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Abstract

Induction (or transformation) by bipartite graphs is one of the most important operations
on matroids, and it is well known that the induction of a matroid by a bipartite graph is again
a matroid. As an abstract form of this fact, the induction of a matroid by a linking system is
known to be a matroid.

M-convex functions are quantitative extensions of matroidal structures, and they are known
as discrete convex functions. As with matroids, it is known that the induction of an M-convex
function by networks generates an M-convex function. As an abstract form of this fact, this
paper shows that the induction of an M-convex function by linking systems generates an M-
convex function. Furthermore, we show that this result also holds for M-convex functions on
constant-parity jump systems. Previously known operations such as aggregation, splitting, and
induction by networks can be understood as special cases of this construction.

1 Introduction

As a generalization of matroids, many matroidal structures and its quantitative extensions are
studied. The concept of M-convex functions on base polyhedra introduced in [13] is a generalization
of valuated matroids [4], [6], which are quantitative extensions of matroids. M-convex functions
are known as discrete convex functions, and play a central role in discrete convex analysis [15].
Recently, the concept of M-convex functions on constant-parity jump systems is introduced in [16]
as a generalization of M-convex functions on base polyhedra. The definitions of M-convex functions
and jump systems are to be described later. To distinguish between M-convex functions on base
polyhedra and those on constant-parity jump systems, we sometimes refer to the former as MB-
convex functions and the latter as MJ-convex functions. For M-convex functions global minimality
is equivalent to local minimality defined in an appropriate manner. In addition, discrete duality
theorems such as discrete separation and min-max formula hold for MB-convex functions, whereas
they fail for MJ-convex functions.

In the study of matroidal structures and their extensions, a number of natural operations and
transformations are considered. To be specific, induction by bipartite graphs is one of the most
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important operations on matroids. Given a bipartite graph G = (S, T ; E) and a matroid M = (S, I)
with the collection of independent sets I ⊆ 2S , the induction of M by G is defined as M′ = (T, I ′)
with

I ′ = {∂M ∩ T | M : matching, (∂M ∩ S) ∈ I},

where ∂M is the set of vertices covered by M . It is known that M′ forms a matroid [17]. As an
abstract form of this fact, the induction of a matroid by a linking system, which is introduced as a
generalization of bipartite matchings, is known to be a matroid [18].

Operations on MB-convex functions and MJ-convex functions are studied in [13] and [10], re-
spectively. It is known that the induction of an MB-convex function (respectively, an MJ-convex
function) by a network is an MB-convex function (respectively, an MJ-convex function). As a nat-
ural generalization of this operation, we introduce a new operation called induction of M-convex
functions by integral poly-linking systems, where integral poly-linking systems are generalizations
of integral flows in networks. Our main results (Theorems 5 and 6) show that the induction of an
M-convex function by an integral poly-linking system is M-convex.

2 Preliminaries

Let V be a finite set. For x = (x(v)), y = (y(v)) ∈ ZV define

x(U) =
∑
v∈U

x(v) (U ⊆ V ),

supp+(x) = {v ∈ V | x(v) > 0},

supp−(x) = {v ∈ V | x(v) < 0},

[x, y] = {z ∈ ZV | min(x(v), y(v)) ≤ z(v) ≤ max(x(v), y(v)),∀v ∈ V }.

We denote by 0 the zero vector of an appropriate dimension. For U ⊆ V we denote by χU the
characteristic vector of U , with χU (v) = 1 for v ∈ U and χU (v) = 0 for v ∈ V \ U . For u ∈ V we
denote χ{u} simply by χu. A vector s ∈ ZV is called an (x, y)-increment if s = χu or s = −χu for
some u ∈ V and x + s ∈ [x, y].

2.1 Base polyhedra and jump systems

The set of integral points in a base polyhedra of integral polymatroids has the following exchange
property [15].

(B-EXC) For any x, y ∈ B and for any u ∈ supp+(x− y), there exists v ∈ supp−(x− y) such that
x − χu + χv ∈ B and y + χu − χv ∈ B.

A nonempty set of integer points B ⊆ ZV is defined to be an MB-convex set if it satisfies (B-EXC)
above. It is known that MB-convex sets are, up to translations, the same as base polyhedra of
integral submodular systems.

Next we consider a generalized concept of MB-convex sets called jump systems [3] (see also [9],
[12]). A nonempty set J ⊆ ZV is said to be a jump system if it satisfies an exchange axiom, called
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the 2-step axiom: for any x, y ∈ J and for any (x, y)-increment s with x + s 6∈ J , there exists an
(x+s, y)-increment t such that x+s+t ∈ J . A set J ⊆ ZV is a constant-sum system if x(V ) = y(V )
for any x, y ∈ J , and a constant-parity system if x(V ) − y(V ) is even for any x, y ∈ J .

For constant-parity jump systems, a stronger exchange axiom is relevant:

(J-EXC) For any x, y ∈ J and for any (x, y)-increment s, there exists an (x + s, y)-increment t

such that x + s + t ∈ J and y − s − t ∈ J .

This property characterizes a constant-parity jump system, a fact communicated to one of the
authors by J. Geelen (see [16] for a proof).

Theorem 1 ([8]). A nonempty set J is a constant-parity jump system if and only if it satisfies
(J-EXC).

2.2 M-convex functions

MB-convex functions and MJ-convex functions are defined as quantitative extensions of MB-convex
sets and constant-parity jump systems, respectively.

M-convex functions on base polyhedra, to be denoted MB-convex functions in this paper, are
introduced by Murota [13], and they play a central role in discrete convex analysis [15]. We call
f : B → R an MB-convex function if it satisfies the following exchange axiom:

(MB-EXC) For any x, y ∈ B and for any u ∈ supp+(x − y), there exists v ∈ supp−(x − y) such
that x − χu + χv ∈ B, y + χu − χv ∈ B, and

f(x) + f(y) ≥ f(x − χu + χv) + f(y + χu − χv).

It follows from (MB-EXC) that B satisfies (B-EXC) and hence is an MB-convex set. We adopt the
convention that f(x) = +∞ for x 6∈ B.

As a common generalization of valuated delta-matroids [5] and MB-convex functions, M-convex
functions on constant-parity jump systems, to be denoted MJ-convex functions in this paper, are
introduced in [16]. We call f : J → R an MJ -convex function if it satisfies the following exchange
axiom:

(MJ-EXC) For any x, y ∈ J and for any (x, y)-increment s, there exists an (x + s, y)-increment t

such that x + s + t ∈ J , y − s − t ∈ J , and

f(x) + f(y) ≥ f(x + s + t) + f(y − s − t).

It follows from (MJ-EXC) that J satisfies (J-EXC) and hence is a constant-parity jump system.
We adopt the convention that f(x) = +∞ for x 6∈ J .

A separable convex function on the degree sequences of a graph is a typical example of MJ-
convex functions [1], [2]. The definition of an MJ-convex function is consistent with the previously
considered special cases where (i) J is a constant-sum jump system, and (ii) J is a constant-parity
jump system contained in {0, 1}V . Case (i) is equivalent to J being the set of integer points in the
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base polyhedron of an integral submodular system [7] (or the MB-convex set), and then MJ-convex
functions are the same as the MB-convex functions investigated in [13], [15]. Case (ii) is equivalent
to J being an even delta-matroid [21], [22], and then f is MJ-convex if and only if −f is a valuated
delta-matroid in the sense of [5].

In [10], a number of natural operations on MJ-convex functions, which preserve MJ-convexity,
are defined. Here we refer to two of them called convolution and composition.

For two functions f1 : ZV → R∪{+∞} and f2 : ZV → R∪{+∞}, their (infimum) convolution
is the function f1¤f2 : ZV → R ∪ {+∞,−∞} given by

(f1¤f2)(x) = inf{f1(x1) + f2(x2) | x1 + x2 = x, x1 ∈ ZV , x2 ∈ ZV }.

Convolution is a quantitative extension of (Minkowski) sum, and it preserves MJ-convexity.

Theorem 2 ([10]). If f1 and f2 are MJ -convex functions, then their convolution f1¤f2 is MJ -
convex, provided f1¤f2 > −∞.

Let f1 : ZS1 → R∪{+∞} and f2 : ZS2 → R∪{+∞} be MJ-convex functions. Put V0 = S1∩S2,
V1 = S1 \ V0, and V2 = S2 \ V0. The composition of f1 and f2 is the function f : ZV1∪V2 →
R ∪ {+∞,−∞} given by

f(x1, x2) = inf{f1(x1, y1) + f2(x2, y2) | y1 = y2 ∈ ZV0} (x1 ∈ ZV1 , x2 ∈ ZV2).

Composition also preserves MJ-convexity.

Theorem 3 ([10]). The composition of two MJ -convex functions is MJ -convex, provided it does
not take the value −∞.

2.3 Poly-linking systems

The concept of poly-linking systems is originally introduced by A. Schrijver [18], [19]. In [18], poly-
linking systems are defined to be sets of vectors whose components are nonnegative real numbers,
and it is shown that they are associated with base polyhedra of polymatroids.

We consider poly-linking systems which are sets of integral vectors whose components are al-
lowed to be negative. We use the following definition which differs from the original one. Our
definition, however, is justified by the fact that poly-linking systems defined below are associated
with base polyhedra of integral polymatroids (Proposition 4).

An integral poly-linking system is a triple (S, T, L) where S and T are finite sets and L is a
nonempty subset of ZS × ZT satisfying the following conditions.

1. (0,0) ∈ L.

2. For any (x1, y1), (x2, y2) ∈ L and u ∈ supp+(x1 − x2), at least one of the following conditions
holds.

• There exists v ∈ supp−(x1−x2) such that (x1−χu+χv, y1) ∈ L and (x2+χu−χv, y2) ∈ L.
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• There exists v ∈ supp+(y1−y2) such that (x1−χu, y1−χv) ∈ L and (x2+χu, y2+χv) ∈ L.

3. For any (x1, y1), (x2, y2) ∈ L and u ∈ supp+(y1 − y2), at least one of the following conditions
holds.

• There exists v ∈ supp−(y1−y2) such that (x1, y1−χu+χv) ∈ L and (x2, y2+χu−χv) ∈ L.

• There exists v ∈ supp+(x1−x2) such that (x1−χv, y1−χu) ∈ L and (x2+χv, y2+χu) ∈ L.

Integral poly-linking systems are intimately related with MB-convex sets. The following propo-
sition can be easily derived from the definitions of MB-convex sets and integral poly-linking systems.
In what follows, we identify ZS × ZT with ZS∪T .

Proposition 4. Suppose that S and T are finite sets and L is a nonempty subset of ZS × ZT .
Then (S, T, L) is an integral poly-linking system if and only if the set B ⊆ ZS∪T defined by

B = {(x, y) | (−x, y) ∈ L}

is an MB-convex set with (0,0) ∈ B.

Proof. First, (0,0) ∈ B corresponds to the first condition in the definition of integral poly-linking
systems. The exchange axiom of MB-convex sets corresponds to the second and the third conditions
in the definition of integral poly-linking systems.

A typical example of integral poly-linking systems is integral flows in directed graphs.

Example. Let G = (V,A; S, T ) be a directed graph with vertex set V , arc set A, entrance set S,
and exit set T , where S and T are disjoint subsets of V . Let c ∈ ZA

+ represent the capacities of the
arcs. Define

L =
{
(x, y) ∈ ZS × ZT | ∃ξ ∈ ZA, ∂ξ = (x,−y,0) ∈ ZS × ZT × ZV \(S∪T ), 0 ≤ ξ ≤ c

}
,

where ∂ξ ∈ ZV is the vector given by

∂ξ(v) =
∑

a: a leaves v

ξ(a) −
∑

a: a enters v

ξ(a) (v ∈ V ).

Then (S, T, L) is an integral poly-linking system. The first condition, (0,0) ∈ L, in the definition
of integral poly-linking systems is obvious. The second and the third conditions can be shown by
an alternating path argument. This fact can be derived from [15] (Note 2.19), and the non-integral
version is considered in [18].

An integral poly-linking system that satisfies L ⊆ {0, 1}S ×{0, 1}T is called a linking system [18]
(or bimatroid [11]), and it corresponds to the collection of bases of a matroid.
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3 Induction by integral poly-linking systems

3.1 Main theorems

Given a function f : ZS → R ∪ {+∞} and an integral poly-linking system (S, T, L), the function
f̃ : ZT → R ∪ {+∞,−∞} defined by

f̃(y) = inf{f(x) | x ∈ ZS , (x, y) ∈ L} (y ∈ ZT )

is called the induction of f by (S, T, L). If such x does not exist, we define f̃(y) = +∞.

Theorem 5. Assume that f is an MB-convex function defined on ZS. Then the function f̃ induced
by an integral poly-linking system (S, T, L) is MB-convex, provided f̃ > −∞.

A proof of Theorem 5 will be given after the proof of Theorem 6.

Theorem 6. Assume that f is an MJ -convex function defined on ZS. Then the function f̃ induced
by an integral poly-linking system (S, T, L) is MJ -convex, provided f̃ > −∞.

Proof. By Proposition 4, there is an MB-convex set B which satisfies

(x, y) ∈ L ⇐⇒ (−x, y) ∈ B

for any vector (x, y) ∈ ZS × ZT . We define a function g : ZS∪T → R ∪ {+∞} that represents the
structure of L as follows:

g(x, y) =

{
0 (if (x, y) ∈ B)
+∞ (otherwise).

Since B is an MB-convex set, g is an MB-convex function and hence an MJ-convex function.
Let f ′ : ZS∪T → R ∪ {+∞} be the function defined by

f ′(x, y) =

{
f(x) (if y = 0)
+∞ (otherwise).

Then f ′ is also an MJ-convex function. By the definition of f̃ , we have

f̃(y) = inf{f(x) | x ∈ ZS , (x, y) ∈ L}

= inf{f(x) | x ∈ ZS , (−x, y) ∈ B}

= inf
x∈ZS

{f(x) + g(−x, y)}

= inf
x∈ZS

{f ′(x,0) + g(−x, y)} (1)

for any y ∈ ZT .
On the other hand, the convolution of two MJ-convex functions f ′ and g defined by

(f ′¤g)(z) = inf
z′∈ZS∪T

{f ′(z′) + g(z − z′)} (z ∈ ZS∪T )
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is an MJ-convex function by Theorem 2. If z = (0, y) for some y ∈ ZT , we have

(f ′¤g)(0, y) = inf
z′∈ZS∪T

{f ′(z′) + g((0, y) − z′)}

= inf
x∈ZS

{f ′(x,0) + g(−x, y)}. (2)

By (1) and (2), we have f̃(y) = (f ′¤g)(0, y) for each y ∈ ZT . Thus f̃ is MJ-convex since f ′¤g

is MJ-convex and the restriction of an MJ-convex function is MJ-convex.

We can show Theorem 5 in a similar way.

Proof of Theorem 5. In the proof of Theorem 6, the function f ′ is MB-convex if f is MB-convex.
Then f ′¤g is MB-convex, since g is also an MB-convex function and the convolution of two MB-
convex functions is known to be MB-convex [13], [15] (Theorem 6.13). Thus f̃ , which is a restriction
of f ′¤g, is MB-convex.

3.2 Special cases

3.2.1 Network

Induction by networks is a fundamental operation investigated in [10], [13]. We explain here that
this can be seen as a special case of the induction by integral poly-linking systems.

Just as in Example, let G = (V,A; S, T ) be a directed graph with vertex set V , arc set A,
entrance set S, and exit set T , where S and T are disjoint subsets of V . Let c ∈ ZA

+ represent the
capacities of the arcs.

Given a function f : ZS → R ∪ {+∞} associated with the entrance set S of the network, we
define a function f̃ : ZT → R ∪ {+∞,−∞} on the exit set T by

f̃(y) = inf
ξ,x

{
f(x) | ∂ξ = (x,−y,0), 0 ≤ ξ ≤ c,

ξ ∈ ZA, (x,−y,0) ∈ ZS × ZT × ZV \(S∪T )
}

(y ∈ ZT ).

If such ξ and x do not exist, we define f̃(y) = +∞. We regard f̃ as a result of the induction of f

by the network.

Corollary 7 ([10], [13] (see also [15], [20])). Assume that f is an MJ -convex function (respectively,
MB-convex function). Then the function f̃ induced by a network G = (V,A; S, T ) is MJ -convex
(respectively, MB-convex), provided f̃ > −∞.

Proof. Let L ⊆ ZS × ZT be the set given by

L =
{
(x, y) | ∃ξ ∈ ZA, ∂ξ = (x,−y,0) ∈ ZS × ZT × ZV \(S∪T ), 0 ≤ ξ ≤ c

}
.

Then (S, T, L) is an integral poly-linking system. Since f̃ is the induction of f by (S, T, L), by
Theorem 6 (respectively, Theorem 5), f̃ is MJ-convex (respectively, MB-convex).
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3.2.2 Set system

We can also consider the induction of set systems by integral poly-linking systems. Given a set
B ⊆ ZS and an integral poly-linking system (S, T, L), the set B̃ ⊆ ZT defined by

B̃ = {y ∈ ZT | ∃x ∈ B, (x, y) ∈ L} (3)

is called the induction of B by (S, T, L).

Corollary 8. Let B ⊆ ZS be an MB-convex set, and B̃ ⊆ ZT be the induction of B by an integral
poly-linking system (S, T, L). Then B̃ is an MB-convex set, provided B̃ 6= ∅.

Proof. Since B is an MB-convex set, the function f : ZS → R ∪ {+∞} defined by

f(x) =

{
0 (x ∈ B)
+∞ (otherwise)

is an MB-convex function. Let f̃ be the induction of f by (S, T, L). Then f̃ is MB-convex by
Theorem 5. Hence B̃ = {x ∈ ZT | f̃(x) < +∞} is an MB-convex set.

Corollary 9. Let J ⊆ ZS be a constant-parity jump system, and J̃ ⊆ ZT be the induction of J by
an integral poly-linking system (S, T, L). Then J̃ is a constant-parity jump system, provided J̃ 6= ∅.

Proof. Since J is a constant-parity jump system, the function f : ZS → R ∪ {+∞} defined by

f(x) =

{
0 (x ∈ J)
+∞ (otherwise)

is an MJ-convex function. Let f̃ be the induction of f by (S, T, L). Then f̃ is MJ-convex by
Theorem 6. Hence J̃ = {x ∈ ZT | f̃(x) < +∞} is a constant-parity jump system.

The fact that the induction of a matroid by a linking system is a matroid can be seen as a special
case of Theorem 5. For a set family B ⊆ 2V in general, we define χ(B) = {χB ∈ {0, 1}V | B ∈ B}.
Suppose that B ⊆ 2S is the collection of bases of a matroid, that is χ(B) is an MB-convex set, and
(S, T, L) is a linking system. A set family B′ ⊆ 2T is called the induction of B by (S, T, L), if χ(B′)
is the induction of χ(B) by (S, T, L) in the sense of (3). Since χ(B) is an MB-convex set, χ(B′) is
an MB-convex set by Corollary 8. Hence B′ is the collection of bases of a matroid.

Corollary 10 ([18]). Let B be the collection of bases of a matroid, and B′ be the induction of B by
a linking system. Then B′ is the collection of bases of a matroid, provided B′ 6= ∅.

3.2.3 Valuated delta-matroid

In [14] (Theorem 5.2.22), it is shown that the induction of a valuated matroid is again a valuated
matroid. Here we refer to the induction of a valuated delta-matroid, which is equivalent to a special
case of MJ-convex functions.
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It is easy to see that δ : {0, 1}V → R ∪ {−∞} is a valuated delta-matroid [5], if and only if the
function f : ZV → R ∪ {+∞} defined by

f(x) =

{
−δ(x) (x ∈ {0, 1}V )
+∞ (otherwise)

(4)

is MJ-convex. Given a valuated delta-matroid δ : {0, 1}S → R ∪ {−∞} and a linking system
(S, T, L), the function δ̃ : {0, 1}T → R ∪ {−∞} defined by

δ̃(y) = sup{δ(x) | x ∈ {0, 1}S , (x, y) ∈ L} (y ∈ {0, 1}T ) (5)

is called the supremum induction of δ by (S, T, L). If such x does not exist, we define δ̃(y) = −∞.

Corollary 11. Assume that δ is a valuated delta-matroid defined on {0, 1}S. Then the supremum
induction of δ by a linking system (S, T, L), the function δ̃ in (5), is a valuated delta-matroid.

Proof. Since δ is a valuated delta-matroid, the function f : ZS → R∪{+∞} as defined in (4) with
V = S is MJ-convex. Thus the function f̃ : ZT → R∪{+∞} induced of f by (S, T, L) is MJ-convex
by Theorem 6. Since

f̃(x) =

{
−δ̃(x) (x ∈ {0, 1}T )
+∞ (otherwise)

holds, δ̃ is a valuated delta-matroid.

4 Discussion

We mention the relation between composition and induction by integral poly-linking systems. By
the equation (1) in the proof of Theorem 6, f̃ can be represented as

f̃(y) = inf
−x∈ZS

{f̄(−x) + g(−x, y)}

with the MJ-convex function f̄ : ZS → R ∪ {+∞} defined by f̄(x) = f(−x). This equation
means that f̃ is the composition of two MJ-convex functions f̄ and g. Thus induction by integral
poly-linking systems can be seen as a special case of composition.

On the basis of this observation, we could define a jump system version of the linking system.
Suppose that S and T are finite sets and L is a nonempty subset of ZS × ZT . Let us call a triple
(S, T, L) a jump linking system if the set J ⊆ ZS∪T defined by

J = {(x, y) | (−x, y) ∈ L}

is a constant-parity jump system. Note that the jump linking system is a generalization of the
integral poly-linking system.

We could also define the induction of a function by a jump linking system. Given a function f :
ZS → R∪{+∞} and a jump linking system (S, T, L), we call the function f̃ : ZT → R∪{+∞,−∞}
defined by

f̃(y) = inf{f(x) | x ∈ ZS , (x, y) ∈ L} (y ∈ ZT )
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the induction of f by (S, T, L). If such x does not exist, we define f̃(y) = +∞. Then the induction f̃

of the MJ-convex function f is MJ-convex, because f̃ is the composition of two MJ-convex functions
f̄ and g defined as in the proof of Theorem 6.

Theorem 12. Assume that f is an MJ -convex function defined on ZS. Then the function f̃ induced
by a jump linking system (S, T, L) is MJ -convex, provided f̃ > −∞.
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