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Abstract

The paper presents a global optimization method to compute the minimum limit load
factor of trusses under the unknown-but-bounded load uncertainty. We assume that the
external forces consist of a part proportional to a load factor and a part that is uncertain
around its nominal value. The worst-case limit load factor is introduced as the smallest
limit load factor realized with some uncertain parameters. By reformulating the worst-
case determination problem as a mixed 0-1 programming problem, we propose a global
optimization algorithm as a combination of a branch-and-boud method based on the
linear programming relaxations and a cutting plane method based on the disjunctive or
lift-and-project cuts. The worst-case limit loads, as well as the corresponding critical
loading patterns, are computed to demonstrate that our method converges to the global
optimal solutions successfully.

Keywords

Data uncertainty, limit analysis, integer programming, cutting plane, branch-and-bound,
global optimization

1 Introduction

In designing civil, mechanical and aerospace structures, plastic limit analysis has been used widely
for decades as a means of estimating the ultimate strength of structures. It is the case that, while
the dead and live loads are uncertain around their nominal values, the disturbance load is applied
proportionally with a load factor. This paper discusses a global optimization technique for computing
the smallest limit load factor of truss structures, where the applied dead and live loads are imprecisely
known.

The limit analysis still receives much attention by numerous researchers from the view points
of algorithms [2, 14, 23, 29] and issues relevant to the finite element method [25, 33]. Based on
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the probabilistic uncertainty models of structural systems, various approaches to stochastic limit
analysis have also been proposed [24, 27, 30, 31]. In the framework of probabilistic uncertainties,
reliability-based structural design methods have been investigated extensively [22, 34].

Besides these probabilistic uncertainty models, non-probabilistic uncertainty models have also
been developed, where a mechanical system is assumed to contain unknown-but-bounded uncertain
parameters. Ben-Haim and Elishakoff [6] developed the well-known convex model approach, with
which Ganzerli and Pantelides [18] proposed a robust truss optimization method. The interval linear
algebra has been well developed for uncertain linear equations [1], and has been employed in struc-
tural analyses with uncertainties [10]. In contrast to probabilistic modelings, these non-probabilistic
uncertainty modelings require only upper bounds on the magnitudes of uncertain parameters, and
engineers need not to estimate the probabilistic density distributions of uncertain parameters.

Elishakoff et al. [17] proposed a structural optimization scheme under the unknown-but-bounded
uncertainty by using the anti-optimization. The bi-level optimization problems were formulated and
solved numerically for the robust structural design against the worst case [11, 16]. Gu et al. [19] pro-
posed an estimation method for the worst case of the propagated uncertainty in a multidisciplinary
system. A unified methodology of robust counterpart of various convex optimization problems was
developed by Ben-Tal and Nemirovski [8], which was applied to robust compliance minimization of
trusses [7]. The authors proposed the methods for robustness analysis and robust optimization of
structures [20, 21, 32] based on the info-gap uncertainty model [5].

A serious difficulty in the worst-case detection arises when the uncertain parameters in the worst-
case are defined as an optimal solution of a nonconvex optimization problem. The conventional
methods for linear worst-case analysis, e.g., the convex model [6], can be applied only to the cases in
which sufficiently small variation of the uncertain parameters is allowed, or in which the structural
response considered is represented as a linear function of the uncertain parameters. In these cases,
the worst case can be detected by solving a convex optimization problem.

Unfortunately, in many practical situations, the variation of uncertain parameters is not small
and we are interested in nonlinear responses of structures. Then the worst case is defined via a
nonconvex optimization problem. In general, the conventional nonlinear programming approach
converges to a local optimal solution of that problem. However, a local minimum solution, that is
not globally optimal, does not correspond to the worst case. Obviously, the worst case corresponds
to a global optimal solution. Thus, we have to find a global optimal solution of the nonconvex
problem and guarantee that the solution obtained is globally optimal, which prevent us to use the
conventional nonlinear programming algorithms.

In this paper, we aim at developing a global optimization method for the worst-case detection.
We consider the limit load factor of a truss under the load uncertainty. The external forces applied to
a truss are supposed to consist of a constant part and a part proportional to a load factor, where the
former part cannot be known precisely and is assumed to be unknown but bounded. The worst-case
limit load factor is defined as the minimum value among all the possible limit load factors realized
by some uncertain parameters belonging to the given closed set.

We define the worst-case limit load factor by using a nonconvex optimization problem, which
can be rewritten as a mixed 0-1 programming problem. Based on a linear programming (LP)
relaxation, a simple branch-and-bound algorithm is proposed to obtain a global optimal solution
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of the presented mixed 0-1 programming problem. To strengthen the LP relaxation, we generate
some cutting planes at the root node of the branch-and-bound tree. This approach is called the
cut-and-branch method [15]. We formulate an LP problem to generate the deepest disjunctive cut .
By adding the generated cuts to LP relaxation problems, it is possible to reduce drastically the
number of LP problems that should be solved in the branch-and-bound method. It is guaranteed
that the solution obtained by using the cut-and-branch method is a global optimal solution of the
worst-case determination problem, i.e., it is assured that there exists no uncertain parameter with
which the limit load factor becomes smaller than the obtained optimal value.

Recently, there have been renewed interests in cutting planes, or cuts, that are valid linear
inequalities of a mixed integer programming problem; see, e.g., the review paper [26]. Especially,
the branch-and-cut method [3, 15], that is an LP based branch-and-bound method with cuts added,
is considered as one of the most successful approaches to solving the mixed integer program. Among
various cuts, a disjunctive cut (or lift-and-project cut) is defined as a linear inequality selected among
inequalities valid for a disjunctive programming relaxation of the mixed 0-1 program [3, 4, 9]. We
utilize disjunctive cuts to strengthen the LP relaxation problems that are solved at nodes of the
branch-and-bound tree.

This paper is organized as follows. In section 2, in order to make this paper self-contained,
we prepare the LP problems for the conventional limit analysis as well as the notation used in
this paper. Section 3 introduces the notion of uncertain limit analysis by defining the uncertainty
model of external load and the worst-case limit load factor. In section 4, we present the mixed
0-1 programming formulation for the uncertain limit analysis, and for the solution we propose a
branch-and-bound method. In order to strengthen the LP relaxation problems solved in the branch-
and-bound tree, an LP problem that generates the disjunctive cutting plane is proposed in section 5.
Numerical experiments are presented in section 6 for various trusses by using the cut-and-branch
method presented, while conclusions are drawn in section 7.

2 Notation and preliminary results

2.1 Notation

All vectors are assumed to be column vectors in this paper. For an n-tuple pm+1, . . . , pm+n, we let
denote (pi| i = m+1, . . . ,m+n) and {pi| i = m+1, . . . ,m+n}, respectively, the n-dimensional vector
(pm+1, . . . , pm+n)� and the set that consists of pm+1, . . . , pm+n. The vector (pi| i = 1, . . . , n) ∈ R

n

is often simplified as (pi) ∈ R
n. The �1, �2 (or standard Euclidean), and �∞ norms of the vector

p = (pi) ∈ R
n, denoted by ‖p‖1, ‖p‖2, and ‖p‖∞, respectively, are defined as

‖p‖1 =
n∑

i=1

|pi|,

‖p‖2 = (p�p)1/2,

‖p‖∞ = max
i∈{1,...,n}

|pi|.

For vectors p = (pi) ∈ R
n and q = (qi) ∈ R

n, we write p ≥ 0 and p ≥ q, respectively, if pi ≥ 0,
i = 1, . . . , n and p − q ≥ 0. The (m + n)-dimensional column vector (p�,q�)� is often written
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simply as (p,q). Moreover, (p,q)i denotes the ith component of the vector (p�,q�)�. Define the
vectors 1 ∈ R

n and ej ∈ R
n, j = 1, . . . , n, as

1 = (1, . . . , 1)�,

ej = (ej
i | i = 1, . . . , n), ej

i =

⎧⎨⎩ej
i = 0, for i �= j,

ej
j = 1,

i.e., ej is the jth column vector of the identity matrix. Define R
n
+ ⊂ R

n by

R
n
+ = {p ∈ R

n|p ≥ 0}.
For two sets A ⊆ R

m and B ⊆ R
n, their Cartesian product is defined by A× B = {(a�, b�)� ∈

R
m+n|a ∈ A, b ∈ B}. Particularly, we write R

m+n = R
m×R

n. Let ‘convA’ denote the convex hull
of A, that is the smallest convex set that contains A. The closure of A, that is the smallest closed
set that contains A, is denoted by ‘clA’. The cardinality of the set A is denoted by |A|. The empty
set is denoted by ∅.

2.2 Basic problem for plastic limit analysis

Consider an elastic/perfectly-plastic truss in the two- or three-dimensional space. Small rotations
and small strains are assumed. Let f ∈ R

nd
denote the vector of the external forces, where nd denotes

the number of degrees of freedom of displacements. Letting nm denote the number of members, the
vector of member axial forces is denoted by q = (qi) ∈ R

nm
. The system of equilibrium equations

in terms of f and q can be written in the form of

Bq = f , (1)

where B ∈ R
nd×nm

is a constant matrix.
Let u ∈ R

nd
and ci denote the vector of nodal displacements and the corresponding elongation

of the ith member, respectively. We often write c = (ci) ∈ R
nm

. The ith column vector of B is
denoted by bi ∈ R

nd
, i = 1, . . . , nm. The compatibility relation between u and ci can be written as

ci = b�i u, i = 1, . . . , nm. (2)

Suppose that the external load f consists of the constant part fD and proportionally increasing
part λfR as

f = fD + λfR. (3)

Notice here that λfR is defined by the monotonically increasing load parameter λ ∈ R+ and the
constant reference load R

nd � fR �= 0. In civil engineering, fD consists of the dead load, live load,
etc, while λfR is referred to as the live or disturbance load caused by earthquakes, winds, etc. In
this paper, fD is simply called dead load and fR is called reference disturbance load for simplicity
of presentation.

Let σy
i > 0 and −σy

i denote the yield stresses of the ith member in tension and in compression,
respectively, where we assume for simplicity that the yield stresses in tension and compression share
the common absolute value. The member cross-sectional area is denoted by ai > 0. Define qy

i by

qy
i = aiσ

y
i , i = 1, . . . , nm,
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which is the absolute value of the admissible axial force. Then, the yield functions can be written
as

|qi| − qy
i ≤ 0, i = 1, . . . , nm. (4)

From the static or lower-bound principle, and by using (1), (3), and (4), the limit load factor is
obtained by solving the following linear programming (LP) problem:

max λ

s.t. Bq = fD + λfR,

|qi| − qy
i ≤ 0, i = 1, . . . , nm,

⎫⎪⎬⎪⎭ (5)

where the variables are λ and q.

3 Uncertain limit analysis

In this section, we introduce the uncertainty model of external load, and define the worst-case limit
load factor rigorously.

3.1 Uncertainty model

In this paper, we suppose that only fD in (3) possesses the uncertainty, i.e., fD cannot be known
precisely. The model of uncertainty of fD is motivated by the non-probabilistic information-gap
model [5].

Let f̃D ∈ R
nd

denote the nominal value (or the best estimate) of fD. We describe the uncertainty
of fD in terms of the m-dimensional vector ζ ∈ R

m, that is considered to be unknown but bounded.
Suppose that fD depends on ζ affinely as

fD = f̃D + Tζ, (6)

where T ∈ R
nd×m is a constant matrix satisfying the following assumption:

Assumption 3.1. T satisfies the following conditions:

(i) {T�u|u ∈ R
nd} = R

m;

(ii) f�
L Tζ = 0 for any ζ ∈ R

m.

Assumption 3.1 (i) implies that the reference disturbance load fR does not have the uncertainty.
For a given parameter α ∈ R+, define a set Z(α) ⊂ R

m by

Z(α) = {ζ ∈ R
m| α ≥ ‖ζ‖∞} . (7)

The uncertain parameters vector ζ is assumed to be running through the uncertain set Z(α) defined
by (7), i.e.,

ζ ∈ Z(α). (8)
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From (6), (7), and (8) it follows that the uncertain fD satisfies

fD ∈ FD(α) :=
{

f ∈ R
nd

∣∣∣ f = f̃D + Tζ, α ≥ ‖ζ‖∞
}

. (9)

Roughly speaking, fD moves around the center-point f̃D. The greater the value of α, the greater
the range of possible variation of fD. In the context of the info-gap uncertainty model [5], α is
called the uncertainty parameter .

Note that the uncertain set FD(α) is bounded for any α ∈ R+. Moreover, FD(α) satisfies the
two basic axioms for the info-gap model, i.e., (i) nesting: 0 ≤ α1 < α2 implies FD(α1) ⊂ FD(α2);
(ii) contraction: FD(0) is the singleton set f̃D.

3.2 Worst-case limit load factor

For a given (but uncertain) dead load fD ∈ R
nd

, define a set Q(fD) ⊆ R
nm+1 by

Q(fD) :=
{

(λ,q) ∈ R× R
nm∣∣ Bq = fD + λfR, |qi| − qy

i ≤ 0, i = 1, . . . , nm
}

, (10)

which is the set of all statically admissible vector (λ,q) ∈ R × R
nm

associated with the fixed fD.
Define λ∗ : R

nd → R by

λ∗(fD) = max
λ,�
{λ : (λ,q) ∈ Q(fD)} . (11)

According to the static principle (5), λ∗(fD) corresponds to the limit load factor under the dead
load fD.

We next introduce a concept of the worst-case limit load factor . This is essentially motivated
by the fact that the limit load factor can be regarded as a function of the dead load vector as seen
in (11), while fD is uncertain and running through FD(α). Obviously, to evaluate the robustness of
trusses quantitatively, we are interested in the most severe situation, if any, in which the limit load
factor happens to decrease unexpectedly from the nominal limit load factor corresponding to f̃D

because of the uncertainty of fD. To this end, we attempt to compute the minimum value of the
limit load factor that can be attained at some dead load satisfying fD ∈ FD(α). This is naturally
realized by introducing λmin : R+ → R by

λmin(α) = min
�D

{λ∗(fD) : fD ∈ FD(α)} . (12)

Substitution of (9) into (12) reads

λmin(α) = min
�
{λ∗(fD(ζ)) : α ≥ ‖ζ‖∞} . (13)

Let ζcr denote an optimal solution of Problem (13). Given the uncertainty parameter α, we
refer to λmin(α) defined by (13) as the worst-case limit load factor , that is the minimum value
among limit load factors λ∗(fD) corresponding to some dead loads satisfying fD ∈ FD(α). The
corresponding dead load fD(ζcr) is referred to as the critical dead load . We call ζcr the critical
uncertain parameters vector . In the case without uncertainty, we easily see that the relationship

λmin(0) = λ∗(f̃D) = λ∗(fD(0))

holds. We refer to λ∗(f̃D) as the nominal limit load factor , that indicates the limit load factor
corresponding to the nominal dead load f̃D. The objective of this paper is to propose a solution
technique to compute λmin(α) as well as ζcr.
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Remark 3.2. In this paper we suppose that only the dead load has the uncertainty, and that the
stiffness of each member is certain. This is because, the worst-case associated with the uncer-
tainty of member stiffness can be found easily for the limit analysis. Indeed, the limit load factor
monotonically decreases if a member stiffness decreases. Hence, the set of critical member stiffness
corresponds to the trivial case in which the stiffness of each member coincides with its lower bound.
On the contrary, the loading pattern of the dead load is not trivial, which motivates us to confine
attention to the uncertainty of the dead load.

Remark 3.3. It should be noted that the limit load factor can be computed easily if the loading
pattern of the additional dead load is fixed a priori. Suppose that ζ in (9) is defined as ζ = βζ0

with a given constant ζ0 and a parameter β. After finding the nominal limit load factor λ∗(fD(0))
by employing the conventional limit analysis, the variation of λ∗(fD(βζ0)) with respect to β can
be computed by simply using the parametric linear programming [12] approach. In our problem,
the direction of ζ is unknown and should be determined so as to minimize λ∗(fD(ζ)). It should be
noted again that we attempt to find a global optimal solution of Problem (13) which is essentially
nonconvex.

3.3 Some relevant problems

The remainder of this section prepares the reformulation of Problem (13) into the mixed 0-1 pro-
gramming problem which will be presented in section 4.

Defining

U =
{
(u,z) ∈ R

nm ×R
nd

∣∣∣ f�
Ru = 1, zi ≥ |b�i u|, i = 1, . . . , nm

}
, (14)

consider the following problem in the variables (u,z) ∈ R
nd × R

nm
:

v∗(fD) := min
�,�

{
−f�

Du + qy�z : (u,z) ∈ U
}

. (15)

We first show that Problem (15) is equivalent to Problem (5) in the following sense:

Proposition 3.4 (Relation between Problems (5) and (15)). Let (u,z) denote an optimal so-
lution of Problem (15). Then,

(i) v∗(fD) = λ∗(fD);

(ii) u corresponds to a collapse mode associated with fD;

(iii) zi corresponds to the member elongation compatible to u.

Proof. We prove this proposition by showing that Problem (15) corresponds to the dual problem of
the static principle problem (5). In association with the constraint

qy
i ≥ |qi| (16)

in Problem (5), observe that qi satisfies (16) if and only if the inequality

(qy
i , qi) · (zi, wi) ≥ 0
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holds for any (zi, wi) satisfying

zi ≥ |wi|. (17)

This observation justifies that the function

L(λ,q,u,z,w) =

⎧⎨⎩λ + u� (Bq − fD − λfR) + (z�qy + w�q), if zi ≥ |wi|, i = 1, . . . , nm,

−∞, otherwise

corresponds to the Lagrangian of Problem (5), where u ∈ R
nd

, z ∈ R
nm

, and w ∈ R
nm

are the
Lagrangian multipliers. Then the Lagrangian dual of Problem (5) is defined by

min
(�,�,�)

sup
{
L(λ,q,u,z,w) : (λ,q) ∈ R× R

nm}
,

the explicit form of which is easily obtained as

min −f�
Du + qy�z

s.t. wi = −b�i u, f�
Ru = 1, zi ≥ |wi| i = 1, . . . , nm.

}
(18)

Elimination of w from Problem (18) yields Problem (15). Hence, the LP problem (15) is dual to the
LP problem (5), from which and the strong duality of LP [12] we obtain the assertions (i) and (ii).
Optimal solutions of Problems (5) and (18) satisfy the complementarity condition

ziq
y
i + wiqi = 0 (19)

over the constraints (16) and (17). Since (16), (17), and (19) imply zi = −wi, we see that zi = b�i u

is satisfied at an optimal solution of Problem (15), which concludes the assertion (iii).

Remark 3.5. Note that the upper-bound principle (15) is different from the well-known formulation
for trusses; see, e.g., [29]. Observe that the yield condition (4) in Problem (5) can be rewritten as

qy
i − qi ≥ 0, qy

i + qi ≥ 0, i = 1, . . . , nm. (20)

The elongation ci defined in (2) is divided into the two parts as

ci = c+
i − c−i , c+

i ≥ 0, c−i ≥ 0, i = 1, . . . , nm. (21)

By using (20) and (21), it is known that the set of relations governing the elastic/plastic behavior
is written as

Bq = fD + λfR, (equilibrium) (22a)

qy − q ≥ 0, qy + q ≥ 0, (yield conditions) (22b)

f�
Ru = 1, (normalization) (22c)

c+ − c− = B�u, (compatibility) (22d)

c+ ≥ 0, c− ≥ 0, (plastic elongation) (22e)

(qy − q)�c+ = 0, (qy + q)�c− = 0. (complementarity) (22f)
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From (21) and (22) it follows that the dual to Problem (5) can be formulated in the variables
u ∈ R

nd
, c+ ∈ R

nm
, and c− ∈ R

nm
as

min −f�
Du + qy�(c+ + c−)

s.t. f�
Ru = 1,

c+ − c− = B�u,

c+ ≥ 0, c− ≥ 0,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (23)

which coincides with the conventional formulation of upper-bound principle [29]. However, the
number of variables in Problem (23) is larger than that of Problem (15), which may imply an
advantage of Problem (15) over Problem (23).

For α ∈ R+, consider the following nonconvex problem in the variables (u,z, ζ) ∈ R
nd×R

nm×R
m:

vmin(α) := min
�,�,�

{
−(f̃D + Tζ)�u + qy�z : (u,z) ∈ U , α ≥ ‖ζ‖∞

}
. (24)

The following proposition shows that Problem (24) corresponds to the kinematic version of the
uncertain limit analysis (13):

Proposition 3.6 (Relation between Problems (13) and (24)). Let (u,z, ζ) denote an optimal
solution of Problem (24). Then,

(i) vmin(α) = λmin(α);

(ii) ζ is an optimal solution of Problem (13).

(iii) u corresponds to a collapse mode associated with the external dead load fD(ζ);

(iv) zi corresponds to the member elongation compatible with u.

Proof. By using the definition (11) of λ∗, Problem (13) can be rewritten equivalently as

min
�

{
max
λ,�
{λ : (λ,q) ∈ Q(fD(ζ))} : α ≥ ‖ζ‖∞

}
(25)

without changing the optimal value. Let (ζ̂, λ̂, q̂) denote an optimal solution of Problem (25). It
is obvious that ζ̂ is an optimal solution of Problem (13), and that λ̂ = λmin(α). Since the inner
problem of Problem (25) coincides with the static principle (13), q̂ corresponds to the vector of
axial forces at the collapse mode. By using Proposition 3.4, we can rewrite the inner problem of
Problem (25) as

min
�

{
min
�,�

{
−fD(ζ)�u + qy�z : (u,z) ∈ U

}
: α ≥ ‖ζ‖∞

}
(26)

without changing the optimal value. Obviously, ζ̂ is an optimal solution of Problem (25) if and
only if it is an optimal solution of Problem (26). Moreover, Proposition 3.4 guarantees that, at an
optimal solution of Problem (26), u and zi, respectively, coincide with the collapse mode and the
member elongation corresponding to q̂. From (6), we see that Problems (24) and (26) share the
same optimal value and same optimal solutions, which concludes the proof.
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Proposition 3.6 justifies to solve Problem (24) instead of the bi-level optimization problem (13),
i.e., the worst-case limit load factor is obtained as the optimal value of Problem (24), and the critical
dead load and the corresponding collapse mode can be obtained simultaneously as the optimal vari-
ables. Note that Problem (24) is a nonconvex (but single-level) problem, since the objective function
includes the nonconvex quadratic term ζ�T�u. Hence, the conventional nonlinear programming
approach converges to local optimal or stationary solutions in general. It should be emphasized
that, for the purpose of the robustness analysis, the proof of global optimum of Problem (24) is
strongly desired, since it guarantees that the limit load factor cannot be smaller than the obtained
optimal objective value. This is the major difficulty of the uncertain limit analysis. To overcome
this difficulty, in the following section we propose an algorithm that converges to a global optimal
solution of Problem (24).

4 Global optimization for uncertain limit analysis

In this section, we propose an algorithm to find a global optimal solution of Problem (13) based on
the enumeration. We start with reformulating Problem (13) as a mixed 0-1 programming problem.

4.1 Mixed 0-1 programming formulation

Letting

C0 := R
nm × R

nd × R
m × R

m,

define a set K ⊆ C0 by

K =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩(u,z,γ, τ ) ∈ C0

∣∣∣∣∣∣∣∣∣∣
f�

Ru = 1
z −B�u ≥ 0, z + B�u ≥ 0

γ − T�u ≤M(1− τ ), γ + T�u ≤Mτ

0 ≤ τ ≤ 1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ , (27)

where M ∈ R+ is a sufficiently large constant. Let

K�= {(u,z,γ, τ ) ∈ K | τ ∈ {0, 1}m } . (28)

Consider the following optimization problem in the variables (u,z,γ, τ ) ∈ C0:

min
{
−α1�γ − f̃

�
Du + qy�z : (u,z,γ, τ ) ∈ K�

}
. (29)

Note that Problem (29) is referred to as the mixed 0-1 programming problem, that has binary
constraints on τ , linear inequality constraints, and a linear objective function.

Let tj ∈ R
nd

, j = 1, . . . ,m, denote the jth column vector of T . The following proposition,
together with Proposition 3.6, implies that the optimal solution of Problem (13) can be obtained
from an optimal solution of Problem (29):

Proposition 4.1 (Relation between Problems (24) and (29)). A feasible solution (u,z, ζ) of
Problem (24) satisfying

ζ
�
T�u = α‖T�u‖1 (30)
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is optimal if and only if a feasible solution (u,z,γ, τ ) of Problem (29) satisfying

γj = |t�j u|, j = 1, . . . ,m, (31)⎧⎪⎪⎪⎨⎪⎪⎪⎩
τ j = 1, if t�j u > 0,

τ j = 0, if t�j u < 0,

τ j ∈ {0, 1}, if t�j u = 0

(32)

is optimal. Moreover, Problems (24) and (29) share the same optimal value, that is equal to λmin(α).

Proof. Observe that, in Problem (24), only α ≥ ‖ζ‖∞ is the constraint on ζ, which is independent
of the remaining variables z and u. Hence, Problem (24) is equivalently rewritten as

min
�,�

min
�

{
−(f̃D + Tζ)�u : α ≥ ‖ζ‖∞

}
+ qy�z

s.t. (u,z) ∈ U

⎫⎬⎭ (33)

without changing the optimal value and optimal solution. From the Hölder inequality [28, Chap. 9],
we see that

(Tζ)�u ≥ ‖ζ‖∞‖T�u‖1 (34)

holds for any fixed u. Moreover, Assumption 3.1 (i) guarantees that there exists a ζ satisfying

(Tζ)�u = ‖ζ‖∞‖T�u‖1. (35)

From (34) and (35), we obtain

min
�

{
−(Tζ)�u : α ≥ ‖ζ‖∞

}
= min

�

{
−‖ζ‖∞‖T�u‖1 : α ≥ ‖ζ‖∞

}
= −α‖T�u‖1,

where an optimal ζ satisfies (35). Consequently, the variable ζ can be eliminated from Problem (33)
as

min
�,�

−α‖T�u‖1 − f̃
�
Du + qy�z

s.t. (u,z) ∈ U .

⎫⎬⎭ (36)

Note that an optimal solution (u,z) of (36) can be converted to an optimal solution (u,z, ζ) of (33)
by defining ζ by (30), and these two problems share the same objective value. By introducing new
variables γ ∈ R

m, Problem (36) is equivalently rewritten as

min −α1�γ − f̃
�
Du + qy�z

s.t. (u,z) ∈ U ,(
γj = t�j u

)
∨

(
γj = −t�j u

)
, j = 1, . . . ,m.

⎫⎪⎪⎬⎪⎪⎭ (37)

where ∨ denotes logical ‘or’. Note that (31) holds at an optimal solution of Problem (37). By using
a sufficiently large constant M , we see that the disjunction(

γj ≤ t�j u
)
∨

(
γj ≤ −t�j u

)
is equivalently rewritten to

γj ≤ t�j u + M(1− τj), γj ≤ −t�j u + Mτj, τj ∈ {0, 1}
with the relation (32), which completes the proof.
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4.2 Branch-and-bound method for Problem (29)

The LP relaxation of the mixed 0-1 programming problem (29) is obtained by ignoring the binary
constraints on τ as

min
{
−α1�γ − f̃

�
Du + qy�z : (u,z,γ, τ ) ∈ K

}
. (38)

Define a set C as

C =
{
(u,z,γ, τ ) ∈ C0

∣∣∣ A�
u u + A�

z z + A�
γ γ + A�

τ τ ≥ b
}

, (39)

where Au, Az, Aγ , Aτ , and b are constant matrices and a constant vector with appropriate sizes.
Assume that C satisfies

cl convK ⊆ C ⊆ C0. (40)

Throughout this section we set C := C0, while in section 5 we discuss how to generate a proper
subset C of C0.

Let J k
0 and J k

1 denote the subsets of indices satisfying

J k
0 ⊆ {1, . . . ,m}, J k

1 ⊆ {1, . . . ,m}, J k
0 ∩ J k

1 = ∅.

Define a set K(C,J k
0 ,J k

1 ) by

K(C,J k
0 ,J k

1 ) =
{

(u,z,γ, τ ) ∈ K ∩ C
∣∣∣ τj = 0 for j ∈ J k

0 , τj = 1 for j ∈ J k
1

}
,

where K and C have been defined in (27) and (39). Consider the following LP problem in the
variables (z,u,γ, τ ) ∈ C0:

LP(C,J k
0 ,J k

1 ) : vk := min
{
−α1�γ − f̃

�
Du + qy�z : (u,z,γ, τ ) ∈ K(C,J k

0 ,J k
1 )

}
. (41)

Explicitly, Problem (41) is written as

min − α1�γ − f̃
�
Du + qy�z (42a)

s.t. f�
Ru = 1, (42b)

z −B�u ≥ 0, (42c)

z + B�u ≥ 0, (42d)

γ − T�u ≤M(1− τ ), (42e)

γ + T�u ≤Mτ , (42f)

0 ≤ τ ≤ 1, (42g)

A�
u u + A�

z z + A�
γ γ + A�

τ τ ≥ b, (42h)

τj = 0 for j ∈ J k
0 , τj = 1 for j ∈ J k

1 . (42i)

We solve LP(C,J k
0 ,J k

1 ) at the nodes of enumeration tree. Note that LP(C0, ∅, ∅) coincides with the
LP relaxation (38).

The following is a branch-and-bound method for solving the mixed 0-1 programming prob-
lem (29) based on the LP relaxation:
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Algorithm 4.2 (Branch-and-Bound Algorithm for Problem (29)).

Step 0: (Initialization) Set k = 0, J 0
1 = ∅, J 0

0 = ∅, and vU =∞. Choose the small tolerance
ε > 0 and C satisfying (40) (set C := C0 throughout this section).

Step 1: (Solving subproblem) Solve the linear program LP(C,J k
0 ,J k

1 ) defined in (41). If
the problem is infeasible, go to Step 5; otherwise, let (uk,zk,γk, τ k) and vk denote its optimal
solution and optimal objective value, respectively.

Step 2: (Fathoming) If vk ≥ vU, go to Step 5.

Step 3: (Branching) If

τ k�(1− τ k) ≤ ε,

then go to Step 4; otherwise, select an index j1 such that

j1 = arg max
j∈{1,...,m}

{
τk
j (1− τk

j )
}

.

Set

J k+1
1 := J k

1 ∪ {j1},
pk+1 := (pk, j1)�,

update k ← k + 1, and go to Step 1.

Step 4: (Updating) Put vU := vk and (u,z,γ, τ ) := (uk,zk,γk, τ k). Go to Step 5.

Step 5: (Backtracking) If pk < 0, then go to Step 6. Otherwise branch to a new live node
as follows. Letting L denote the size of the vector pk, define l1 by

l1 = max
{

l ∈ {1, . . . , L}
∣∣∣ pk

l > 0
}

.

Divide pk into the three parts as

p1 =
(

pk
l

∣∣∣ l = 1, . . . , l1 − 1
)

, p2 = pk
l1, P3 =

{
−pk

l

∣∣∣ l = l1 + 1, . . . , L
}

.

Set

pk+1 :=
(
p�

1 ,−p2

)�
,

J k+1
0 :=

{
J k

0 ∪ {p2}
}
\ P3,

J k+1
1 := J k

1 \ {p2},

update k ← k + 1, and go to Step 1.

Step 6: (Termination) Declare (z,u,γ, τ ) as the optimal solution, and stop.
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Remark 4.3. Essentially, Algorithm 4.2 is designed by employing the depth first search (see, e.g.,
[13]) as a strategy for selecting the next live subproblem at Step 5. The condition pk < 0 implies
that there exists no live node. Among the live subproblems, we always select the subproblem with
the largest level in the branch-and-bound tree. The vector pk plays the role of bookkeeping the
path from the root node to the current node in the branch-and-bound tree. The size L of pk = (pk

j )
coincides with the current depth of the tree, and we see that the relations

J k
0 =

{
pk

j

∣∣∣ pk
j ≤ 0, j = 1, . . . , L

}
,

J k
1 =

{
−pk

j

∣∣∣ pk
j ≥ 0, j = 1, . . . , L

}
hold, i.e., the components of pk correspond to the indices of τj , possibly with opposite signs, that
are fixed in the current subproblem LP(C,J k

0 ,J k
1 ); the remaining τj are not fixed in LP(C,J k

0 ,J k
1 ).

The order of an element pk
j of pk is determined by its level in the tree.

Remark 4.4. Observe that the binary constraints τ ∈ {0, 1}m are equivalent to the following com-
plementarity conditions:

τ ≥ 0, 1− τ ≥ 0, (43)

τj(1− τj) = 0, j = 1, . . . ,m. (44)

Notice here that any feasible solution of LP(C,J k
0 ,J k

1 ) satisfies (43). At Step 3, we make a check if
the current solution (uk,zk,γk, τ k) satisfies the complementarity conditions (44) or not. Satisfaction
(possibly with small tolerance in practice) implies that (uk,zk,γk, τ k) is a feasible solution of
Problem (29). Alternatively, if (44) is not satisfied, then the variable τj with the largest residual of
the complementarity (44) is used as the branching variable in Step 3.

Remark 4.5. Note that it is not difficult to randomly generate f ′
D satisfying f ′

D ∈ FD(α). Then
the corresponding limit load factor λ∗(f ′

D) provides an upper bound of the mixed 0-1 problem (29).
At Step 0, we can obtain an upper bound vU by solving Problem (11) several times for randomly
sampled f ′

D. We simply set vU =∞ if this process is skipped.

4.3 Duality and simplification

The remainder of this section is devoted to some practical issues on implementation of Algorithm 4.2.
In fact, to obtain (uk,zk,γk, τ k) at Step 1, we do not solve Problem (41) directly but solve its
Lagrangian dual problem, that is denoted by LP∗(C,J k

0 ,J k
1 ), by using the simplex method. Then

the solution of Problem (41) is obtained as the optimal Lagrange multipliers. It is observed from our
preliminary numerical experiments that the CPU time required to solve the dual problem is much
smaller than that required to solve the original problem (41). Indeed, after the branching process of
Step 3, at the new node it is easy to obtain a feasible solution of the dual problem from an optimal
solution of the dual problem solved at the previous node.

Let

C0∗ = R× R
nm × R

nm × R
m × R

m ×R
m × R

m.
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From the LP duality [12] it follows that the dual problem of the LP relaxation LP(C, ∅, ∅) is formu-
lated in the variables (ρλ,q+,q−, ζ+, ζ−,ρ+,ρ−,µ) ∈ C0∗ ×R

nc
as

LP∗(C, ∅, ∅) : max ρλ − 1�(Mρ+ + ρ−) + b�µ (45a)

s.t. B(q+ − q−) = f̃D + T (ζ+ − ζ−) + fRρλ + Auµ, (45b)

q+ + q− + Azµ = qy, (45c)

ζ+ + ζ− = α1 + Aγµ, (45d)

M(ζ+ − ζ−) = ρ+ − ρ− + Aτµ, (45e)

q+,q−, ζ+, ζ−,ρ+,ρ−,µ ≥ 0. (45f)

Let LP∗(C,J k
0 ,J k

1 ) denote the dual of LP(C,J k
0 ,J k

1 ) in which some variables are fixed. To obtain
LP∗(C,J k

0 ,J k
1 ), we make the following modification and simplification on Problem (45):

(a) For j ∈ J k
0 , the variable τj in the primal problem (42) is set as τj = 0. This is realized in

the dual problem as follows: (i) The jth row of (42f) should be rewritten as −t�j u − γj ≥ 0.
Consequently, the variable ζ−j should be eliminated from the jth row of (45e). (ii) The jth
row of (42e) becomes redundant. Hence, the variable ζ+

j can be eliminated from Problem (45).
(iii) The jth row of (42g) becomes redundant. Hence, the variables ρ+

j and ρ−j can be eliminated
from Problem (45). (iv) If the jth row vector of Aτ is a zero vector, then the constraint (45e)
itself can be eliminated.

(b) For j ∈ J k
1 , the variable τj in the primal problem (42) is set as τj = 1. This is realized in

the dual problem as follows: (i) The jth row of (42e) should be rewritten as t�j u − γj ≥ 0.
Consequently, the variable ζ+

j should be eliminated from the jth row of (45e). (ii) The jth
row of (42f) becomes redundant. Hence, the variable ζ−j can be eliminated from Problem (45).
(iii) The jth row of (42g) becomes redundant. Hence, the variables ρ+

j and ρ−j can be eliminated
from Problem (45). (iv) If the jth row vector of Aτ is a zero vector, then the constraint (45e)
itself can be eliminated.

5 Cutting plane algorithm

It is guaranteed that Algorithm 4.2 converges to a global optimal solution of the mixed 0-1 program-
ming problem (29). However, it is possible that the algorithm is no better than the enumeration of
all binary variables τ . The efficiency of the algorithm depends partially on the tightness of the LP
relaxation problem solved at each node of the branch-and-bound tree. In order to strengthen the
LP relaxation problems, we propose an LP problem that generates the disjunctive cutting planes.

5.1 Disjunctive cut generation

Recall that K� and K, defined in (28) and (27), correspond to the feasible sets of the mixed 0-1
program (29) and its LP relaxation (38), respectively. Let (û, ẑ, γ̂, τ̂ ) denote the optimal solution
of the LP relaxation (38). Suppose that τ̂ does not satisfy the binary constraints in K�, i.e.,
(û, ẑ, γ̂, τ̂ ) �∈ K�. The cutting plane is an additional linear inequality that the point (û, ẑ, γ̂, τ̂ )
does not satisfy but is valid for K�. If a cutting plane is generated successfully, then we can add

15



it to the LP relaxation as the constraint without extracting any feasible solution in K�. If the new
optimal solution of the obtained LP problem is feasible for K�, then it is a global optimal solution
of the original mixed 0-1 program problem (29); otherwise, we may continue to generate cutting
planes.

In the following, the cutting plane generation is performed over the so-called disjunctive pro-
gramming relaxation of K� instead of K�. Then an obtained valid inequality is called the disjunctive
cut [9]. Define sets Pj(K) by

Pj(K) = cl conv {(u,z,γ, τ ) ∈ K | τj ∈ {0, 1}} , j = 1, . . . ,m,

which is a disjunctive programming relaxation of the closure of convK�. We attempt to find an
linear inequality that cuts off (û, ẑ, γ̂, τ̂ ) but is valid for Pj(K). Although the characterization of
Pj(K) is essentially nonlinear, a polyhedral representation can be obtained easily [3, 4], i.e., we have

(u,z,γ, τ ) ∈ Pj(K)

if and only if there exist (wu,wz,wγ ,wτ ) ∈ C0, w0 ∈ R, (yu,yz,yγ ,yτ ) ∈ C0, and y0 ∈ R satisfying

(u,z,γ, τ ) = (wu,wz,wγ ,wτ ) + (yu,yz,yγ ,yτ ), (46a)

f�
Rwu = w0, (46b)

wz −B�wu ≥ 0, wz + B�wu ≥ 0, (46c)

T�wu −wγ −Mwτ ≥ −Mw01, −T�wu −wγ + Mwτ ≥ 0, (46d)

0 ≤ wτ ≤ w01, (46e)

wτ
j ≤ 0, (46f)

f�
Ryu = y0, (46g)

yz −B�yu ≥ 0, yz + B�yu ≥ 0, (46h)

T�yu − yγ −Myτ ≥ −My01, −T�yu − yγ + Myτ ≥ 0, (46i)

0 ≤ yτ ≤ y01, (46j)

yτ
j ≤ y0, (46k)

w0 + y0 = 1. (46l)

Define a set P ∗
j (K) ⊆ C0 × R so that

(αu,αz,αγ ,ατ , β) ∈ P ∗
j (K) (47)

holds if and only if there exist (ξλ, ξq+, ξq−, ξζ+, ξζ−, ξρ+, ξρ−) ∈ C0∗, ξ0 ∈ R, (ηλ,ηq+,ηq−,ηζ+,ηζ−,

16



ηρ+,ηρ−) ∈ C0∗, and η0 ∈ R satisfying

αu = fRξλ −B(ξq+ − ξq−) + T (ξζ+ − ξζ−), (48a)

αz = ξq+ + ξq−, (48b)

αγ = −ξζ+ − ξζ−, (48c)

ατ = −M(ξζ+ − ξζ−) + ξρ+ − ξρ− − ξ0ej, (48d)

β = ξλ − 1�(Mξζ+ + ξρ−), (48e)

ξq+, ξq−, ξζ+, ξζ−, ξρ+, ξρ−, ξ0 ≥ 0, (48f)

αu = fRηλ −B(ηq+ − ηq−) + T (ηζ+ − ηζ−), (48g)

αz = ηq+ + ηq−, (48h)

αγ = −ηζ+ − ηζ−, (48i)

ατ = −M(ηζ+ − ηζ−) + ηρ+ − ηρ− + η0ej , (48j)

β = ηλ − 1�(Mηζ+ + ηρ−) + η0, (48k)

ηq+,ηq−,ηζ+,ηζ−,ηρ+,ηρ−, η0 ≥ 0. (48l)

Then, an inequality

(αu,αz,αγ ,ατ ) · (u,z,γ, τ ) ≥ β (49)

is valid for Pj(K) if it satisfies (47).
Thus, for a point (û, ẑ, γ̂, τ̂ ) /∈ Pj(K), we are interested in the following problem in the variables

(αu,αz,αγ ,ατ , β) ∈ C × R:

max β − (αu,αz,αγ ,ατ ) · (û, ẑ, γ̂, τ̂ )
s.t. (αu,αz,αγ ,ατ , β) ∈ P ∗

j (K),

}
(50)

because a feasible solution of Problem (50) defines a valid inequality (in the form of (49)) for Pj(K),
that is violated at (û, ẑ, γ̂, τ̂ ). However, some normalization constraints should be appended to
Problem (50), since Problem (50) itself is unbounded.

As a normalization scheme, we add the constraints restricting the magnitude of the vector
(αu,αz,αγ ,ατ ) [9]. Define the index sets I and I of a partition of {1, . . . , nd + nm + 2m} by

I =
{

i ∈ {1, . . . , nd + nm + 2m}
∣∣∣ (û, ẑ, γ̂, τ̂ )i = 0

}
,

I = {1, . . . , nd + nm + 2m} \ I.

We assume I �= ∅. Consider the following cut generation problem:

(CGLP)j : max β − (αu,αz,αγ ,ατ ) · (û, ẑ, γ̂, τ̂ )
s.t. (αu,αz,αγ ,ατ , β) ∈ P ∗

j (K),
‖(αu,αz,αγ ,ατ )I‖∞ ≤ 1,

⎫⎪⎬⎪⎭ (51)

where P ∗
j (K) has been defined in (48). Note that (51) is an LP problem. In Problem (51), we attempt

to find the deepest cut in the sense that a distance from (û, ẑ, γ̂, τ̂ ) to a separating hyperplane is
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maximized. The dual to Problem (51) is formulated as [9]

min ‖(u,z,γ, τ )− (û, ẑ, γ̂, τ̂ )‖1
s.t. (u,z,γ, τ ) ∈ Pj(K),

(u,z,γ, τ )I = (û, ẑ, γ̂, τ̂ )I ,

⎫⎪⎬⎪⎭ (52)

where Pj(K) has been defined in (46).
At the root node of the enumeration tree of Algorithm 4.2, we employ the following procedure

for generating some disjunctive cuts:

Algorithm 5.1 (Cut Generation for Problem (29)).

Step 0: Set C0 = R
nm × R

nd × R
m × R

m, J 0
res = {1, . . . ,m}, J = {1, . . . ,m}, and k = 1.

Let (u0,z0,γ0, τ 0) an optimal solution of LP(C0, ∅, ∅).

Step 1: Select j2 ∈ {1, . . . ,m} by

j2 = arg max
j∈J

{
τk−1
j (1− τk−1

j )
}

.

Step 2: Solve (CGLP)j2 , with the definition (48) of P ∗
j (K), at (û, ẑ, γ̂, τ̂ ) = (uk−1,zk−1,γk−1, τ k−1)

to find an optimal solution (αk
u,αk

z ,α
k
γ ,αk

τ , β
k).

Step 3: Letting

Ccur :=
{
(u,z,γ, τ ) ∈ Ck−1

∣∣∣ (αk
u,αk

z ,α
k
γ ,αk

τ ) · (u,z,γ, τ ) ≥ βk
}

,

solve LP(Ccur, ∅, ∅) to find an optimal solution (uk,zk,γk, τ k).

Step 4: Let

J k
res =

{
j ∈ {1, . . . ,m}

∣∣∣ τk
j (1− τk

j ) > ε
}

.

If |J k
res| ≤ |J k−1

res |, then let Ck := Ccur and J := {1, . . . ,m}; otherwise, Ck := Ck−1 and
J := {1, . . . ,m} \ j2.

Step 5: If the termination condition is satisfied, then stop; otherwise, update k ← k + 1,
and go to Step 1.

Remark 5.2. If J k
res = ∅ at Step 4, then stop, because the current solution (uk,zk,γk, τ k) is a

global optimal solution of the original problem (29). However, it often requires large computational
time to solve Problem(29) only by Algorithm 5.1. In practice, we restrict the maximum number of
iterations as k ≤ 1.8m and then employ Algorithm 4.2. The set of disjunctive cuts Ck generated by
Algorithm 5.1 plays a role to strengthen the LP relaxation problems solved in Algorithm 4.2.

Remark 5.3. At Step 1, as is done in Step 3 of Algorithm 4.2, we select the variable τj with the
largest residual of the complementarity condition (44). Then the variable τj2 is used at Step 2 to
define the disjunctive constraint.
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5.2 Simplification of cut generating LP

We further analyze the simplifications that take place for the cut generating LP problem (51).
This is motivated by the fact that, in the dual problem (52), we can eliminate some of variables
corresponding to the index set I. Recall that Pj(K) in the constraints of Problem (52) has been
defined in (46).

(a) For i such that ẑi = 0:
Observe that (αz)i does not contribute to the objective function of Problem (51). By replacing
the ith rows of (48b) and (48h) with

ξq+
i + ξq−

i = ηq+
i + ηq−

i , (53)

we can remove the variable (αz)i from (48) without changing the optimal solution. At an
optimal solution, we can complete (αz)i by letting

(αz)i := ξ
q+
i + ξ

q−
i . (54)

However, instead of (53), we append more restrictive constraints

ξq+
i = ηq−

i , ξq−
i = ηq+

i

to (48), which enables us to remove the variables ηq+
i and ηq−

i . Then an optimal solution of the
simplified problem can be completed to an optimal solution of Problem (51) by using (54).

(b) For i such that τ̂i = 0:
In the system of (46), observe that (46a), (46e), (46j), and τ̂i = 0 imply

wτ
i = yτ

i = 0 (55)

(b1) Assume that there exists an l ∈ {1, . . . ,m} such that τ̂l �= 0. Then, in the system (46),
(55) and the lth row of (46e) make the constraint

wτ
i ≤ w0 (56)

redundant. Similarly, it follows from the lth row of (46j) and (55) that the constraint

yτ
i ≤ y0 (57)

is redundant. Then, we see that eliminating (56) and (57) from (46) is equivalent to elimi-
nating the variables ξρ−

i and ηρ−
i from (48).

(b2) In (46), it follows from (55) that the jth rows of (46d) can be replaced with

t�i wu − wγ
i ≥ −Mw0, −t�i wu −wγ

i ≥ 0

without changing Pj(K). Then, in (48), the ith row of (48d) is replaced with

(ατ )i = ξρ+
i − ξ0e

j
i . (58)

19



(a)

(c)

(d)

(e) (f)

(b) x

y f
∼
D f

∼
D

fR

fR

W W W

H

H

H

Figure 1: 3× 3 plane grid truss.

Similarly, the ith row of (48j) is replaced with

(ατ )i = ηρ+
i + η0e

j
i . (59)

Note that, in Problem (51), the variables ξρ+
i and ηρ+

i appear only in the constraints (58)
and (59), respectively. Moreover, (ατ )i does not contribute to the objective function. Con-
sequently, from Problem (51), we can eliminate the variables (ατ )i, ξρ+

i , and ηρ+
i and the

constraints (58) and (59). From the nonnegativity of ξρ+
i and ηρ+

i it follows that an optimal
solution of the simplified problem can be completed to an optimal solution of Problem (51)
by defining the eliminated variables as

(ατ )i := max
{
−ξ0e

j
i , η0e

j
i

}
.

6 Numerical experiments

The worst-case limit load factors are computed for trusses by using Algorithm 4.2 and Algorithm 5.1.
Computation has been carried out on a Pentium M (1.5 GHz with 1 GB memory) with MATLAB
Ver. 6.5.1 [36]. The LP problems are solved by using the simplex method at Step 1 of Algo-
rithm 4.2 and at Steps 2 and 3 of Algorithm 5.1. As an implementation of the simplex method, we
use MATLAB built-in function linprog of Optimization Toolbox Ver. 2.1 [35], where the options
’LargeScale’ and ’Simplex’ are set to ’off’ and ’on’, respectively.

In the following examples, the yield stress is σy
i = 400 MPa and cross-sectional area is ai =

20.0 cm2 for each member. We set M = 5.0 in Algorithm 4.2 and Algorithm 5.1.

6.1 3× 3 truss

Consider a plane truss illustrated in Fig.1, where W = 70.0 cm, H = 50.0 cm, nd = 28, and nm = 42.
The nodes (a) and (b) are pin-supported.
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reference 
disturbance load

Figure 2: Collapse mode and the dead load of the 42-bar truss without the uncertainty in dead load
(λ∗(f̃D) = 48.3662).

reference 
disturbance load

Figure 3: Collapse mode and the critical dead load of the 42-bar truss in the worst case for α1 =
40.0 kN (λmin(α1) = 37.0120).

As the nominal dead load f̃D, we apply the external forces (0,−120.0) kN at the nodes (e) and
(f) as shown in Fig.1. The reference disturbance load fR is defined such that (40.0,0) kN and
(20.0,0) kN, respectively, are applied at the nodes (c) and (d). The limit load factor under the
nominal dead loads is computed as λ∗(f̃D) = 48.3662 by employing the usual limit analysis, i.e., by
solving the LP (5). The collapse mode corresponds to the sway-type with horizontal displacements
of the joints shown in Fig.2, where the vanishing members experience plastic deformations.

In accordance with Assumption 3.1, the uncertain load Tζ are assumed to exist possibly at all
free nodes except for the components that f̃D and fR are nonzero, i.e. m = 24. For α1 = 40.0 kN,
the worst-case limit load factor is computed as λmin(α1) = 37.0120 by using Algorithm 4.2 and
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Figure 4: Collapse mode and the critical dead load of the 42-bar truss in the worst case for α2 =
20.0 kN (λmin(α2) = 44.3662).
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Figure 5: Limit load factor of the 3×3 truss; λ∗(fD(βζ1)): solid line; λ∗(fD(2βζ2)): dashed line.

Algorithm 5.1. Let ζcr
1 denote the optimal solution of Problem (13). The corresponding critical

dead load f̃D + Tζcr
1 and collapse mode are shown in Fig.3.

It is observed from Fig.3 that the collapse mode in the worst case is different from the sway-type
mode observed in the nominal case of Fig.2. On the contrary, for α2 = 20.0 kN, the collapse mode
in the worst case coincides with the sway-type as illustrated in Fig.4. The corresponding worst-case
limit load factor is λmin(α2) = 44.3662. The distribution of critical dead load f̃D + Tζcr

2 is shown
in Fig.4, which is different from the critical dead load in the case of Fig.3.

We next investigate the variation of the limit load factor by proportionally increasing the uncer-
tain dead load, i.e., we employ the usual limit analyses repeatedly by putting ζ = βζcr

1 with increas-
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Figure 6: 4× 4 plane truss.

ing β gradually. In Fig.5, the solid curve (A)→(B)→(C) depicts the the variations of λ∗(fD(βζ1))
with respect to β. The collapse mode coincides with the sway-type shown in Fig.2 between the
points (A) and (B), while the mode of Fig.3 is observed between (B) and (C). The variation of
λ∗(fD(2βζcr

2 )) (note that α1 = 2α2 implies ‖ζcr
1 ‖ = 2‖ζcr

2 ‖) with respect to β is indicated by the
dashed line (A)→(D) in Fig.5. The collapse mode coincides with the sway-type shown in Fig.4
between (A) and (D). The curve (A)→(E)→(C) corresponds to the variation of the worst-case limit
load factor λmin(βα1) with respect to β. This illustrates that the critical dead loads as well as the
corresponding collapse modes depend on the level of uncertainty α.

6.2 4×4 truss

Consider a 68-bar plane truss illustrated in Fig.6, where nm = 68, nd = 40, W = 35.0 cm, and
H = 50.0 cm. The nodes (a)–(e) are pin-supported. As the nominal dead load f̃D, we apply
the external forces (0,−800.0) kN at the nodes (i)–(k). The reference disturbance load fR are
defined such that (52.0,0) kN, (40.0,0) kN, and (28.0,0) kN are applied at the nodes (f), (g), and
(h), respectively. The nominal limit load factor is computed as λ∗(f̃D) = 14.2650 by employing
the usual limit analysis. The corresponding collapse mode is shown in Fig.7, where the vanishing
members experience plastic deformations.

The uncertain dead load Tζ are supposed to possibly exist at all free nodes except for the
components that f̃D and fR are nonzero, i.e. m = 34. We set α = 40.0 kN. By using Algorithm 4.2
and Algorithm 5.1, the worst-case limit load factor is computed as λmin(α) = 7.7296. The CPU
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Figure 7: Collapse mode and the dead load of the 4× 4 truss without the uncertainty in dead load
(λ∗(f̃D) = 14.2650).

time required by Algorithm 5.1 is 229.5 sec, and the 34 cutting planes are generated within 61
iterations. Afterward, Algorithm 4.2 terminates by solving only 9 LP problems, where the CPU
time required is 28.5 sec. This result demonstrates that the generated cutting planes at the root
node of the branch-and-bound tree can reduce drastically the number of nodes that have to be
visited in Algorithm 4.2.

Note that the worst-case limit load factor is almost half of the nominal one, in spite of the fact
that the level of uncertainty α is relatively small compared with the norm of the nominal dead loads
vector f̃D. The critical dead load fD(ζcr) and the corresponding collapse mode are shown in Fig.8.
It is observed from Fig.8 that the collapse mode in the worst case is the same as that in the nominal
case illustrated in Fig.7.

For comparison, we select a sample of uncertain parameters vector ζ ′ satisfying ‖ζ ′‖∞ = α as
the nodal forces shown in Fig.9. The corresponding limit load factor is λ∗(fD(ζ′)) = 8.4268, which
is larger than the worst case. The corresponding collapse mode is shown in Fig.9, which is different
from the mode shown in Fig.8. Thus, it is not easy to find the critical dead loads vector in a heuristic
way.
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Figure 8: Collapse mode and the critical dead
load of the 4× 4 truss in the worst case for α =
40.0 kN (λmin(α) = 7.7296).

Figure 9: Definition of the dead load with ζ ′

and the corresponding collapse mode of the 4×4
truss (λ∗(fD(ζ′)) = 8.4268).

We randomly generate a number of ζ satisfying ‖ζ‖∞ = α, and perform the (conventional) limit
analyses. The limit load factors λ∗(fD(ζ)) obtained are shown in Fig.10 as number of points.

It is observed from Fig.10 that all generated λ∗(ζ) are larger than the worst-case limit load factor
λ∗(ζcr) = λmin(α), which supports that the obtained solution by using the proposed algorithms is a
global optimal solution of the nonconvex problem (13).

7 Conclusions

In this paper, we have investigated the worst-case detection in the plastic limit analysis of trusses
affected by unknown-but-bounded dead and live loads. While the imprecisely-known dead and live
loads are constrained into a bounded set, the live or disturbance load are amplified with the load
factor. A global optimization technique has been presented to compute the worst-case limit load
factor as well as the critical dead load.

We suppose that the dead and live loads applied to a truss has the unknown-but-bounded
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Figure 10: Limit load factor for randomly generated ζ; solid line: λ∗(f̃D); dashed line: λmin(α).

uncertainty. The worst-case limit load factor has been defined as the minimum value among limit
load factors attained with some loading patterns belonging to a given closed set. Then the worst-
case detection problem has been formulated as a mixed 0-1 programming problem. To obtain a
global optimal solution of the present problem, we have proposed a cut-and-branch method based
on the LP relaxation and the disjunctive cut, where a cutting plane is generated by solving another
LP problem. Since the proposed method converges to a global optimal solution, it is theoretically
guaranteed that there exits no uncertain parameter with which the limit load factor becomes smaller
than the obtained optimal value.

It has been shown in the numerical examples that the proposed cut-and-branch method can find
the worst-case limit load factors. The comparison with the limit load factors for randomly generated
dead and live loads demonstrates that the obtained limit load factors correspond to the global
optimal solutions of the mixed 0-1 programming problem presented. We have also illustrated through
numerical examples that the process of cutting plane generation at the root node of the enumeration
tree can reduce the number of LP relaxation problems that should be solved in the successive
branch-and-bound procedure, though no theoretical result is to date available that suggests how
many cutting planes should be generated.
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