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Abstract

We characterize clique trees of a chordal graph in their relation to simplicial vertices
and perfect sequences of maximal cliques. We investigate boundary cliques defined by
Shibata[23] and clarify their relation to endpoints of clique trees. Next we define a sym-
metric binary relation between the set of clique trees and the set of perfect sequences
of maximal cliques. We describe the relation as a bipartite graph and prove that the
bipartite graph is always connected. Lastly we consider to characterize chordal graphs
from the aspect of non-uniqueness of clique trees.

Keywords and phrases : boundary clique, chordal graph, clique tree, maximal clique, mini-
mal vertex separator, perfect sequence, simplicial vertex.

1 Introduction

Chordal graphs are useful for many practical problems. For example they arise in the context
of sparse linear systems (Rose[22]), relational data bases (Bernstein and Goodman[2]), positive
definite completions (e.g. Grone et al.[13], Fukuda et al.[8], Waki et al.[25]). In statistics,
graphical models have received increasing attention (e.g. Whittaker[26], Lauritzen[20]). The
decomposable graphical models determined by chordal graphs are particularly convenient and
have been extensively studied by many authors (e.g. Dobra[7], Geiger, Meek and Sturmfels[11],
Hara and Takemura[14], [15]). In view of these applications it is important to study properties
of chordal graphs.

In this article we focus on characterizations of clique trees for a chordal graph. A clique tree
is an intersection graph representation of a chordal graph and in general there are many clique
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trees for a chordal graph. Clique trees are very important from the algorithmic point of view for
many techniques based on chordal graphs. They have been used to solve domination problems
on directed path graphs (Booth and Johnson[3]). They also provide efficient algorithms for
probability propagation in graphical models (e.g. Jensen[17]).

The purpose of this article is to characterize the set of clique trees in three ways. We first
address properties of boundary cliques defined by Shibata[23] which form an important subclass
of simplicial cliques. Shibata[23] showed that if a maximal clique C is an endpoint of some
clique tree, then C is a boundary clique. We show that the converse of this fact holds and give
some characterizations of endpoints of clique trees by using the notion of boundary cliques. In
this paper we also use an alternative terminology and call a boundary clique simply separated,
because a boundary clique meets a single minimal vertex separator. The characterization of
endpoints of clique trees is essential for proving theoretical facts on chordal graphs by induction
on the number of maximal cliques.

Secondly we consider the relation between the set of clique trees and the set of perfect
sequences of maximal cliques. Lauritzen[20] presents two (randomized) algorithms, one of
which generates a clique tree from a perfect sequence given as an input and the other generates
a perfect sequence of maximal cliques from a clique tree given as an input. Based on these
algorithms, we can define a symmetric binary relation between the set of clique trees and the
set of perfect sequences of maximal cliques. In this article we consider to describe this relation
using a bipartite graph. We prove that the bipartite graph is connected for every chordal graph.
This result allows us to construct a connected Markov chain over the set of clique trees and
the set of perfect sequences of maximal cliques of a given chordal graph. The Markov chain is
potentially useful for optimizing over the set of clique trees or over the set of perfect sequences of
maximal cliques. In the proof of the connectedness of the bipartite graph we use the induction
on the number of maximal cliques and we can confirm the usefulness of our characterization of
endpoints of clique tree by using the notion of boundary cliques.

Finally we consider the question of uniqueness of clique trees. As mentioned above a chordal
graph may have many clique trees. As two extremes, there exists a chordal graph such that
an arbitrary tree is a clique tree for it and there also exists a chordal graph such that the
clique tree is unique. We derive a necessary and sufficient condition on chordal graphs for the
arbitrariness and for the uniqueness of their clique trees.

The organization of this paper is as follows. In Section 2 we prepare notations and present
some preliminary facts on the simplicial vertices, the clique trees and the perfect sequences
of maximal cliques of a chordal graph. In Section 3 we consider boundary cliques and give
some characterization of endpoints of clique trees in relation to boundary cliques. We also
characterize a final maximal clique in a perfect sequence by using the notion of boundary
cliques. In Section 4 we define a symmetric binary relation between the set of clique trees
and the set of perfect sequences of maximal cliques and consider to describe the relation by a
bipartite graph. In particular we prove that the bipartite graph is connected. In Section 5 we
derive the necessary and sufficient condition for the arbitrariness and the uniqueness of clique
trees. We end the paper with some concluding remarks in Section 6.
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2 Preliminaries

In this section we prepare notations, definitions and some basic results on chordal graphs
required in the subsequent sections. Throughout this paper we assume that the undirected
graph G is a connected chordal graph, because for a general chordal G it suffices to consider
clique trees separately for each connected component.

2.1 Notations and definitions

Let V be the set of vertices in G. Denote by C and S the set of maximal cliques and the set of
minimal vertex separators in G, respectively. It is well known that G is chordal if and only if
every minimal vertex separator is a clique (Dirac[6]). Define n = |V | and K = |C|. For a subset
of vertices V ′ ⊂ V , the subgraph induced by V ′ is denoted by G(V ′). Let C(V ′) = C(G(V ′))
and S(V ′) = S(G(V ′)) denote the set of the maximal cliques and the set of minimal vertex
separators of G(V ′). For a subset of maximal cliques C ′ ⊂ C, denote V (C ′) =

⋃
C∈C′ C ⊆ V .

Here a maximal clique C is considered to be a subset of V . In this article we use ⊂ for a proper
containment and ⊆ for a containment with equality allowed.

For a vertex v ∈ V , we denote by NG(v) the open adjacency set of v in G, i.e. the set of all
neighbors of v in G, and by NG[v] the closed adjacency set of v in G, i.e. NG[v] = NG(v)∪{v}.
For a subset of vertices V ′ ⊂ V , define NG(V ′) and NG[V ′] as follows,

NG(V ′) =
⋃

v∈V ′

NG(v) \ V ′, NG[V ′] =
⋃

v∈V ′

NG[v].

A tree T = (C, E) is called a clique tree for G if for any two maximal cliques C1 ∈ C and
C2 ∈ C and any C3 ∈ C on the unique path in T between C1 and C2 it holds that

C1 ∩ C2 ⊆ C3.

This is known as the junction property of T . It is well known that a clique tree exists if and
only if G is chordal (e.g. Buneman[4] and Gavril[10]). For two maximal cliques C1 and C2 such
that (C1, C2) ∈ E , there exists a minimal vertex separator S ∈ S such that C1 ∩C2 = S. Hence
each edge of T corresponds to a minimal vertex separator(e.g. Ho and Lee[16]). For a subset
C ′ ⊂ C, denote the subtree of T induced by C ′ by T (C ′). If T (C ′) is connected, then T (C ′) also
satisfies the junction property. In this case the induced subgraph G(V (C ′)) is also chordal with
C(V (C ′)) = C ′.

For a (not necessarily maximal) clique D let

C↑D = {C ∈ C | D ⊆ C}

denote the set of maximal cliques containing D. Then the junction property can be alternatively
expressed that C↑D induces a connected subtree of T for every clique D. Let C̃ denote the set
of all cliques of G. Kumar and Madhavan[18] showed that it is sufficient to consider C↑S for
each minimal vertex separator S ∈ S, i.e.,

{C↑S | S ∈ S} and {C↑D | D ∈ C̃}

induce the same set of connected subtrees of a clique tree.
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As already mentioned, there may be many clique trees for G. Ho and Lee[16] and Kumar
and Madhavan[18] provided efficient algorithms to enumerate all clique trees. Ho and Lee[16]
gave the number of the clique trees of chordal graphs explicitly. For S ∈ S, let Γ1, . . . , ΓM be
the connected components of G(V \ S). Define MS and C↑S(Γm ∪ S), m = 1, . . . , M , by

MS = {m | NG(Γm) = S}, C↑S(Γm ∪ S) = {C ∈ C | C ⊆ Γm ∪ S, C ⊃ S}. (1)

Let T be the set of all clique trees for G. Ho and Lee[16] showed that the number of the clique
trees for G is expressed by

|T | =
∏

S∈S




( ∑

m∈MS

|C↑S(Γm ∪ S)|

)|MS |−2

·
∏

m∈MS

|C↑S(Γm ∪ S)|


 . (2)

We consider to characterize the chordal graphs from the aspect of the arbitrariness and the
uniqueness of clique trees in Section 5.

Other important characterizations of the clique trees are addressed in Bernstein and Goodman[2]
and Shibata[23] etc.

A vertex v ∈ V is called simplicial if NG(v) is a clique. Dirac[6] showed that any chordal
graph with at least two vertices has at least two simplicial vertices and that if the graph is not
complete, these can be chosen to be non-adjacent. A bijection σ : {1, . . . , n} → V is called a
perfect elimination scheme of vertices of G if σ(i) is a simplicial vertex in G(

⋃n
j=i{σ(j)}). It

is well known that G is chordal if and only if G contains a perfect elimination scheme. The
perfect elimination scheme is used to determine whether a given graph is chordal. Linear time
algorithms to generate a perfect elimination scheme are proposed in Tarjan and Yannakakis[24]
and Golumbic[12] etc.

For a maximal clique C, let Simp(C) denote the set of simplicial vertices in C and let Sep(C)
denote the set of non-simplicial vertices in C. Then C = Simp(C) ∪ Sep(C) is a partition
(disjoint union) of C. As shown below in Lemma 2.1,

Sep(C) = C ∩ V (C \ {C}) = C ∩
⋃

S∈S

S.

We call Simp(C) the simplicial component of C and Sep(C) the non-simplicial component of
C, respectively. We call a maximal clique C simplicial if Simp(C) 6= ∅. Note that for brevity
of terminology in this paper we simply say “simplicial clique” instead of “simplicial maximal
clique”.

Denote the maximal cliques in G by Ck, k = 1, . . . , K. Define I = {1, . . . , K}. For the
permutation π : I → I, define Hπ(k), k = 1, . . . , K, and Sπ(k), k = 2, . . . , K, by

Hπ(k) = Cπ(1) ∪ · · · ∪ Cπ(k), Sπ(k) = Hπ(k−1) ∩ Cπ(k), (3)

respectively. The sequence of the maximal cliques Cπ(1), Cπ(2), . . . , Cπ(K) is a perfect sequence
of the maximal cliques if every Sπ(k) is a clique and there exists k′ < k such that Sπ(k) ⊂ Cπ(k′)

for all k ≥ 2. This is known as the running intersection property of the sequence. There exists
a perfect sequence of maximal cliques if and only if G is chordal and then Sπ(k) ∈ S for all k
and

{Sπ(2), . . . , Sπ(K)} = S, (4)
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where the same minimal vertex separator S may be repeated several times on the left-hand
side (e.g. Lauritzen[20]). Define the multiplicity ν(S) of S ∈ S by

ν(S) = #{k | Sπ(k) = S, k = 2, . . . , K}.

It is known that ν(S) does not depend on π. It is also known that there exists a perfect sequence
such that Cπ(1) = Ck for all k = 1, . . . , K. We identify the sequence Cπ(1), Cπ(2), . . . , Cπ(K) with
the permutation π for simplicity for the rest of the paper. Denote the set of perfect sequences
of G by Π.

2.2 Some basic facts on chordal graphs

In this subsection we present some basic facts on chordal graphs required in the following
sections in the form of series of lemmas. Many results of this section are not readily available in
the existing literature. However they are of preliminary nature and we do not intend to claim
originality of the results of this subsection. The readers may skip the proofs of the lemmas and
refer to the lemmas when needed in checking proofs of our main results in the later sections.

We first state the following fundamental property of the simplicial vertices.

Lemma 2.1 (Hara and Takemura[14]). The following three conditions are equivalent,

(i) v ∈ V is simplicial ;

(ii) there is only one maximal clique C which includes v ;

(iii) v /∈ S for all S ∈ S.

Note that from this lemma it follows that

V (C \ {C}) = V \ Simp(C), ∀C ∈ C.

Next we consider a relation between a beginning part of a perfect sequence of maximal cliques
and a connected induced subtree of a clique tree. Let Cπ(1), . . . , Cπ(K) be a perfect sequence
of the maximal cliques. For k < K, the subsequence Cπ(1), . . . , Cπ(k) also satisfies the running

intersection property. Denote Cπ(k) =
⋃k

i=1{Cπ(i)}. Then the induced subgraph G(V (Cπ(k))) is
a chordal graph with C(V (Cπ(k))) = Cπ(k). Therefore we have the following lemma.

Lemma 2.2. Suppose that C ′ ⊂ C and |C′| = k. There exists a clique tree such that the induced
subtree T (C ′) is connected if and only if there exists a perfect sequence π such that C ′ = Cπ(k).

We consider this relation once again in Section 4.

Lemma 2.3. If G is not complete, then G(V (C \ {C})) is connected.

Proof. Since G is connected Sep(C) 6= ∅. Let v ∈ Sep(C). From (ii) in Lemma 2.1, v is
contained in at least two maximal cliques. Then v ∈ V (C\{C}). Since the simplicial component
is not a separator of G from (iii) in Lemma 2.1, G(V (C \ {C})) is connected.

For our proofs it is important to consider “small” minimal vertex separators. In particular we
consider a minimal vertex separator S ∈ S which is minimal in S with respect to the inclusion
relation. The following lemma concerns minimal vertex separators which are minimal in S with
respect to the inclusion relation. Denote the connected components of G(V \S) by Γ1, . . . , ΓM .
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Lemma 2.4. Let S ∈ S be minimal in S with respect to the inclusion relation. Then

(i) C =
⋃M

m=1 C(Γm ∪ S) is a disjoint union ;

(ii) if G(Γm ∪ S) is not complete, then S(Γm ∪ S) ⊂ S ;

(iii) there exists a perfect sequence π such that the set of the first |C(Γm ∪S)| maximal cliques
is C(Γm ∪ S) for every m = 1, . . . , M . Hence there exists a clique tree such that the
subgraph of it induced by C(Γm ∪ S) is connected.

The proof of this lemma is presented in the Appendix. With respect to (i) in this lemma,
we note that if S is not minimal in S with respect to the inclusion relation, then in general we
only have C ⊆

⋃M
m=1 C(Γm ∪ S).

In the remaining two lemmas of this subsection we consider properties of the set of maximal
cliques C↑S = {C ∈ C | C ⊃ S} ⊆ C containing a minimal vertex separator S.

Lemma 2.5. Let S1, S2 ∈ S be minimal vertex separators. If S1 6= S2, then C↑S1 6= C↑S2.

Proof. Suppose that C↑S1 = C↑S2 . Then we have
⋂

C∈C↑S1

C =
⋂

C∈C↑S2

C ⊇ S1 ∪ S2.

Since S1 6= S2, we can assume S2 \ S1 6= ∅ without loss of generality. Then we have
⋂

C∈C↑S1

C \ S1 =
⋂

C∈C↑S2

C \ S1 ⊇ S2 \ S1 6= ∅.

Hence there exists v ∈ V (C↑S1) such that v ∈ C \S1 for all C ∈ C↑S1 . This implies that G(V \S1)
is connected. This contradicts that S1 is a minimal vertex separator of G.

Define KS by KS = |C↑S|. Then we obtain the following lemma.

Lemma 2.6.

(i) S(V (C↑S)) ⊆ S for every S ∈ S.

(ii) If |S(V (C↑S))| = 1, then ν(S) = KS − 1.

(iii) If |S(V (C↑S))| ≥ 2, then S ⊂ S ′ for all S ′ 6= S, S ′ ∈ S(V (C↑S)).

Proof. (i) C↑S induces a connected subtree in any clique tree for G. Thus there exists a
perfect sequence π of C such that {Cπ(1), . . . , Cπ(KS)} = C↑S from Lemma 2.2. Then

S(V (C↑S)) =

KS⋃

k=2

{Sπ(k)} ⊆ S.

(ii) Since {Cπ(KS+1), . . . , Cπ(K)} = C\C↑S, Sπ(k) 6= S for k > KS from the running intersection
property. Hence if |S(V (C↑S))| = 1, then ν(S) = KS − 1.

(iii) Let C↑(S∪S′) be the set of maximal cliques in C↑S which include S ′. Then
⋂

C∈C↑(S∪S′)

C ⊇ S ∪ S ′.

Hence if S \ S ′ 6= ∅, G(V (C↑(S∪S′)) \ S ′) is connected, which implies that G(V (C↑S) \ S ′) is also
connected. This contradicts that S ′ ∈ S(V (C↑S)).
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3 Boundary cliques and endpoints in clique trees

In this Section we first define boundary cliques according to Shibata[23]. We also introduce an
alternative terminology of simply separated cliques and simply separated vertices, which seem to
be more descriptive. Next we characterize endpoints of clique trees in their relation to boundary
cliques.

3.1 Boundary cliques and their properties

Definition 3.1. A simplicial clique C is a boundary clique if there exists a maximal clique C ′

such that
Sep(C) = C ∩ C ′. (5)

Then C ′ is called a dominant clique. We also call C a simply separated clique, Simp(C) a
simply separated component and the vertices in Simp(C) simply separated vertices.

Remark 3.1. If C is not simplicial, then C = Sep(C) is a maximal clique and hence there
does not exist a dominant clique for C. Therefore if (5) holds, Simp(C) has to be non-empty.
It follows that the condition (5) alone guarantees that C is simplicial and that C is a boundary
clique. Because of this fact we simply say “boundary clique”, “simply separated clique” or
“simply separated vertex” instead of “simplicial boundary clique”, “simply separated simplicial
clique” or “simply separated simplicial vertex”.

We now give two characterizations of boundary cliques.

Proposition 3.1. If G is not complete, the following three conditions are equivalent,

(i) C is a boundary clique ;

(ii) there exists S ∈ S satisfying
Sep(C) = S; (6)

(iii) G(V (C \ {C})) is a chordal graph with C(V (C \ {C})) = C \ {C}.

Proof. (i) ⇒ (ii) Suppose that (5) holds. Since C is the only maximal clique which includes
Simp(C), Sep(C) separates Simp(C) and C ′ \ Sep(C). On the other hand, for D ⊂ Sep(C),
G((C ∪ C ′) \ D) is connected. This implies that Simp(C) and C ′ \ Sep(C) are connected in
G(V \ D). Hence Sep(C) ∈ S.

(i) ⇐ (ii) Suppose that (6) holds. Then there exist v ∈ Simp(C) and v′ ∈ NG(S) \ C such
that S is a minimal v − v′ separator in G. Since S ∪ {v′} is a clique, there exists a maximal
clique C ′ ∈ C satisfying C ′ ⊇ S ∪ {v′}. Then C ∩ C ′ = S.

(i) ⇒ (iii) Assume that C satisfies (5). Since C ′′ ⊆ V (C \ {C}) for all C ′′ ∈ C \ {C},
we have C \ {C} ⊆ C(V (C \ {C})). Suppose that C \ {C} ⊂ C(V (C \ {C})). Then there
exists C ′′ ∈ C(V (C \ {C})) such that C ′′ /∈ C \ {C}. If C ′′ * C, C ′′ /∈ C is also maximal
in G. This contradicts that C is the set of all maximal cliques in G. Hence C ′′ ⊂ C. Then
C ′′ satisfies C ′′ = Sep(C). Then from the maximality of C ′′ in C \ {C}, there does not exist
C ′ ∈ C \ {C} such that C ′ ⊇ Sep(C). This contradicts the assumption that C satisfies (5).
Therefore C(V (C \ {C})) = C \ {C}.
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(i) ⇐ (iii) Suppose that G(V (C \ {C})) is a chordal graph with C(V (C \ {C})) = C \ {C}.
G(V (C \ {C})) is connected from Lemma 2.3 and C ∩ V (C \ {C}) is a clique. However for all
C ′ ∈ C\{C}, C ′ * C from the maximality of C ′. Thus C∩V (C\{C}) is not a maximal clique of
G(V (C\{C})). Hence there exists a maximal clique C ′ ∈ C\{C} such that C ′ ⊃ C∩V (C\{C})
and then C ∩ V (C \ {C}) = C ∩ C ′.

As mentioned in the previous section, any chordal graph which is not complete has at least
two non-adjacent simplicial components (Dirac[6]). Shibata[23] showed the stronger result
that any chordal graph which is not complete has at least two non-adjacent boundary cliques.
Strengthening this fact, we present the following proposition. Note that if G is not complete,
then G contains at least one minimal vertex separator S which is minimal in S with respect to
the inclusion relation.

Proposition 3.2. Suppose that S is a minimal vertex separator which is minimal in S with
respect to the inclusion relation. Let Γ1, . . . , ΓM be the connected components of G(V \S). Then
each Γm, m = 1, . . . , M , contains at least one simply separated component in G.

Proof. It suffices to show that Γ1 contains a simply separated component. G1 = G(Γ1 ∪S)
is also chordal. If G1 is complete, NG(Γ1) = S ∈ S. Hence Γ1 = Simp(Γ1 ∪ S) is simply
separated also in G.

When G1 is not complete, there exist two non-adjacent simply separated cliques in G1. Since
S is a clique, at least one of them does not include S. Suppose that C ∈ C1 = C(Γ1 ∪ S) is
simply separated in G1 satisfying that the simplicial component of C in G1 does not include S.
Then there exists C ′ ∈ C1 such that

C ∩ V (C1 \ {C}) = C ∩ C ′.

From (i) in Lemma 2.4, C1 ⊂ C. For all Cm ∈ C \ C1, C and C ′ satisfies

C ∩ Cm ⊂ C ∩ C ′.

Hence we have
C ∩ C ′ = C ∩ V (C \ {C}).

Thus C is simply separated also in G.

Figure 1 presents two graphs with four and three maximal cliques. The set of the simplicial
vertices in the graph in Figure 1-(i) and (ii) are {1, 4, 5, 7} and {1, 4, 5}, respectively. Among
the simplicial vertices, the vertex 4 is not simply separated in both 1-(i) and 1-(ii). All other
vertices are simply separated. As we will mention in Section 5, the clique trees for both of the
graphs are uniquely defined as in Figure 2. Let Cv denote the unique maximal clique containing
v. In the graphs every clique contains a simplicial vertex. However C4 is not an endpoint in
both graphs.

In the literature other classifications of simplicial vertices have been discussed. The class
of strongly simplicial vertices are an important subclass of the simplicial vertices. Following
the definition of Agnarsson and Halldórsson[1], we define a strongly simplicial component as
follows.
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Figure 1: Chordal graphs with four and three maximal cliques

C1

C4

C5 C7

C1

C4

C5

(i) (ii)

Figure 2: The clique trees of the graphs in Figure 1

Definition 3.2 (Strongly simplicial cliques (Agnarsson and Halldórsson[1])). A sim-
plicial clique C is strongly simplicial if

{NG[v] | v ∈ NG[Simp(C)]}

is a linearly ordered set with respect to the inclusion relation. In this case Simp(C) is called a
strongly simplicial component and the vertices v ∈ Simp(C) are said to be strongly simplicial.

If G contains a perfect elimination scheme σ such that σ(i) is a strongly simplicial vertex
in G(

⋃n
j=i{σ(i)}), G is called strongly chordal. The strongly chordal graphs are an important

subclass of the chordal graphs because they yield polynomial time solvability of the domatic
set and the domatic partition problems. Since Farber[9] first defined strongly chordal graphs,
they have been studied by many authors (e.g. Chang and Peng[5], Kumar and Prasad[19]).

We now show that a strongly simplicial clique is simply separated.

Proposition 3.3. If C is a strongly simplicial clique, then it is simply separated.

Proof. Suppose that

NG(Simp(C)) = {v1, v2, . . . , vm}, NG[v1] ⊆ NG[v2] ⊆ · · · ⊆ NG[vm].

Then
NG[v1] ∩ NG[v2] ∩ · · · ∩ NG[vm] = NG[v1]. (7)
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Since v1 belongs to at least two maximal cliques from (ii) in Lemma 2.1, we have NG[v1]\C 6= ∅.
Suppose that v′ ∈ NG[v1] \ C. From (7) and the fact that Simp(C) is simplicial, we have
NG(Simp(C)) ∩ NG(v′) = {v1, . . . , vm} = NG(Simp(C)). Since any vertices in Simp(C) and v′

are not adjacent to each other, {v1, . . . , vm} is a minimal v − v′ separator for v ∈ Simp(C).

The converse of this proposition does not hold from Figure 1. Table 1 presents strongly,
simply separated and not simply separated simplicial vertices for the graphs in Figure 1. We
see the difference between each class.

Table 1: Simplicial vertices for the graph in Figure 1
(i) (ii)

Strongly simplicial ∅ 1, 5
Simply separated but not strongly simplicial 1, 5, 7 ∅
Not simply separated 4 4

3.2 Relation between the simplicial components and the endpoints
of clique trees

In this section we consider the characterization of endpoints of clique trees by using the notion
of simply separated cliques. Shibata[23] showed that if a maximal clique C is an endpoint of
some clique tree, then it is simply separated. The following characterization of endpoints of
cliques tree includes the converse of this fact.

Theorem 3.1. If C is simply separated, then there exists a clique tree T such that C is its
endpoint. Furthermore if C and C ′ are two simply separated cliques in two different connected
components of G(V \ S), where S is any minimal vertex separator which is minimal in S with
respect to the inclusion relation, then there exists a clique tree T such that C and C ′ are its
endpoints.

Proof. When K ≤ 2, there is nothing to prove. Then we assume that K ≥ 3.
From Lemma 2.3 and (iii) in Proposition 3.1 G(V (C \ {C})) is a connected chordal graph

with C(V (C \{C})) = C \{C}. Let T ′ = (C \{C}, E ′) be a clique tree of G(V (C \{C})). Denote
the dominant clique for C by Cd. Consider the tree T = (C, E), where E = E ′ ∪ (C,Cd). Then
C is an endpoint of T . For C1 ∈ C \ {C}, let C2 be any maximal clique on the unique path
between C and C1. From the junction property of T ′, we have

C2 ⊃ (C1 ∩ Cd) ⊃ C ∩ (C1 ∩ Cd) = (C ∩ C1) ∩ (C ∩ Cd) = C ∩ Cd.

Hence T also satisfies the junction property.
We move on to prove the second statement. Let S a minimal vertex separator which is

minimal in S with respect to the inclusion relation and let Γ1, . . . , ΓM be the connected com-
ponents of G(V \ S). Let Γm ⊇ C and Γm′ ⊇ C ′. Denote Sm = Simp(C) and Sm′ = Simp(C ′),
respectively. Denote the dominant cliques for C and C ′ by Cm and Cm′ , respectively. From (ii)
in Proposition 3.1, we have

C ∩ Cm = Sm, C ′ ∩ Cm′ = Sm′ (8)
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Since C and C ′ belong to different connected components, C ∩ C ′ ⊆ S.
We first consider the case where C ∩C ′ ⊂ S. Then C ∩C ′ is not a minimal vertex separator

of G from the minimality of S in S with respect to the inclusion relation. If Cm = C ′ then
C ′ ∩ C = Cm ∩ C = Sm ∈ S, which is a contradiction. Hence Cm 6= C ′. Similarly C ′ 6= C.
Therefore

Cm ∈ C \ {C, C ′}, Cm′ ∈ C \ {C,C ′}. (9)

From (iii) in Proposition 3.1, G(V (C \ {C})) is a chordal graph with C(V (C \ {C})) = C \ {C}.
Hence

C ′ ∩ V (C \ {C,C ′}) = C ′ ∩ V (C \ {C ′}) = C ′ ∩ Cm′ .

Thus C ′ is simply separated also in G(V (C \ {C})). Denote

V ′ = V (C \ {C, C ′}).

Then G(V ′) is a chordal graph with C(V ′) = C \ {C, C ′} from (iii) in Proposition 3.1. Hence
there exist clique trees for G(V ′). Let T ′ = (C(V ′), E ′) be any clique tree for G(V ′). Consider
the tree T such that

T = (C, E), E = E ′ ∪ {(C,Cm), (C ′, Cm′)}. (10)

Then both C and C ′ are endpoints of T and T can be shown to have the junction property by
using the same argument as in the proof of the first statement of Theorem 3.1.

Next we consider the case where C ∩ C ′ = S. Then from the minimality of S in S with
respect to the inclusion relation, we have Sm ⊇ S and Sm′ ⊇ S. We show the proposition
according to the following three disjoint cases.

(a) Sm ⊃ S and Sm′ ⊃ S. In this case Cm and Cm′ in (8) satisfy (9). Hence there exists a
clique tree T ′ for G(V ′) and T in (10) satisfies the condition of the proposition.

(b) Sm ⊃ S and Sm′ = S. In this case Cm in (8) satisfies Cm ⊃ S, which implies C ′∩Cm = S.
Hence we can take Cm′ in (8) as Cm′ = Cm. Cm′ 6= C also in this case. Thus there exists a
clique tree T ′ for G(V ′) in the same way as the above argument. Then T in (10) satisfies the
condition of the theorem also in this case.

(c) Sm = Sm′ = S. In this case C and C ′ satisfies

C ∩ V (C \ {C}) = S, C ′ ∩ V (C \ {C ′}) = S,

which implies C = Γm ∩ S and C ′ = Γm′ ∩ S. From the assumption that |C| ≥ 3, there exists
another connected component Γm′′ and there exists a maximal clique C ′′ ∈ C(Γm′′ ∪ S) such
that

C ∩ C ′′ = S, C ′ ∩ C ′′ = S.

Take Cm and Cm′ in (8) as Cm = Cm′ = C ′′. Then Cm′ 6= C. Hence there exists a clique tree
T ′ for G(V ′) and T in (10) satisfies the condition of the theorem also in this case.

Combining the results in Shibata[23] and the first statement of Theorem 3.1 we can obtain a
necessary and sufficient condition for a maximal clique to be an endpoint of some clique tree.

Theorem 3.2. There exists a clique tree such that C ∈ C is an endpoint of it if and only if C
is simply separated.
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Remark 3.2. In view of Propositions 3.2 and Theorem 3.1 one might ask the following ques-
tion. Choose simply separated cliques from each connected component: Cm ∈ C(Γm ∪ S),
m = 1, . . . ,M . Does there exist a clique tree T such that all Cm’s are endpoints of T? The
answer is negative as easily seen from the case |S| = 1, since a tree has to contain at least one
internal node.

We present an additional result required in the following section. This again concerns minimal
vertex separators which are minimal in S with respect to the inclusion relation.

Proposition 3.4. Assume that G is not complete. Suppose that S is a minimal vertex separator
which is minimal in S with respect to the inclusion relation. Let Γ1, . . . , ΓM be the connected
components of G(V \ S). Denote the set of the endpoints in the clique tree T by L(T ). Then
for any T ∈ T , there exist at least two m and m′ satisfying

L(T ) ∩ C(Γm ∪ S) 6= ∅, L(T ) ∩ C(Γm′ ∪ S) 6= ∅.

Proof. If |C(Γm ∪ S)| = 1 for all m, then theorem is obvious. Assume that there exists m
such that |C(Γm ∪ S)| ≥ 2.

Suppose that there exist a clique tree T ∈ T and m satisfying L(T ) ⊆ C(Γm ∪ S). Then
there exist C1 ∈ L(T ) and C2 ∈ L(T ) such that the path between C1 and C2 contains C3 ∈ C
satisfying C3 ∈ C(Γm′ ∪ S), m′ 6= m. This implies that the subtree induced by C(Γm ∪ S) of T
is disconnected, which contradicts (iii) in Lemma 2.4.

3.3 Some properties of perfect sequences in the context of the bound-
ary cliques

In the context of boundary cliques, perfect sequences are shown to have the following properties.

Theorem 3.3. C ∈ C is simply separated if and only if there exists a perfect sequence π such
that Cπ(K) = C.

Proof. Suppose that there exists a perfect sequence π such that Cπ(K) = C. Then from
the running intersection property, there exists k′ ≤ K − 1 satisfying

C ∩ (
K−1⋃

i=1

Cπ(i)) = C ∩ Ck′ . (11)

Hence C is simply separated.
Conversely assume that C is simply separated. Then there exists a clique tree with an

endpoint C. Hence there exists a perfect sequence π of C \ {C} from Lemma 2.2. Since C is
simply separated, there exists C ′ ∈ C satisfying

C ∩ V (C \ {C}) = C ∩ C ′.

Thus Cπ(1), . . . , Cπ(K−1), Cπ(K) with Cπ(K) = C is also perfect.
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Lemma 3.1. Let π be a perfect sequence of C. Denote Cπ(k) = {Cπ(1), . . . , Cπ(k)}. Let π′ be any
perfect sequence of G(Cπ(k)). Then

Cπ′(1), . . . , Cπ′(k), Cπ(k+1), . . . , Cπ(K) (12)

is a perfect sequence of C.

Proof. Since
{Cπ(1), . . . , Cπ(k)} = {Cπ′(1), . . . , Cπ′(k)},

Cπ(k′), k′ = k+1, . . . , K, also satisfy the running intersection property in the sequence (12).

From Theorem 3.3 and Lemma 3.1, the following corollary is obviously obtained.

Corollary 3.1. Suppose C is simply separated. Let π′ be any perfect sequence of the maximal
cliques for the induced subgraph G(V (C \ {C})). Then Cπ′(1), . . . , Cπ′(K−1), C is also perfect.

4 Bipartite graph expression of the relation between the

set of clique trees and the set of perfect sequences

In this section we consider the relation between the set of perfect sequences and the set of
clique trees which we once discussed in Lemma 2.2. Let π be a perfect sequence of C and
Sπ(2), . . . , Sπ(K) be the corresponding minimal vertex separators defined in (3). Lauritzen[20]
considers the following algorithm to generate a tree T = (C, E) from π ∈ Π.

Algorithm 4.1.

Input : π ∈ Π
Output : T = (C, E)

begin
E ← ∅
for k = 2 to K do
begin

Choose any k′ such that k′ < k and Sπ(k) = Cπ(k′) ∩ Cπ(k) and E ← E ∪ {(Cπ(k), Cπ(k′))}
end

end

As stated in Lauritzen[20], any tree generated by Algorithm 4.1 is a clique tree. Conversely
consider the following algorithm to generate a sequence of maximal cliques from a clique tree
T = (C, E) ∈ T .

Algorithm 4.2.

Input : T = (C, E) ∈ T
Output : π

begin
Choose any C ∈ C;
Set C as the root and thereby direct all edges in T .
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This induces a partial order in C such that Ca ≺ Cb

if there exists a directed path from Ca to Cb.
Sort C topologically according to the order;
generate Cπ(1), . . . , Cπ(K) with Cπ(1) = C;

end

Lauritzen[20] also showed that any sequence generated by this algorithm is perfect. Also by
following Algorithm 4.1 and 4.2, we can confirm the result of Lemma 2.2.

In the rest of this section we consider the relation between the set of clique trees and the
set of perfect sequences of maximal cliques through Algorithm 4.1 and Algorithm 4.2. First we
note the following result.

Lemma 4.1. T ∈ T can be generated by by Algorithm 4.1 with the input π ∈ Π if and only if
π can be generated by Algorithm 4.2 with the input T .

Proof. Suppose that π is generated from T = (C, E) by Algorithm 4.2. Then for k ≥ 2,
there exists k′ < k such that (Cπ(k′), Cπ(k)) ∈ E . Cπ(k) is an endpoint in the subtree T (Cπ(k)),
where Cπ(k) = {Cπ(1), . . . , Cπ(k)}. Hence from the junction property we have

Cπ(k) ∩ Cπ(k′) ⊇ Cπ(k) ∩ Cπ(k′′), k′′ < k, k′′ 6= k′,

which implies

Cπ(k) ∩
k−1⋃

i=1

Cπ(i) = Cπ(k) ∩ Cπ(k′).

Hence by Algorithm 4.2, we can generate T from π.
Next we assume that T is generated from π by Algorithm 4.1. Then for any k ≤ K the

induced subtree T (Cπ(k)) is connected and Cπ(k) is an endpoint of T (Cπ(k)). Set Cπ(1) as the root
of T (Cπ(k)) and consider the directed tree as in Algorithm 4.2 and denote it by T (Cπ(k), Cπ(1)).
Let Cπ′(1), . . . , Cπ′(k−1) be any sequence which is compatible with the order in T (Cπ(k), Cπ(1))
and satisfies π′(j) 6= π(k) for all j ≤ k − 1. Since Cπ(k) is an endpoint of T (Cπ(k)), the sequence
Cπ′(1), . . . , Cπ′(k−1), Cπ(k) is also compatible with the order in T (Cπ(k), Cπ(1)) for all k. This
implies that π is compatible with the order in T (C, Cπ(1)). Hence π can be generated from
T .

From Lemma 4.1, we define the following symmetric binary relation R ⊆ T × Π.

Definition 4.1. (T, π) ∈ R if T can be generated from π by Algorithm 4.1

Let T (GC′) be the set of clique trees for GC′ = G(V (C ′)). Define TC′ by

TC′ = {T ∈ T | T (C ′) is connected}.

Then we have the following lemma.

Lemma 4.2. If TC′ 6= ∅, then T (GC′) = {T (C ′) | T ∈ TC′}.
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Proof. Since C ′ induces a connected component for some clique tree, GC′ is a chordal graph
with C(V (C ′)) = C ′. Suppose that T ∈ {T (C ′) | T ∈ TC′}. Then we have T ∈ T (GC′), i.e.
{T (C ′) | T ∈ TC′} ⊆ T (GC′).

Denote K ′ = |C′|. Let Π(C ′) be the set of perfect sequences of GC′ . Let R(C ′) ∈ T (GC′) ×
Π(C ′) be the binary relation defined as the above for GC′ . Following Algorithm 4.2 and Lemma
4.1, there exists π′ ∈ Π(C ′) for any T ′ = (C ′, E ′) ∈ T (GC′) such that (π′, T ′) ∈ R(C ′). Since
TC′ 6= ∅ from the assumption, there exists π ∈ Π such that π(k) = π′(k) for k = 1, . . . , K ′ from
Lemma 2.2. From the running intersection property, there exists k′ < k for each Cπ(k) such
that

Cπ(k) ∩
k−1⋃

i=1

Cπ(i) = Cπ(k) ∩ Cπ(k′).

Then the tree

T =
(
C, E ′ ∪

K⋃

k=K′+1

{
(Cπ(k), Cπ(k′))

})

can be generated by Algorithm 4.1 and then T ∈ TC′ , which implies T (GC′) ⊆ {T (C ′) | T ∈ TC′}.
Hence we obtain T (GC′) = {T (C ′) | T ∈ TC′}.

C1

C2

C3

1 2

3

4

5

Figure 3: The graph with three cliques

Now we consider to express this binary relations by the bipartite graph B = (T ∪Π,R). We
give a simple example. Figure 4 presents the bipartite graph B for the graph in Figure 3. We
see that B is not complete.

In general Algorithm 4.1 does not necessarily generate every clique tree if an input perfect
sequence is fixed. Conversely Algorithm 4.2 does not necessarily generate every perfect sequence
if an input clique tree is fixed. Now we denote C̄C = C \ {C}. Then the bipartite graph B for
the general chordal graph can be shown to have the following property.

Lemma 4.3. Suppose that C ∈ C is simply separated. Let TC̄C
⊂ T denote the set of clique trees

for G with an endpoint C. Then any two clique trees in TC̄C
are connected on B = (T ∪Π,R).

Proof. We prove it by induction on the number K = |C| of the maximal cliques. If K ≤ 2,
the lemma is obvious. Suppose that K ≥ 3 and that the lemma holds for all chordal graphs
with fewer than K maximal cliques.

Denote GC̄C
= G(V (C̄C)). First we note that T (GC̄C

) = {T (C̄C) | T ∈ TC̄C
} from Lemma 4.2.

Since C is simply separated, there exists a perfect sequence of C̄C from Theorem 3.3. Denote
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C1 C2 C3

C1 C3

C1, C2, C3

C2

C1, C3, C2

C2, C1, C3

C2, C3, C1

C3, C1, C2

C3, C2, C1

clique trees perfect sequences

T1

T2

π1

π2

π3

π4

π5

π6

Figure 4: The bipartite graph of the clique trees and the perfect sequences for the graph in
Figure 3

the set of such perfect sequences by Π(C̄C). Let R(C̄C) ∈ T (GC̄C
) × Π(C̄C) be the symmetric

binary relation in Definition 4.1 for GC̄C
. Let T and T ′ be any two clique trees in TC̄C

and
T (C̄C) and T ′(C̄C) be the subtree of T and T ′ induced by C̄C . From the inductive assumption,
T (C̄C) and T ′(C̄C) are connected on the bipartite graph

B(C̄C) =
(
T (GC̄C

) ∪ Π(C̄C),R(C̄C)
)
.

Suppose that
T (C̄C) = T̃0, π̃1, T̃1, . . . , T̃p−1, π̃p, T̃p = T ′(C̄C)

T̃i = (C̄C , Ẽi) ∈ T (GC̄C
), i = 0, . . . , p,

π̃i ∈ Π(C̄C), i = 1, . . . , p

is a path from T (C̄C) to T ′(C̄C) on B(C̄C). Since C is simply separated, the sequence
Cπ̃i(1), . . . , Cπ̃i(K−1), C is also a perfect sequence of G for all i = 1, . . . , p from Corollary 3.1 and
denote it by πi. Let C ′ be the maximal clique which is adjacent to C on T ′. Define Ti by

T0 = T, Ti = (C, Ẽi ∪ {(C, C ′)}), i = 1, . . . , p.

Since (T̃i, π̃i) ∈ R(C̄C) and (T̃i−1, π̃i) ∈ R(C̄C), we also have (Ti, πi) ∈ R and (Ti−1, πi) ∈ R
from the definition of Ti.

By using these lemmas we can show the connectivity of the bipartite graph B.

Theorem 4.1. The bipartite graph B = (T ∪ Π,R) for any chordal graph G is connected.

Proof. For any perfect sequence π there exists a clique tree T such that (T, π) ∈ R. Hence
it suffices to show that any two clique trees are connected on B.
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Let T and T ′ be any two clique trees for G. Denote the set of endpoints in T and T ′ by L(T )
and L(T ′), respectively. Suppose that S is a minimal vertex separator which is minimal in S
with respect to the inclusion relation. Let the connected components of G(V \ S) be denoted
by Γ1, . . . , ΓM . Then from Proposition 3.4 there exist maximal cliques Ca ∈ L(T ), Cb ∈ L(T ),
Ca′ ∈ L(T ′) and Cb′ ∈ L(T ′) such that

Ca \ S ⊆ Γa, Cb \ S ⊆ Γb, a 6= b,

Ca′ \ S ⊆ Γa′ , Cb′ \ S ⊆ Γb′ , a′ 6= b′

If the maximal cliques satisfy one of the following conditions,

Ca = Ca′ , Ca = Cb′ , Cb = Ca′ , Cb = Cb′ , (13)

then T and T ′ are connected on B from Lemma 4.3.
Suppose the maximal cliques do not satisfy any of the conditions in (13). Since a′ 6= b′, one

of Γa′ and Γb′ is not equal to Γa. We now assume Γa 6= Γb′ without loss of generality. From
Theorem 3.1 there exists a clique tree T ′′ such that both Ca and Cb′ are endpoints of it. Then
from Lemma 4.3, T and T ′′ are connected and T ′′ and T ′ are connected. Hence T and T ′ are
connected.

5 Arbitrariness and uniqueness of the clique trees

In this section we consider to characterize chordal graphs from the aspect of the arbitrariness
and the uniqueness of its clique trees. With respect to the arbitrariness of the clique trees, we
can obtain the following result.

Theorem 5.1. Let G be a chordal graph with at least two maximal cliques. An arbitrary tree
with the set of nodes C is a clique tree of G if and only if |S| = 1.

Proof. Suppose that |S| = 1 and S ∈ S. Hence the only restriction imposed on the clique
trees for G is that C↑S induces a connected subtree. From (3) and (4), we have C↑S = C. This
implies that an arbitrary tree with the set of nodes C is a clique tree for G.

Conversely suppose that |S| ≥ 2. Let S1 and S2 be any two minimal vertex separators of
G. Then C↑S1 6= C↑S2 from Lemma 2.5. Hence we can assume C↑S2 \ C↑S1 6= ∅ without loss of
generality and suppose C ∈ C↑S2 \ C↑S1 . Let T ′ be a clique tree such that the set of nodes is
C↑S1 ∪ {C} and C /∈ L(T ′). Then any clique tree T such that T ′ = T (C↑S1 ∪ {C}) does not
satisfy the condition that C↑S1 induces a connected subtree.

On the other hand the necessary and sufficient condition for the clique tree to be unique is
given as follows.

Theorem 5.2. The clique tree for G is unique if and only if

(i) |S| = |C| − 1, i.e. ν(S) = 1 for all S ∈ S;

(ii) Any two minimal vertex separators of G do not have the inclusion relation.
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In order to prove Theorem 5.2, we note the following lemma.

Lemma 5.1. S satisfies the conditions (i) and (ii) in Theorem 5.2 if and only if KS = |C↑S| = 2
for all S.

Proof. Suppose that there exists S ∈ S satisfying KS ≥ 3. When |S(V (C↑S))| ≥ 2, S ⊂ S ′

for all S ′ 6= S, S ′ ∈ S(V (C↑S)) from (iii) in Lemma 2.6. When |S(V (C↑S))| = 1, ν(S) ≥ 2 from
(ii) in Lemma 2.6. Hence S does not satisfy (i) or (ii).

Next we suppose that |S| < |C| − 1. Then there exists S ∈ S such that ν(S) ≥ 2. From (3),
S satisfies KS ≥ 3.

Suppose that there exist S ∈ S and S ′ ∈ S such that S ⊂ S ′. Then it is obvious that
C↑S ⊇ C↑S′ . From Lemma 2.5, C↑S 6= C↑S′ . Hence C↑S ⊃ C↑S′ and KS ≥ 3.

Proof of Theorem 5.2. Let T = (C, E) be a clique tree for G. Suppose that S satisfies
the conditions (i) and (ii). From Lemma 5.1, KS = 2 for all S ∈ S. Hence the restriction that
C↑S induces a connected subtree is equivalent to C↑S ∈ E , i.e. {C↑S | S ∈ S} ⊂ E . The number
of restrictions is

|S| = K − 1 = |E|.

Thus {C↑S | S ∈ S} = E . Hence T is uniquely defined from the set of restrictions {C↑S | S ∈ S}.
Next we assume that T is uniquely defined from G. Then it suffices to show that S satisfies

(i) and (ii). We prove this by induction on the number of maximal cliques. When K = 2, S
satisfies |S| = 1. Hence S obviously satisfies (i) and (ii). Assume K ≥ 3 and S satisfies (i) and
(ii) for the chordal graphs with fewer than K − 1 maximal cliques.

Let C be an endpoint of T . From Theorem 3.1, there exists a perfect sequence π ∈ Π such
that Cπ(K) = C. Denote C̄C = C \ {C} and GC̄C

= G(V (C̄C)). Define T (GC̄C
), Π(C̄C) and

R(C̄C) in the same way as in the proof of Lemma 4.3. Suppose that the clique trees for GC̄C

are not uniquely defined and let T̃1 = (C̄C , E1) and T̃2 = (C̄C , E2) be two clique trees in T (GC̄C
).

Then there exist π̃1 ∈ Π(C̄C) and π̃2 ∈ Π(C̄C) satisfying

(T̃1, π̃1) ∈ R(C̄C), (T̃2, π̃2) ∈ R(C̄C).

From Theorem 3.1, C is simply separated, Hence both

Cπ̃1(1), . . . , Cπ̃1(k−1), C and Cπ̃2(1), . . . , Cπ̃2(k−1), C

are perfect sequences of C from Corollary 3.1 and denote them by π1 and π2, respectively. From
Proposition 3.1 there exist k1 < K, k2 < K and S ∈ S satisfying

C ∩
K−1⋃

k=1

Cπ1(k) = C ∩ Cπ1(k1) = S, C ∩
K−1⋃

k=1

Cπ2(k) = C ∩ Cπ2(k2) = S.

Then
T1 = (C, E1 ∪ (C, Cπ1(k1))), T2 = (C, E2 ∪ (C,Cπ2(k2))),

satisfy that (T1, π1) ∈ R and (T2, π2) ∈ R and that T1 6= T2. Hence both T1 and T2 are
clique trees for G, which contradicts the assumption that T is uniquely defined from G. Thus
|T (C̄C)| = 1 and denote the unique tree by T̃ = (C̄C , Ẽ). Let π̃ ∈ Π(C̄C) be a perfect sequence
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satisfying (T̃ , π̃) ∈ R(C̄C). Then Cπ̃(1), . . . , Cπ̃(K−1), C is a perfect sequence of C from Corollary
3.1 and denote it by π.

From the inductive assumption S(V (C̄C)) satisfies the conditions (i) and (ii). Suppose that
there exists S ′ ∈ S(V (C̄C)) such that S ′ ⊇ S. There exist at least two maximal cliques in
C̄C which includes S ′. Denote two of such maximal cliques by C1 and C2. We note that
C ∩ C1 = C ∩ C2 = S. Then both T ′

1 = (C, Ẽ ∪ (C1, C)) and T ′
2 = (C, Ẽ ∪ (C2, C)) satisfy

(T ′
1, π) ∈ R and (T ′

2, π) ∈ R, which contradicts the assumption. Hence there does not exist S ′

such that S ′ ⊇ S.
Suppose that there exists S ′ ∈ S(V (C̄C)) such that S ′ ⊂ S. Let C ′ be an endpoint of T such

that C ′ 6= C. Then there exist S ′′ ∈ S such that

C ′ ∩ V (C̄C′) = S ′′,

where C̄C′ = C \{C ′}. If S ′′ ⊂ S ∈ S(V (C̄C′)), there exist at least two clique trees in G by using
the same argument as the above.

Consider the case where S ′′ * S. Let T̃ ′ = (C̄C′ , Ẽ ′) be the unique clique tree for G(V (C̄C′)).
Then S(V (C̄C′)) satisfies the conditions (i) and (ii). We note that S, S ′ ∈ S(V (C̄C′)). Since
S ′ ⊂ S, C↑S′ satisfies C↑S′ ⊂ C↑S. Hence KS′ ≥ 3, which contradicts the fact that T̃ ′ is the unique
clique tree for G(V (C̄C′)) and S(V (C̄C′)) satisfies the conditions (i) and (ii). Hence there does
not exist S ′ ∈ S(V (C̄C)) such that S ′ ⊂ S. As a result S satisfies the conditions (i) and (ii).

In the context of (2), we can obviously obtain the following result.

Theorem 5.3. Define MS and C↑S(Γm ∪ S) as in (1). Then the conditions (i) and (ii) in
Theorem 5.2 is equivalent to |MS| = 2 and |C↑S(Γm ∪ S)| = 1.

With respect to the uniqueness of the clique tree, we also obtain the following result.

Theorem 5.4. Let T be the unique clique tree defined from G. Then all maximal cliques which
are simply separated are the endpoints of T .

Proof. Suppose that C is simply separated and that C is not an endpoint of T . Then
there exist at least two maximal cliques which are adjacent to C on T . Denote them by C1

and C2. Note that C ∩ C1 ∈ S and C ∩ C2 ∈ S. Denote S1 = C ∩ C1 and S2 = C ∩ C2.
From Proposition 3.1 there exists S ∈ S satisfying (6) and hence S1 and S2 satisfy S1 ⊆ S and
S2 ⊆ S, respectively. S1 = S and S2 = S contradicts (i) in Theorem 5.2 and S1 ⊂ S or S2 ⊂ S
contradicts (ii) in Theorem 5.2.

6 Concluding remarks

In this article we considered characterizations of the set of clique trees in three ways. In Section
3 we addressed boundary cliques and gave some characterizations of endpoints of clique trees
in relation to boundary cliques. In Section 4 we defined a symmetric binary relation between
the set of clique trees and the set of perfect sequences of maximal cliques and we described
the relation using a bipartite graph. We showed that the bipartite graph is connected for any
chordal graphs. In Section 5 we derived a necessary and sufficient condition for the arbitrariness
and for the uniqueness of their clique trees.
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Theorem 4.1 and Theorem 5.2 are proved by induction on the number of maximal cliques.
In the proof the notions of boundary cliques and the symmetric binary relation discussed in
Section 4 are essential and the usefulness of them were confirmed.

Boundary cliques may be important from the algorithmic point of view. The detection of
simply boundary cliques may contribute to more efficient generation of a perfect sequence of
maximal cliques. The relation between boundary cliques and the simplicial partition used in a
procedure of the isomorphism detection of chordal graphs in Nagoya[21] may be also interesting.

In Hara and Takemura [14], [15], we proposed statistical procedures whose performances
depend on the choice of perfect sequences of maximal cliques for a given chordal graph. In this
kind of situation it is desirable to optimize the performance over the set of perfect sequences.
By the connectedness of the bipartite graph of Section 4 we can construct a connected Markov
chain over the set of perfect sequences and search for the optimum perfect sequence.

By following Theorem 5.2, we see that the non-uniqueness of clique trees is related to the
inclusion relations in S and the multiplicity of minimal vertex separators. This fact is important
in enumerating all clique trees for a given chordal graph. By using this fact, we can provide
another algorithm to enumerate all clique trees with the lists of maximal cliques and minimal
vertex separators given as inputs.

We have obtained partial results on these problems. They are left for our future investiga-
tions.

Appendix

A Proof of Lemma 2.4

Proof of (i). Denote Gm = G(Γm∪S). Suppose that there exists m and C ∈ C(Γm∪S)
such that C ∩ Γm = ∅, i.e. C = S. From the definition of the perfect sequence S contains
at least one minimal vertex separator S ′ ∈ S(Γm ∪ S) such that S ′ ⊂ S. Then S ′ separates
v ∈ Γm and S \ S ′. Since Γm ∩ Γm′ = ∅ for all m′ 6= m, S ′ also separates v and any vertices in
Γm′ , which contradicts the minimality of S in S with respect to the inclusion relation. Hence
C ∈ C(Γm ∪ S) satisfies C ∩ Γm 6= ∅ for all m. Choose vm ∈ C ∩ Γm.

Now suppose that there exists C ′ ∈ C such that C ′ ⊃ C for C ∈ C(Γm ∪ S). This implies
that there exists m′ 6= m such that (C ′ \ C) ∩ Γm′ 6= ∅. Choose vm′ ∈ (C ′ \ C) ∩ Γm′ . Both vm

and vm′ belong to C ′. However this contradicts the fact that Γm and Γm′ are not adjacent to
each other for all m′ 6= m. Hence

⋃M
m=1 C(Γm ∪ S) ⊆ C.

Since C \ S is connected for all C ∈ C, there exists m such that C ⊂ Γm ∪ S. Noting that
V ⊃ Γm ∪ S, if C is a maximal clique in G, then C is also a maximal clique in Gm. Hence⋃M

m=1 C(Γm ∪ S) ⊇ C. As a result we obtain
⋃M

m=1 C(Γm ∪ S) = C.
Also it is easy to see that Γm ∩ Γm′ = ∅ , m 6= m′, implies C(Γm ∪ S) ∩ C(Γm′ ∪ S) = ∅.

Proof of (ii). Let S ′ be a minimal vertex separator in Gm. Then G((Γm ∪ S) \ S ′) is
disconnected. This implies that G(V \ S ′) is also disconnected. Hence S ′ is a separator in G.

There exist v ∈ Γm ∪ S and v′ ∈ Γm ∪ S such that S ′ is the minimal v − v′ separator in Gm.
v and v′ are connected in G((Γm ∪ S) \ S ′′) for S ′′ ⊂ S. Since G((Γm ∪ S) \ S ′′) is the induced
subgraph of G(V \S ′′), v and v′ are also connected in G(V \S ′′). Hence S ′ is a minimal vertex
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separator of G. We have shown that S(Γm∪S) ⊆ S. Now since (Γm∪S)\S = Γm is connected,
S /∈ S(Γm ∪ S). Hence S(Γm ∪ S) is a proper subset of S.

Proof of (iii). It suffices to show it for Γ1. Denote Km = |C(Γm ∪ S)|. Let πm be a
perfect sequence of C(Γm ∪ S) such that Cπm(1) ⊃ S. Let Sπm(k) ∈ S(Γm ∪ S), k = 2, . . . , Km

be the corresponding minimal vertex separator in Gm. Consider the sequence

Cπ1(1), . . . , Cπ1(K1), Cπ2(1), . . . , CπM (KM ). (14)

Since Γm ∩ Γm′ = ∅,

Cπm(1) ∩


 ⋃

m′<m

⋃

k′≤Km′

Cπm′ (k′)


 = (Cπm(1) ∩ S) ∪

(
Cπm(1) ∩

⋃

m′<m

Γm′

)
= S ⊂ Cπ1(1) (15)

and for k′ ≥ 2

Cπm(k) ∩


 ⋃

m′<m

⋃

k′≤Km′

Cπm′ (k′) ∪
⋃

k′<k

Cπm(k′)


 = (Cπm(k) ∩ S) ∪

(
Cπm(k) ∩

⋃

k′<k

Cπm(k′)

)
(16)

= Cπm(k) ∩
⋃

k′<k

Cπm(k′).

Since πm is a perfect sequence of C(Γm ∪ S), (i) of this lemma, (15) and (16) imply that (14)
is a perfect sequence of C.

Then there exists a clique tree such that the subgraph of it induced by C(Γm∪S) is connected
from Lemma 2.2.
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B List of notation

G : a connected chordal graph
V : the set of vertices in G
G(V ′) : the subgraph of G induced by V ′ ⊂ V
C : the set of maximal cliques in G
C(V ′) : the set of maximal cliques in G(V ′)
K : the number of maximal cliques |C|
V (C ′) :

⋃

C∈C′

C for C ′ ⊂ C

S : the set of minimal vertex separators in G
S(V ′) : the set of minimal vertex separators in G(V ′)
ν(S) : the multiplicity of S ∈ S
T : the set of clique trees for G
T (G(V ′)) : the set of clique trees for G(V ′)
T (C ′) : the subtree of T ∈ T induced by C ′ ⊂ C
Π : the set of perfect sequences of C
Π(C ′) : the set of perfect sequences of C ′

GC′ : G(V (C ′)) Sec 4, 5
Vm,m′ : V (C \ {Cm, Cm′}), Cm, Cm′ ∈ C Prop. 3.4
C↑S : {C ∈ C | C ⊃ S, S ∈ S} Sec 2, 5
C̄C : C \ {C} Sec 4, 5
NG(v) : the open adjacency set of v ∈ V in G Sec 2, 3
NG[v] : the closed adjacency set of v ∈ V in G Sec 3

NG(V ′) :
⋃

v∈V ′

NG(v) \ V ′ Sec 3

NG[V ′] :
⋃

v∈V ′

NG[v] Sec 3

Γ1, . . . , ΓM : the connected components of G(V \ S) Sec 2, 3, 4
Gm : G(Γm ∪ S) Appendix A
MS : {m | NG(Γm) = S} (1), (2), Th. 5.3
C↑S(Γm ∪ S) : {C ∈ C | C ⊆ Γm ∪ S,C ⊃ S} (1), (2), Th. 5.3
KS : |C↑S| Lemma 2.6
Km : |C(Γm ∪ S)| Appendix A
Simp(C) : the simplicial component in C ∈ C Sec 2, 3
Sep(C) : the non-simplicial component in C ∈ C Sec 2, 3
TC′ : {T ∈ T | T (C ′) is connected} Lemma 4.2, 4.3
L(T ) : the set of endpoints in T ∈ T Prop. 3.4, Th. 4.1
Cπ(k) : {Cπ(1), . . . , Cπ(k)} for π ∈ Π Th. 2.2, Lemma 3.1
R : the symmetric binary relation on T × Π Def. 4.1, Sec. 4, 5
R(C ′) : the symmetric binary relation on T (GC′) × Π(C ′) Sec. 4, 5
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