to the number of sampled points
2N +1. Numerical methods based on such function approximation are often referred to as “Sinc
numerical methods” [6, 7, 8].

The second is to use rapidly decreasing kernel functions. A typical formula under this
category is

f(x) ≈ (TN,hf) (x) :=
dx/he+N∑

k=bx/hc−N

f(kh) sinc(x/h − k) exp
[
−(x − kh)2

2r2h2

]
, (1.6)

where r is a positive constant. Seeing that no standard name of this formula is found in the
literature, we call this formula the sinc-Gauss sampling formula. This formula is used by Wei
et al. in numerical solution of partial differential equations [11, 12]1. Qian et al. show that the
error ‖f −TN,hf‖∞ of the sinc-Gauss sampling formula decreases exponentially with respect to
N for f ∈ Bσ, and also demonstrate similar results about the approximation of the derivatives
of f [1, 2, 3, 4]. In estimating the discretization error, they make use of the Fourier transform
and the Parseval identity to exploit the band-limited condition. In Japan, as early as in 1975,
H. Takahasi [9] proposed the sinc-Gauss sampling formula above to apply Shannon’s sampling
formula to numerical analysis. He made an error analysis for holomorphic functions by using
complex analysis. His analysis lacks, however, in mathematical rigor, although it captures the
essential feature.

The objective of this paper is to provide a mathematically rigorous version of Takahasi’s
error analysis for the sinc-Gauss sampling formula. Furthermore, we point out that the formula
is applicable to a wider class of functions including unbounded ones on R. Specifically, we
estimate the error of the formula for those functions which are holomorphic on a band-shaped
region on the complex plane

Dd := {z ∈ C | |Imz| ≤ d} (1.7)

1To be precise, Wei et al. set bx/hc + N as the upper bound of the sum, whereas we use dx/he + N for
symmetry. This does not affect the following argument.
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and satisfy

|f(z)| ≤ A + B|z|α (∀z ∈ Dd),

where d > 0, A ≥ 0, B ≥ 0, and α ≥ 0. Furthermore, we show that part of Qian et al.’s result for
f ∈ Bσ can be derived from ours as an immediate corollary. It is mentioned that a preliminary
result for bounded functions (i.e., for the case of B = 0) is discussed in [10].

The organization of this paper is as follows. In Section 2, we present our main results. In
Section 3, we specialize our results to bounded functions, and explain the relationship to some
results of Qian-Ogawa [4]. In Section 4 we show computational results. Proofs of theorems and
lemmas are given in Section 5.

2 Main Results

For nonnegative integer m and r, h > 0, we define operators G(m)
h , T (m)

N,h approximating the m-th
order derivative f (m) of a function f as

(
G(m)

h f
)

(x) :=
∞∑

k=−∞
f(kh)

dm

dxm

[
sinc (x/h − k) exp

[
−(x − kh)2

2r2h2

]]
, (2.1)

(
T (m)

N,h f
)

(x) :=
dx/he+N∑

k=bx/hc−N

f(kh)
dm

dxm

[
sinc (x/h − k) exp

[
−(x − kh)2

2r2h2

]]
, (2.2)

where sinc is the function defined in (1.3). Note that (2.2) with m = 0 coincides with (1.6). We
call the formula given by T (m)

N,h f the sinc-Gauss sampling formula.
Let Dd be the band-shaped region defined in (1.7). In this section, we assume that f : Dd → C

is a holomorphic function on Dd with |f(z)| ≤ A + B|z|α (∀z ∈ Dd) for constants A ≥ 0, B ≥ 0
and α ≥ 0. The error of the formula will be measured by the supremum of the absolute value
of f(x) −

(
T (m)

N,h f
)

(x) over a finite interval [−L,L] for L > 0. The proofs of Lemma 2.1 and
Lemma 2.2 below are given in Section 5.1 and Section 5.2, respectively.

First, the discretization error of the sinc-Gauss sampling formula is estimated as follows.

Lemma 2.1 (Discretization error). Let d > 0. Let f : Dd → C be a holomorphic function
on Dd with |f(z)| ≤ A + B|z|α (∀z ∈ Dd) for constants A ≥ 0, B ≥ 0 and α ≥ 0. Let m ∈ Z+,
L > 0, r > 0, and h > 0 with h ≤ 2πd/ log 2. Then we have

sup
−L≤x≤L

∣∣∣f (m)(x) −
(
G(m)

h f
)

(x)
∣∣∣ ≤ exp

(
−πd

h
+

d2

2r2h2

)

· C0

[
C1C3

√
2π + C2C32

α+1
2 Γ

(
α + 1

2

)

+ C12
2m+1

2 Γ
(

m + 1
2

)
+ C22

α+2m+1
2 Γ

(
α + m + 1

2

)]
,
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where

C0 =
2(m + 3)! rh

π

(
1 +

(√
2

rh

)m) (
1
d

+
1

dm+1

)
, (2.3)

C1 = A + 2αB(L + d)α, (2.4)
C2 = 2αB(rh)α, (2.5)

C3 = 2 +

(√
2d

rh

)m

. (2.6)

Second, the truncation error of the sinc-Gauss sampling formula is estimated as follows.

Lemma 2.2 (Truncation error). Let d > 0. Let f : Dd → C be a holomorphic function on
Dd with |f(z)| ≤ A + B|z|α (∀z ∈ Dd) for constants A ≥ 0, B ≥ 0 and α ≥ 0. Let m ∈ Z+,
L > 0, r > 0, and h > 0. If N ≥ max

{
2, mr/

√
2,

√
dαer + 1

}
, we have

sup
−L≤x≤L

∣∣∣
(
G(m)

h f
)

(x) −
(
T (m)

N,h f
)

(x)
∣∣∣ ≤ C ′

0

(
C ′

1 + C ′
2

)
exp

[
−(N − 1)2

2r2

]
,

where

C ′
0 =

2(m + 1)!eπe
3

2r2 r2

N(N − 1)hmπ
, (2.7)

C ′
1 = A + 2αB[(L + h)α + 2αhα], (2.8)

C ′
2 = 22αBhα(dαe + 1)!! max{(N − 1)dαe, rdαe}. (2.9)

From the lemmas above, we can derive the following error estimate by setting h and r
appropriately for a given N .

Theorem 2.3 (Error of the sinc-Gauss sampling formula). Let d > 0. Let f : Dd → C
be a holomorphic function on Dd with |f(z)| ≤ A + B|z|α (∀z ∈ Dd) for constants A ≥ 0, B ≥ 0
and α ≥ 0. Let m ∈ Z+ and L > 0. For a positive integer N , define h and r as

h =
d′

N
, r =

√
N

π
(2.10)

with an arbitrary constant d′ satisfying 0 < d′ ≤ d. Then we have

sup
−L≤x≤L

∣∣∣f (m)(x) −
(
T (m)

N,h f
)

(x)
∣∣∣

= O
(

Nm−min{1/2, 1−dαe+α} exp
(
−πN

2

))
(N → ∞).

Proof. If N is sufficiently large, the assumptions in Lemmas 2.1 and 2.2,

h ≤ 2πd/ log 2, N ≥ max
{

2, mr/
√

2,
√

dαer + 1
}
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are satisfied under (2.10). We apply the lemmas to the right hand side of the inequality

sup
−L≤x≤L

∣∣∣f (m)(x) −
(
T (m)

N,h f
)

(x)
∣∣∣

≤ sup
−L≤x≤L

∣∣∣f (m)(x) −
(
G(m)

h f
)

(x)
∣∣∣ + sup

−L≤x≤L

∣∣∣
(
G(m)

h f
)

(x) −
(
T (m)

N,h f
)

(x)
∣∣∣ .

The estimate in Lemma 2.1 remains valid when d is replaced by d′. With h and r in (2.10) we
have

exp
(
−πd′

h
+

d′2

2r2h2

)
= exp

(
−πN

2

)
,

exp
[
−(N − 1)2

2r2

]
= O

(
exp

(
−πN

2

))
(N → ∞).

Furthermore, the orders of C0, . . . , C3 in Lemma 2.1 and C ′
0, C

′
1, C

′
2 in Lemma 2.2 as N → ∞

are estimated as follows:

C0 = O
(
N

m−1
2

)
, C1 = O(1) , C2 = O

(
N−α

2

)
, C3 = O

(
N

m
2

)
,

C ′
0 = O

(
Nm−1

)
, C ′

1 = O (1) , C ′
2 = O

(
N dαe−α

)
.

Thus we obtain the claim of the theorem.

The error estimate in Theorem 2.3 presupposes approximation of f(x) at a single point x
and, accordingly, expresses the error bound in terms of the number 2N + 1 of the sampling
points required for a single point. In some situations, however, it is more natural to consider
approximation over a finite interval [−L,L] with L > 0. This is the case, for instance, in
applications to differential equations. In such a case it is more appropriate to express the error
bound in terms of the number

M = 2
(

L

d′
+ 1

)
N (2.11)

of the sampling points needed for the approximation over the entire interval, rather than at a
single point, where d′ is in (2.10). In accordance with this, Theorem 2.3 can be recast into the
following form.

Corollary 2.4. Let d > 0. Let f : Dd → C be a holomorphic function on Dd with |f(z)| ≤
A + B|z|α (∀z ∈ Dd) for constants A ≥ 0, B ≥ 0 and α ≥ 0. Let m ∈ Z+ and L > 0. For a
positive integer N , define h and r as (2.10), and M as (2.11). Then we have

sup
−L≤x≤L

∣∣∣f (m)(x) −
(
T (m)

N,h f
)

(x)
∣∣∣

= O
(

Mm−min{1/2, 1−dαe+α} exp
(
− πd′

4(d′ + L)
M

))
(M → ∞).

Remark 2.5. The upper bound of h and the value r in (2.10) is “optimal” in the sense that
they attain

min
h,r>0

max
{

exp
(
−πd

h
+

d2

2r2h2

)
, exp

[
−(N − 1)2

2r2

]}
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asymptotically as N → ∞. Noting that replacing N − 1 with N does not change the order of
the expression above, we have

−πd

h
+

d2

2r2h2
=

1
2r2

(
d

h
− πr2

)2

− π2r2

2
≥ −π2r2

2
,

where the equality holds when d/h = πr2, and

−π2r2

2
= −N2

2r2
⇐⇒ r =

√
N

π
.

Therefore

min
h,r>0

max
{

exp
(
−πd

h
+

d2

2r2h2

)
, exp

(
−N2

2r2

)}

≥ min
r>0

max
{

exp
(
−π2r2

2

)
, exp

(
−N2

2r2

)}

≥ exp
(
−πN

2

)
.

The equality holds for h and r in (2.10).

3 Error Estimates for Bounded Functions

In this section, we present the error estimate for holomorphic functions f : Dd → C on Dd

with |f(z)| ≤ A (∀z ∈ Dd) for a constant A ≥ 0, and discuss its relationship to the estimate of
Qian-Ogawa [4]. For bounded functions it is possible to consider supremum error bounds over
the entire real number R. The error estimates over R can be obtained easily from our results in
Section 2 by setting B = 0, α = 0 and letting L → ∞. We set ‖g‖∞ := sup−∞<x<∞ |g(x)| for a
function g on R.

3.1 Error Estimates

Letting B = 0, α = 0, L → ∞ in Section 2, we obtain the following lemmas and theorem.

Lemma 3.1 (Discretization error). Let d > 0. Let f : Dd → C be a holomorphic function
on Dd with |f(z)| ≤ A (∀z ∈ Dd) for a constant A ≥ 0. Let m ∈ Z+, r > 0, and h > 0 with
h ≤ 2πd/ log 2. Then we have

∥∥∥f (m) − G(m)
h f

∥∥∥
∞

≤ exp
(
−πd

h
+

d2

2r2h2

)

· A

[
2(m + 3)! rh

π

(
1 +

(√
2

rh

)m) (
1
d

+
1

dm+1

)]

·

[
√

2π

(
2 +

(√
2d

rh

)m)
+ 2

2m+1
2 Γ

(
m + 1

2

)]
.
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Lemma 3.2 (Truncation error). Let d > 0. Let f : Dd → C be a holomorphic function
on Dd with |f(z)| ≤ A (∀z ∈ Dd) for a constant A ≥ 0. Let m ∈ Z+, r > 0, and h > 0. If
N ≥ max

{
2, mr/

√
2
}
, we have

∥∥∥G(m)
h f − T (m)

N,h f
∥∥∥
∞

≤ 2A(m + 1)!eπe
3

2r2 r2

N(N − 1)hmπ
exp

[
−(N − 1)2

2r2

]
.

Theorem 3.3 (Error of the sinc-Gauss sampling formula). Let d > 0. Let f : Dd → C
be a holomorphic function on Dd with |f(z)| ≤ A (∀z ∈ Dd) for a constant A ≥ 0. Let m ∈ Z+.
For a positive integer N , define h and r as

h =
d′

N
, r =

√
N

π
(3.1)

with an arbitrary constant d′ satisfying 0 < d′ ≤ d. Then we have

∥∥∥f (m) − T (m)
N,h f

∥∥∥
∞

= O
(

Nm−1/2 exp
(
−πN

2

))
(N → ∞).

3.2 Relationship to Qian-Ogawa’s Result

We investigate the relationship between the result of Qian-Ogawa [4] and our Theorem 3.3 in
Section 3.1. The following theorem is an immediate corollary of Corollary 3.1 of [4], where Bσ

is defined as (1.1).

Theorem 3.4 ([4]). Let f ∈ Bσ and 0 < h < π/σ. For N > 2, define r =
√

(N − 2)/(π − hσ).
Then we have

∥∥∥f (m) − T (m)
N,h f

∥∥∥
∞

= O
(

1√
N − 2

exp
[
−(π − hσ)(N − 2)

2

])
(N → ∞). (3.2)

The objective of this section is to demonstrate how (3.2) with m = 0 can be derived from
our result of Section 3.1. In the case of m ≥ 1 we also derive a weaker result2

∥∥∥f (m) − T (m)
N,h f

∥∥∥
∞

= O
(

(N − 2)(m−1)/2 exp
[
−(π − hσ)(N − 2)

2

])
(N → ∞). (3.3)

First we note the following fact, which may be regarded as a part of the Paley-Wiener
theorem.

Lemma 3.5. If f ∈ Bσ, then f is holomorphic on C and there exists a constant A′ ≥ 0 such
that

|f(z)| ≤ A′ exp(σ|Imz|) (z ∈ C). (3.4)

2The estimate (3.2) does not seem to be derived in the case of m ≥ 1 from our results. This is because our
estimate of the discretization error is considered under a more general condition, and is necessarily weaker.
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Proof. Denote the Fourier transform of f by f̂ . By f ∈ Bσ, we have f̂ ∈ L2(R) and

f(z) =
1√
2π

∫ σ

−σ
f̂(ω) exp(izω)dω. (3.5)

Since the interval of integration is finite, we can exchange the differentiation and integration.
Therefore f is holomorphic on C.

Next, again by (3.5), we have

|f(ξ + iη)| ≤ 1√
2π

∫ σ

−σ
|f̂(ω)|| exp(i(ξ + iη)ω)|dω

=
1√
2π

∫ σ

−σ
|f̂(ω)| exp(−ηω)dω

≤ exp(|η|σ) · 1√
2π

∫ σ

−σ
|f̂(ω)|dω

for ξ, η ∈ R, and therefore (3.4) by setting A′ = (2π)−1/2
∫ σ
−σ |f̂(ω)|dω, which is finite since

(∫ σ

−σ
|f̂(ω)|dω

)2

≤
∫ σ

−σ
dω

∫ σ

−σ
|f̂(ω)|2dω < ∞.

Lemma 3.5 above implies the following, which states that our function class contains band-
limited functions.

Lemma 3.6. Let f ∈ Bσ. For any d > 0, f : Dd → C is a holomorphic function on Dd with
|f(z)| ≤ A (∀z ∈ Dd), where

A = A′ exp(σd) (3.6)

with A′ in (3.4).

This lemma enables us to apply Lemmas 3.1 and 3.2 to f ∈ Bσ. We take r as in Theorem
3.4 and assume that N is sufficiently large.

To estimate the discretization error, we set

d = h(N − 2)

and take A as (3.6). Then, by Lemma 3.1, we have

∥∥∥f (m) − G(m)
h f

∥∥∥
∞

≤ A′ exp
(

σd − πd

h
+

d2

2r2h2

)

·

[
2(m + 3)! rh

π

(
1 +

(√
2

rh

)m) (
1
d

+
1

dm+1

)]

·

[
√

2π

(
2 +

(√
2d

rh

)m)
+ 2

2m+1
2 Γ

(
m + 1

2

)]
.
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The degree of the underlined part with respect to N − 2 is (m − 1)/2. The exponent of the
remaining part is

σd − πd

h
+

d2

2r2h2
= −(π − hσ)d

h
+

d2

2r2h2

= −(π − hσ)(N − 2) +
(π − hσ)h2(N − 2)2

2(N − 2)h2

= −(π − hσ)(N − 2)
2

.

Thus we obtain the following estimate:
∥∥∥f (m) − G(m)

h f
∥∥∥
∞

= O
(

(N − 2)(m−1)/2 exp
[
−(π − hσ)(N − 2)

2

])
(N → ∞). (3.7)

To estimate the truncation error, we set d = 1 and A = A′eσ according to (3.6). Then, by
Lemma 3.2, we have

∥∥∥G(m)
h f − T (m)

N,h f
∥∥∥
∞

≤ 2A′eσ(m + 1)!eπe
3

2r2 r2

N(N − 1)hmπ
exp

[
−(N − 1)2

2r2

]

≤ 2A′eσ(m + 1)!eπe
3

2r2

hmπ

r2

(N − 2)2
exp

[
−(N − 2)2

2r2

]
.

The degree of r2/(N − 2)2 with respect to N − 2 is −1. Furthermore, e
3

2r2 → 1 as N → ∞. The
exponent of the remaining part is

−(N − 2)2

2r2
= −(π − hσ)(N − 2)

2
.

Thus we obtain the following estimate:
∥∥∥G(m)

h f − T (m)
N,h f

∥∥∥
∞

= O
(

1
N − 2

exp
[
−(π − hσ)(N − 2)

2

])
(N → ∞). (3.8)

By (3.7) and (3.8), we have (3.3) in the case of m ≥ 0 and (3.2) in the case of m = 0.

Remark 3.7. It is worth noting that h depends on N in Theorem 3.3, whereas it is fixed in
Theorem 3.4. To realize exponential decrease of errors for holomorphic functions on Dd with a
finite d, it seems inevitable to make h depend on N . On the other hand, what we have shown
above is that exponential decrease of errors can be obtained with a fixed h if d can be taken
arbitrarily large, and that this is true of band-limited functions.

4 Numerical Experiments

In this section, we present computational results on sinc-Gauss sampling formula for two types
of functions: (i) rational functions

fβ,d(z) =
zβ+2

z2 + d2

9



with β ∈ {−2,−1, 0, 1, 2} and d > 0, and (ii) band-limited functions

fl(z) = (sinc(z))l

with a positive integer l. The former is not band-limited, and the latter is included to confirm
that the performance of the sinc-Gauss sampling formula is essentially independent of the band-
limited property of the functions to be approximated.

We consider errors on a finite interval [−3, 3] (i.e., L = 3), which we evaluate numerically
as the maximum of the errors at 6000 equally-spaced points in the interval. The relationship of
the error against the number of sampling points will be presented in graphs. Specifically, the
ordinates are the errors in logarithm,

log10

(
sup

−3≤x≤3

∣∣∣f(x) −
(
T (m)

N,h f
)

(x)
∣∣∣
)

, (4.1)

and the abscissae are N as well as M = 2(3/d′ + 1)N (with L = 3 in (2.11)), where M is
indicated at the top.

According to our theoretical analysis summarized in Theorem 2.3, the error curves are ex-
pected to be almost linear, with the slope against N being

−π

2
log10 e = −0.682 · · · . (4.2)

This theoretical slope will be compared with the observed values, which we obtain from the
computational results by the least square method.

The program for the computation is written in C. Our computer is SUN Blade 2000, whose en-
vironment is as follows: the operating system is Solaris 9, the CPU is UltraSPARC-III+(900MHz,
64bit) with 3 GB memory, the compiler is Sun Studio 11, in which “long double” is 128 bits
wide.

4.1 Rational Functions

For β ∈ {−2,−1, 0, 1, 2} and d > 0, define fβ,d as

fβ,d(z) =
zβ+2

z2 + d2
(z ∈ C). (4.3)

Then fβ,d is holomorphic on Dd−ε for ε with 0 < ε ¿ d, and satisfies

|fβ,d(z)| ≤ max{d, d−1}
ε

|z|α (∀z ∈ Dd−ε),

where α = max{β, 0}. The sinc-Gauss sampling formula is applied to fβ,d for β = −2,−1, 0, 1, 2,
d = 10−i (i = 0, 1, 2), and m = 0, 1, 2. We set ε = d/100 and h = (d − ε)/N . Furthermore, in
computing the slopes, we exclude the data for N = 45 and 50 to avoid the effect of rounding
errors.
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Figure 1: Errors for fβ,d of (4.3) with β = −2 and for m = 0
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Table 1: log10 (max error) for fβ,d of (4.3) with β = −2

m = 0 m = 1 m = 2
N = 10 N = 40 N = 10 N = 40 N = 10 N = 40

d = 1.00 −6.77 −27.28 −5.29 −25.19 −3.52 −22.80
d = 0.10 −4.77 −25.32 −2.29 −22.20 0.48 −18.84
d = 0.01 −4.09 −24.29 0.45 −19.55 4.43 −14.96

Table 2: log10 (max error) for fβ,d of (4.3) with β = −1

m = 0 m = 1 m = 2
N = 10 N = 40 N = 10 N = 40 N = 10 N = 40

d = 1.00 −6.94 −27.45 −5.31 −25.21 −3.58 −22.84
d = 0.10 −5.96 −26.47 −3.31 −23.21 −0.59 −19.84
d = 0.01 −6.09 −26.42 −1.31 −21.21 2.18 −17.18

Table 3: log10 (max error) for fβ,d of (4.3) with β = 0

m = 0 m = 1 m = 2
N = 10 N = 40 N = 10 N = 40 N = 10 N = 40

d = 1.00 −6.89 −27.35 −5.40 −25.26 −3.65 −22.87
d = 0.10 −6.90 −27.39 −4.41 −24.26 −1.66 −20.87
d = 0.01 −7.38 −28.14 −3.53 −23.52 0.34 −18.87

Table 4: log10 (max error) for fβ,d of (4.3) with β = 1

m = 0 m = 1 m = 2
N = 10 N = 40 N = 10 N = 40 N = 10 N = 40

d = 1.00 −6.94 −27.49 −5.41 −25.28 −3.61 −22.91
d = 0.10 −6.91 −27.66 −4.41 −24.56 −1.60 −21.15
d = 0.01 −6.92 −27.66 −3.40 −23.56 0.40 −19.15

12



Table 5: log10 (max error) for fβ,d of (4.3) with β = 2

m = 0 m = 1 m = 2
N = 10 N = 40 N = 10 N = 40 N = 10 N = 40

d = 1.00 −6.50 −27.23 −4.91 −25.07 −3.12 −22.67
d = 0.10 −6.43 −27.19 −3.93 −24.08 −1.13 −20.68
d = 0.01 −6.45 −27.19 −2.93 −23.09 0.87 −18.68

Table 6: log10 (max error)/N for fβ,d of (4.3) with β = −2

m = 0 m = 1 m = 2
d = 1.00 −0.684 −0.660 −0.635
d = 0.10 −0.686 −0.660 −0.636
d = 0.01 −0.692 −0.664 −0.639

Table 7: log10 (max error)/N for fβ,d of (4.3) with β = −1

m = 0 m = 1 m = 2
d = 1.00 −0.684 −0.660 −0.634
d = 0.10 −0.685 −0.660 −0.634
d = 0.01 −0.691 −0.660 −0.638

Table 8: log10 (max error)/N for fβ,d of (4.3) with β = 0

m = 0 m = 1 m = 2
d = 1.00 −0.681 −0.658 −0.632
d = 0.10 −0.683 −0.658 −0.632
d = 0.01 −0.694 −0.663 −0.632

Table 9: log10 (max error)/N for fβ,d of (4.3) with β = 1

m = 0 m = 1 m = 2
d = 1.00 −0.687 −0.660 −0.637
d = 0.10 −0.694 −0.670 −0.646
d = 0.01 −0.694 −0.670 −0.646
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Table 10: log10 (max error)/N for fβ,d of (4.3) with β = 2

m = 0 m = 1 m = 2
d = 1.00 −0.693 −0.670 −0.646
d = 0.10 −0.694 −0.670 −0.646
d = 0.01 −0.693 −0.669 −0.646

From Table 6–Table 10, we see that the experimental values of the slopes are close to the
theoretical ones in (4.2). As m becomes larger, the slope tends to be larger than the theoretical
value. This may be because we only use exp (−(π/2)N) in Theorem 3.3 in computing the
theoretical value, with the secondary factor Nm−min{1/2, 1−dαe+α} disregarded.

Next, we consider the effect of m, the order of differentiation. By Theorem 3.3, we expect
that log10(max error) will increase approximately by log10 N if m increases by one. The results
of Table 6–Table 10 agree with this expectation, whereas m is also included in the constant part
independent of N in the estimate.

Next, we consider the effect of d, representing the location of the singular points. Noting the
order with respect to N , we conclude that d does not affect the error. It is expected, however,
that log10(max error) will increase approximately by m + 1 if d is multiplied by 1/10, due to
the term 1/dm+1 in the estimate of Lemma 3.1. Computational results appear to support this
observation.

Finally, we consider the effect of β. From the results, we see that β does not affect the errors
substantially, which is theoretically appropriate.

4.2 Band-limited Functions

For a positive integer l, we define fl as

fl(z) = (sinc(z))l (z ∈ C). (4.4)

Then we have fl ∈ Bπl. The function fl is holomorphic on C and satisfies

|fl(z)| ≤ max

{(
eπd

π

)l

, eπl

}
(z ∈ Dd) (4.5)

for arbitrary d > 0. Setting h = 1/N , we apply the sinc-Gauss sampling formula to fl for l =
5, 10, 15, 20 and m = 0, 1, 2. In computing the slopes, we exclude the data for N = 5, 10, 45, 50.
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Figure 2: Errors for f = sinc20 with m = 0 and d = 1

Table 11: log10(max error) for f = sincl with d = 1

m = 0 m = 1 m = 2
N = 10 N = 40 N = 10 N = 40 N = 10 N = 40

l = 5 −5.18 −25.48 −3.67 −23.39 −1.98 −21.01
l = 10 −3.99 −23.18 −2.39 −21.09 −0.81 −18.74
l = 15 −3.18 −21.20 −1.66 −19.09 −0.11 −16.78
l = 20 −2.70 −19.49 −1.23 −17.38 0.34 −15.09

Table 12: log10(max error)/N for f = sincl with d = 1

m = 0 m = 1 m = 2
l = 5 −0.680 −0.664 −0.645
l = 10 −0.653 −0.638 −0.618
l = 15 −0.618 −0.605 −0.583
l = 20 −0.583 −0.568 −0.546

As to the effect of m on the errors, we see the same as in Section 4.1.
Next, we consider the slopes of the error curves in the graphs. The experimental values of

the slopes are close to the theoretical ones in (4.2) when l is small (Table 12). In the case where
l is large, however, this is not the case. This may be because the constant on the right hand
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side of (4.5) is large when l is large (note that d = 1), and the effect of the constant cannot be
ignored.

Taking this fact into consideration, we apply the formula in the case of d = π−1 log π,
i.e., h = (πN)−1 log π. The results of the experiments are presented in Fig. 3 and Table 14,
which justify the above observation. The numerical results support our expectation that smaller
width between neighboring sampling points yields better approximation for functions with strong
vibration.
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Figure 3: Errors for f = sinc20 with m = 0 and d = π−1 log π

Table 13: log10(max error) for f = sincl with d = π−1 log π

m = 0 m = 1 m = 2
N = 10 N = 40 N = 10 N = 40 N = 10 N = 40

l = 5 −6.94 −27.69 −5.01 −25.15 −2.79 −22.32
l = 10 −6.55 −27.25 −4.63 −24.72 −2.42 −21.49
l = 15 −6.20 −26.83 −4.28 −24.29 −2.09 −21.16
l = 20 −5.89 −26.41 −3.97 −23.88 −1.80 −20.62
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Table 14: log10(max error)/N for f = sincl with d = π−1 log π

m = 0 m = 1 m = 2
l = 5 −0.690 −0.673 −0.656
l = 10 −0.689 −0.672 −0.643
l = 15 −0.688 −0.670 −0.644
l = 20 −0.685 −0.668 −0.638

5 Proofs

In this section, the following fact is sometimes used, whose proof is omitted.

Lemma 5.1. For arbitrary nonnegative real numbers a, b, and τ , we have (a+b)τ ≤ 2τ (aτ +bτ ),
where 00 = 1 by convention.

5.1 Proof of Lemma 2.1

For n ∈ Z+, we set Vn := {x + yi | |x| = (n + 1/2)h, |y| ≤ d} and Un := {x + yi | |x| ≤
(n + 1/2)h, |y| = d}. By the residue theorem we have

f(x) −
n∑

k=−n

f(kh)
(

sin(π(x − kh)/h)
π(x − kh)/h

exp
[
−(x − kh)2

2r2h2

])

=
1

2πi

∫

Vn∪Un

sin(πx/h)
z − x

exp
[
−(x − z)2

2r2h2

]
f(z)

sin(πz/h)
dz,

and hence it suffices to estimate

lim
n→∞

1
2πi

∫

Vn∪Un

dm

dxm

(
sin(πx/h)

z − x
exp

[
−(x − z)2

2r2h2

])
f(z)

sin(πz/h)
dz. (5.1)

Note that

dm

dxm

(
sin(πx/h)

z − x
exp

[
−(x − z)2

2r2h2

])

=
m∑

k=0

k∑

l=0

m!
l!(m − k)!

(
−1√
2rh

)m−k

· sin(πx/h + πl/2)
(z − x)k−l+1

Hm−k

(
x − z√

2rh

)
exp

[
−(x − z)2

2r2h2

]
, (5.2)

where Hj(x) is the j-th degree Hermite polynomial

Hj(x) := (−1)j exp(x2)
(

d
dx

)j

exp(−x2) =
b j

2c∑

i=0

(−1)ij!(2x)j−2i

i!(j − 2i)!
. (5.3)

We assume that −L ≤ x ≤ L in the following.
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Estimate of the integral on Vn. By (5.2), it follows from

lim
n→∞

∫

Vn

1
|z − x|k−l+1

∣∣∣∣Hm−k

(
x − z√

2rh

)∣∣∣∣

·
∣∣∣∣exp

[
−(x − z)2

2r2h2

]∣∣∣∣
|f(z)|

| sin(πz/h)|
|dz| = 0 (5.4)

that the integral on Vn of (5.1) converges to 0 as n → ∞. We assume that n is sufficiently large.
For z ∈ Vn we have

(n + 1/2)h − L ≤ |z − x| ≤ (n + 1/2)h + L + d,

Re(x − z)2 = [±(n + 1/2)h − x]2 − (Imz)2 ≥ [(n + 1/2)h − L]2 − d2,

|z| ≤ (n + 1/2)h + d,

| sin(πz/h)| = | cosh(πImz/h)| ≥ 1,

and therefore
∫

Vn

1
|z − x|k−l+1

∣∣∣∣Hm−k

(
x − z√

2rh

)∣∣∣∣
∣∣∣∣exp

[
−(x − z)2

2r2h2

]∣∣∣∣
|f(z)|

| sin(πz/h)|
|dz|

≤ 4d · A + B[(n + 1/2)h + d]α

[(n + 1/2)h − L]k−l+1



b j

2c∑

i=0

2j−2ij!
i!(j − 2i)!

(
(n + 1/2)h + L + d√

2rh

)j−2i




· exp
[
− [(n + 1/2)h − L]2 − d2

2r2h2

]
.

This implies (5.4).
Estimate of the integral on Un. By (5.2), we have

∣∣∣∣ lim
n→∞

1
2πi

∫

Un

dm

dxm

(
sin(πx/h)

z − x
exp

[
−(x − z)2

2r2h2

])
f(z)

sin(πz/h)
dz

∣∣∣∣

≤ lim
n→∞

1
2π

∫

Un

m∑

k=0

k∑

l=0

m!
l!(m − k)!

(
1√
2rh

)m−k 1
|z − x|k−l+1

∣∣∣∣Hm−k

(
x − z√

2rh

)∣∣∣∣

·
∣∣∣∣exp

[
−(x − z)2

2r2h2

]∣∣∣∣
|f(z)|

| sin(πz/h)|
|dz|. (5.5)

For z = t ± di (t ∈ R) we have

1
|z − x|k−l+1

=
1

|t − x ± di|k−l+1
≤ 1

dk−l+1
≤ max

{
1
d
,

1
dm+1

}
≤ 1

d
+

1
dm+1

,

∣∣∣∣exp
[
−(x − z)2

2r2h2

]∣∣∣∣ =
∣∣∣∣exp

[
−(x − t)2 ∓ 2(x − t)di − d2

2r2h2

]∣∣∣∣

= exp
[
−(x − t)2

2r2h2

]
exp

(
d2

2r2h2

)
,

|f(z)| ≤ A + B|t ± di|α ≤ A + B(|t| + d)α,

1
| sin(πz/h)|

≤ 1
sinh(πd/h)

≤ 4 exp
(
−πd

h

)
,
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where the assumption h ≤ 2πd/ log 2 is used in the last inequality. These estimates and (5.5)
imply that

∣∣∣∣ lim
n→∞

1
2πi

∫

Un

dm

dxm

(
sin(πx/h)

z − x
exp

[
−(x − z)2

2r2h2

])
f(z)

sin(πz/h)
dz

∣∣∣∣

≤ 2m!
π

(
1
d

+
1

dm+1

)
exp

(
−πd

h
+

d2

2r2h2

)

·
∫ ∞

−∞
exp

[
−(x − t)2

2r2h2

]
[A + B(|t| + d)α]

m∑

k=0

k∑

l=0

1
l!(m − k)!

(
1√
2rh

)m−k

·
[∣∣∣∣Hm−k

(
x − t − di√

2rh

)∣∣∣∣ +
∣∣∣∣Hm−k

(
x − t + di√

2rh

)∣∣∣∣
]

dt

≤ 2(m + 1)!
π

(
1
d

+
1

dm+1

)
exp

(
−πd

h
+

d2

2r2h2

)

·
∫ ∞

−∞
exp

[
−(x − t)2

2r2h2

]
[A + B(|t| + d)α]

m∑

k=0

1
(m − k)!

(
1√
2rh

)m−k

·
[∣∣∣∣Hm−k

(
x − t − di√

2rh

)∣∣∣∣ +
∣∣∣∣Hm−k

(
x − t + di√

2rh

)∣∣∣∣
]

dt. (5.6)

With ξ = (x − t)/(rh), the integral in (5.6) becomes
∫ ∞

−∞
exp

(
−ξ2

2

)
[A + B(|x − rhξ| + d)α]

·
m∑

j=0

1
j!

(
1√
2rh

)j [∣∣∣∣Hj

(
rhξ − di√

2rh

)∣∣∣∣ +
∣∣∣∣Hj

(
rhξ + di√

2rh

)∣∣∣∣
]

rhdξ. (5.7)

In (5.7), it follows from −L ≤ x ≤ L that

(|x − rhξ| + d)α ≤ (|x| + rh|ξ| + d)α

≤ [(L + d) + rh|ξ|]α ≤ 2α[(L + d)α + (rh)α|ξ|α], (5.8)

where the last inequality is due to Lemma 5.1. The Hermite polynomial in (5.7) is evaluated as
follows. By (5.3), for ζ ∈ C we have

|Hj(ζ)| ≤ 2jj!
b j
2
c∑

i=0

|ζ|j−2i ≤ 2jj!
j + 2

2
max{1, |ζ|j} ≤ 2j−1j!(j + 2)(1 + |ζ|j),

19



and therefore
m∑

j=0

1
j!

(
1√
2rh

)j

|Hj(ζ)| ≤
m∑

j=0

(√
2

rh

)j
(j + 2)

2
(1 + |ζ|j)

≤ (m + 2)
2

max

{
1,

(√
2

rh

)m}
m∑

j=0

(1 + |ζ|j)

≤ (m + 2)
2

[
1 +

(√
2

rh

)m]
m∑

j=0

(1 + |ζ|j)

≤ (m + 2)
2

[
1 +

(√
2

rh

)m]
(m + 1)(1 + max{1, |ζ|m})

≤ (m + 1)(m + 2)
2

[
1 +

(√
2

rh

)m]
(2 + |ζ|m).

Substituting ζ = (rhξ ± di)/
√

2rh, we obtain
m∑

j=0

1
j!

(
1√
2rh

)j ∣∣∣∣Hj

(
rhξ ± di√

2rh

)∣∣∣∣

≤ (m + 1)(m + 2)
2

[
1 +

(√
2

rh

)m] (
2 +

∣∣∣∣
ξ√
2
± di√

2rh

∣∣∣∣
m)

≤ (m + 1)(m + 2)
2

[
1 +

(√
2

rh

)m] [
2 +

(∣∣∣∣
ξ√
2

∣∣∣∣ +
∣∣∣∣

d√
2rh

∣∣∣∣
)m]

≤ (m + 1)(m + 2)
2

[
1 +

(√
2

rh

)m] [
2 + 2m

(∣∣∣∣
ξ√
2

∣∣∣∣
m

+
∣∣∣∣

d√
2rh

∣∣∣∣
m)]

, (5.9)

where the last inequality is due to Lemma 5.1. Note that this inequality holds good even when
m = 0.

It follows from (5.6), (5.7), (5.8), and (5.9) that
∣∣∣∣ lim
n→∞

1
2πi

∫

Un

dm

dxm

(
sin(πx/h)

z − x
exp

[
−(x − z)2

2r2h2

])
f(z)

sin(πz/h)
dz

∣∣∣∣

≤ 2(m + 1)!
π

(
1
d

+
1

dm+1

)
exp

(
−πd

h
+

d2

2r2h2

)
rh(m + 1)(m + 2)

·

(
1 +

(√
2

rh

)m) ∫ ∞

−∞
exp

(
−ξ2

2

)
[A + 2αB[(L + d)α + (rh)α|ξ|α]]

·
[
2 + 2m

(∣∣∣∣
ξ√
2

∣∣∣∣
m

+
∣∣∣∣

d√
2rh

∣∣∣∣
m)]

dξ

≤ exp
(
−πd

h
+

d2

2r2h2

)
· C0

[
C1C3

√
2π + C2C32

α+1
2 Γ

(
α + 1

2

)

+ C12
2m+1

2 Γ
(

m + 1
2

)
+ C22

α+2m+1
2 Γ

(
α + m + 1

2

)]
,

where C0, . . . , C3 are defined in (2.3)–(2.6).
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5.2 Proof of Lemma 2.2

We prepare the following lemma.

Lemma 5.2. Let p be a nonnegative integer, N a positive integer, and r a positive number. If
N ≥ √

pr, we have

∞∑

n=N+1

np exp
(
− n2

2r2

)
≤ (p + 1)!! max{Np, rp}r2

N
exp

(
−N2

2r2

)
.

Proof. Put η(x) := xp exp[−x2/(2r2)]. Since

η′(x) =
(

pxp−1 − xp+1

r2

)
exp

(
− x2

2r2

)
,

η(x) decreases at x ≥ √
pr. Since N ≥ √

pr by the assumption, we have an estimate by an
integral:

∞∑

n=N+1

np exp
(
− n2

2r2

)
≤

∫ ∞

N
xp exp

(
− x2

2r2

)
dx. (5.10)

Denote by Ip the integral of the right hand side in (5.10). By integration by parts, we have

Ip = −r2

∫ ∞

N
xp−1

(
− x

r2

)
exp

(
− x2

2r2

)
dx = −r2

∫ ∞

N
xp−1 d

dx
exp

(
− x2

2r2

)
dx

= −r2

[
−Np−1 exp

(
−N2

2r2

)
− (p − 1)

∫ ∞

N
xp−2 exp

(
− x2

2r2

)
dx

]

= Np−1r2 exp
(
−N2

2r2

)
+ (p − 1)r2Ip−2.

Iterating the similar operation, we obtain

Ip =

(p − 1)!!

[[
k−1∑

i=0

Np−2i−1r2i

(p − 2i − 1)!!

]
r2 exp

(
−N2

2r2

)
+

r2k

(p − 2k − 1)!!
Ip−2k

]
(5.11)

for k = 0, 1, . . . , bp/2c, where we set (−1)!! = 0!! = 1. In the case of k = bp/2c, it holds that
Ip−2k = I1 or I0. These integrals are evaluated as follows:

I1 = r2 exp
(
−N2

2r2

)
, (5.12)

I0 =
√

2r

∫ ∞

N/(
√

2r)
exp(−u2)du

≤
√

2r ·
√

2r

2N
exp

(
−N2

2r2

)
=

r2

N
exp

(
−N2

2r2

)
, (5.13)

where the latter is due to the general fact that
∫ ∞

t
exp(−u2)du ≤ exp(−t2)

2t
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holds for t > 0. It follows from (5.11), (5.12), and (5.13) that

Ip ≤ (p − 1)!!



bp/2c∑

i=0

Np−2i−1r2i

(p − 2i − 1)!!


 r2 exp

(
−N2

2r2

)

≤ Np−1(p − 1)!!




bp/2c∑

i=0

r2i

N2i


 r2 exp

(
−N2

2r2

)

≤ Np−1(p − 1)!!




bp/2c∑

i=0

max
{

1,
rp

Np

}
 r2 exp

(
−N2

2r2

)

≤ Np−1(p + 1)!!max
{

1,
rp

Np

}
r2 exp

(
−N2

2r2

)

=
(p + 1)!! max{Np, rp}r2

N
exp

(
−N2

2r2

)
.

With this expression and (5.10), we obtain the conclusion.

We now prove Lemma 2.2. In a similar manner to (5.2), we see

dm

dxm

(
sin(π(x − kh)/h)

π(x − kh)/h
exp

[
−(x − kh)2

2r2h2

])

=
m∑

k=0

k∑

l=0

m!
l!(m − k)!

(−1)m−l

(
√

2rh)m−k

(π

h

)l−1

· sin(π(x − kh)/h + πl/2)
(x − kh)k−l+1

Hm−k

(
x − kh√

2rh

)
exp

[
−(x − kh)2

2r2h2

]
,

and therefore
∣∣∣
(
G(m)

h f
)

(x) −
(
T (m)

N,h f
)

(x)
∣∣∣

≤
∑

k−dx/he>N or
k−bx/hc<−N

|f(kh)|
m∑

k=0

k∑

l=0

m!
l!(m − k)!

1
(
√

2rh)m−k

(π

h

)l−1

· 1
hk−l+1|x/h − k|k−l+1

∣∣∣∣Hm−k

(
x/h − k√

2r

)∣∣∣∣ exp
[
−(x/h − k)2

2r2

]
. (5.14)

We assume that −L ≤ x ≤ L.
We estimate the sum in (5.14) in the case of k − dx/he > N . Note that

N < k −
⌈x

h

⌉
≤ k − x

h
≤ k −

⌈x

h

⌉
+ 1. (5.15)

By (5.3), setting

ai(t) :=
j!(2t)j−2i

i!(j − 2i)!
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for t ∈ R, we have that

Hj(t) =
bj/2c∑

i=0

(−1)iai(t),

and that ai(t) (i = 0, 1, . . . , bj/2c) have the same sign. Furthermore, if |t| ≥ j/2, we have
|a0(t)| ≥ · · · ≥ |abj/2c(t)|, and therefore |Hj(t)| ≤ |a0(t)|.

Since k − x/h > N ≥ mr/
√

2 holds by the assumption, setting t = (k − x/h)/(
√

2r) in the
above discussion, we have

∣∣∣∣Hj

(
x/h − k√

2r

)∣∣∣∣ ≤
(√

2|x/h − k|
r

)j

=

[√
2(k − x/h)

r

]j

(5.16)

for j = 0, 1 . . . ,m.
By (5.15) and (5.16), we have

∑

k−dx/he>N

|f(kh)|
m∑

k=0

k∑

l=0

m!
l!(m − k)!

1
(
√

2rh)m−k

(π

h

)l−1

· 1
hk−l+1|x/h − k|k−l+1

∣∣∣∣Hm−k

(
x/h − k√

2r

)∣∣∣∣ exp
[
−(x/h − k)2

2r2

]

≤ 1
Nhm

∑

k−dx/he>N

[
A + B

[(
k −

⌈x

h

⌉)
h + (L + h)

]α]

·
m∑

k=0

k∑

l=0

m!πl−1

l!(m − k)!

(
k − dx/he + 1

r2

)m−k

exp
[
−(k − dx/he)2

2r2

]

≤ 1
Nhm

∞∑

n=N+1

[A + B [nh + (L + h)]α]

·
m∑

k=0

k∑

l=0

m!πl−1

l!(m − k)!

(
n + 1

r2

)m−k

exp
(
− n2

2r2

)
. (5.17)

Furthermore, noting that

[nh + (L + h)]α ≤ 2α [(nh)α + (L + h)α]

≤ 2α[(L + h)α + 2αhα] + 22αhα(n − 1)α,

πl−1

l!
=

πl

πl!
≤ eπ

π
,

m∑

k=0

1
(m − k)!

(
n + 1

r2

)m−k

≤ exp
(

n + 1
r2

)
,
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where Lemma 5.1 is used, we have

1
Nhm

∞∑

n=N+1

[A + B [nh + (L + h)]α]
m∑

k=0

k∑

l=0

m!πl−1

l!(m − k)!

(
n + 1

r2

)m−k

exp
(
− n2

2r2

)

≤ (m + 1)!eπ

Nhmπ

∞∑

n=N+1

[
A + 2αB[(L + h)α + 2αhα] + 22αBhα(n − 1)α

]

· exp
(

n + 1
r2

)
exp

(
− n2

2r2

)

≤ (m + 1)!eπe
3

2r2

Nhmπ

∞∑

n=N+1

[
A + 2αB[(L + h)α + 2αhα] + 22αBhα(n − 1)α

]

· exp
[
−(n − 1)2

2r2

]
. (5.18)

Applying Lemma 5.2 (by the assumption N ≥
√

dαer + 1, we have only to replace N with
N − 1 and set p = 0, dαe), we have

(m + 1)!eπe
3

2r2

Nhmπ

∞∑

n=N+1

[
A + 2αB[(L + h)α + 2αhα] + 22αBhα(n − 1)α

]

· exp
[
−(n − 1)2

2r2

]

≤ (m + 1)!eπe
3

2r2 r2

N(N − 1)hmπ

(
C ′

1 + C ′
2

)
exp

[
−(N − 1)2

2r2

]
, (5.19)

where C ′
1 and C ′

2 are defined in (2.8) and (2.9), respectively.
Noting that the sum in (5.14) in the case of k − bx/hc < −N can be estimated in a similar

manner, we see from (5.14), (5.17), (5.18), and (5.19) that

∣∣∣
(
G(m)

h f
)

(x) −
(
T (m)

N,h f
)

(x)
∣∣∣ ≤ C ′

0

(
C ′

1 + C ′
2

)
exp

[
−(N − 1)2

2r2

]
,

where C ′
0 is defined in (2.7). Thus we have proven Lemma 2.2.
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