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1 Introduction

The Traveling Tournament Problem (TTP), established by Easton, Nemhauser
and Trick [2], is a sports scheduling problem that abstracts important issues in
timetabling. There are some variants on this problem [6], and various studies on
TTP have been appeared in recent years. In this paper, we deal with the Constant
Distance Traveling Tournament Problem (CDTTP) [5, 7], which is a special class
of TTP. We propose a lower bound of the optimal value of CDTTP, and two
algorithms that produce feasible solutions whose objective values are close to the
proposed lower bound. For some size of instances, one of our algorithms yields
optimal solutions.

2 Problem

In this section, we introduce some terminology and definitions needed in this
paper, and then describe the constant distance traveling tournament problem
(CDTTP).

We are given a set of teams T = {1, 2, . . . , n} (n is even), and each team
has its home venue. A game is specified by an ordered pair of teams. A double
round-robin tournament is a set of games in which every team plays every other
team exactly once at its home venue and once at away (i.e., at the venue of the
opponent). Exactly 2(n−1) slots (or time periods) are required to play a double
round-robin tournament. Each team begins at its home venue and travels to
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play its games at the chosen venues. Each team then returns (if necessary) to its
home venue at the end of a tournament. The number of trips of a team is defined
by the number of moves of the team between team venues. Consecutive away
games for a team constitute a road trip; consecutive home games are a home
stand. The length of a road trip or a home stand is the number of opponents
playing against in the road trip/home stand.

The CDTTP is a special class of the original TTP [2] such that the distance
between any pair of home venues is equal to one. The CDTTP and its variations
are discussed in [5, 7]. The problem CDTTP is defined as follows.

Constant distance traveling tournament problem:

Input: the number of teams, n;
Output: a double round-robin tournament of n teams such that

1. the length of any home stand and that of any road trip is at most three;
2. no repeaters (A at B immediately followed by B at A is prohibited);
3. the total number of trips taken by teams is minimized.

Note that, in the rest of this paper, a double round-robin tournament satisfying
the above conditions 1 and 2 is called a feasible tournament.

Given a feasible tournament, it is said that a team has a break at slot s if it
has two consecutive home games or two consecutive away games in slots s − 1
and s. We also say that a team has a home break (resp., away break) at a game if
both of the game and the previous game are at home (resp., away). In a feasible
tournament S, the total number of breaks B(S) is defined as the sum of the
number of breaks of all the teams. As for the number of trips and the number
of breaks, the following lemma has been known.

Lemma 1 (Urrutia and Libeiro [7]). Let S be a feasible tournament for
CDTTP. The total number of trips D(S) and the total number of breaks B(S)
have the following relationship:

D(S) = 2n(n − 1) − B(S)/2.

3 Lower Bound

We prove the following theorem that provides a lower bound of the optimal value
of CDTTP.

Theorem 1. The total number of trips of every feasible tournament of n teams
is greater than or equal to LB(n) defined by

LB(n) def.=





(4/3)n2 − n (n ≡ 0 mod 3),
(4/3)n2 − (5/6)n − 1 (n ≡ 1 mod 3),
(4/3)n2 − (2/3)n (n ≡ 2 mod 3).
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Proof. We first consider the case that n ≡ 0 mod 3. The number of slots satisfies
2(n−1) ≡ 1 mod 3. No team can have a break at slot 1 and have three breaks in
any consecutive three slots. Thus, the number of breaks for each team is at most
(2/3)(2(n − 1) − 1) = (4/3)n − 2. The total number of breaks of every feasible
tournament is less than or equal to

n((4/3)n − 2) = (4/3)n2 − 2n.

Hence, the total number of trips of every feasible tournament is greater than or
equal to

2n(n − 1) − (1/2)((4/3)n2 − 2n) = (4/3)n2 − n.

We then consider the case that n ≡ 1 mod 3. The number of slots satisfies
2(n − 1) ≡ 0 mod 3. No team can have three breaks in consecutive three slots,
and hence each team has at most (2/3)2(n−1) = (4/3)(n−1) breaks. Moreover,
there are only two types of feasible home-away patterns that have (4/3)(n − 1)
breaks; that is, HHHAAAHHH · · ·AAA and AAAHHHAAA · · ·HHH. Since no
pair of teams has the same home-away pattern [1], at most two teams are possible
to have (4/3)(n−1) breaks and other teams have at most (4/3)(n−1)−1 breaks.
The total number of breaks of every feasible tournament is not more than

2(4/3)(n − 1) + (n − 2)((4/3)(n − 1) − 1) = (4/3)n2 − (7/3)n + 2.

The total number of trips of every feasible tournament is greater than or equal
to

2n(n − 1) − (1/2)((4/3)n2 − (7/3)n + 2) = (4/3)n2 − (5/6)n − 1.

Finally, we consider the case that n ≡ 2 mod 3. The number of home (resp.,
away) games for each team satisfies n− 1 ≡ 1 mod 3. No team can have a break
at the first home (resp., away) game and have three breaks in consecutive three
home (resp., away) games. Thus, each team has at most 2(2/3)((n − 1) − 1) =
(4/3)(n− 2) breaks. The total number of breaks of every feasible tournament is
less than or equal to

n(4/3)(n − 2) = (4/3)n2 − (8/3)n.

The total number of trips of every feasible tournament is greater than or equal
to

2n(n − 1) − (1/2)((4/3)n2 − (8/3)n) = (4/3)n2 − (2/3)n. ¤

4 Algorithms

In this section, we propose two algorithms, named the Modified Circle Method
and the Minimum Break Method, for constructing good feasible tournaments.
For each algorithm, we first construct specific single round-robin tournaments,
and modify them to double round-robin tournaments.
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4.1 Modified Circle Method

We propose the algorithm named Modified Circle Method (MCM). Our algorithm
has slight differences for each case: (1) n ≡ 0 mod 3, (2) n ≡ 1 mod 3, or (3) n ≡ 2
mod 3. We first explain the whole algorithm for the first case, and mention the
differences for other cases.

Denote the set of teams by T = {1, 2, . . . , n}. We introduce a directed graph
Ge = (T, Ae) with a vertex set T and a set of mutually disjoint directed edges

Ae def.= {(j, n + 1 − j) : dj/3e is even, 1 ≤ j ≤ n/2}
∪ {(n + 1 − j, j) : dj/3e is odd, 1 ≤ j ≤ n/2}.

Let Go = (T,Ao) be a directed graph obtained from Ge by reversing the direction
of the edge between 1 and n. For each s ∈ {1, 2, . . . , n − 1}, we define a permu-
tation πs by (πs(1), πs(2), . . . , πs(n)) = (s, s+1, . . . , n−1, 1, 2, . . . , s−1, n). For
any permutation π on T , Ge(π) (resp., Go(π)) denotes the set of n/2 matches
satisfying that every directed edge (u, v) ∈ Ae (resp., Ao) corresponds to a match
between π(u) and π(v) held at the home venue of π(v). Let X be a single round-
robin tournament satisfying that matches in slot s are defined by Go(πs) (if
s ∈ {1, 2, 3} mod 6) and Ge(πs) (if s ∈ {4, 5, 0} mod 6).

Consider the case that n ≡ 0 mod 3. For each i ∈ {1, 2, . . . , n/3− 1}, we de-
note a partial schedule of X consisting of a sequence of three slots (3i−2, 3i−1, 3i)
by Xi. Moreover, we denote a partial schedule of X consisting of two slots (n−
2, n−1) by Xn/3. Now we construct a double round-robin tournament Y by con-
catenating above partial schedules as follows: Y = (X1, X1, X2, X2, X3, X3, X4,
X4, X5, . . . , Xn

3
, Xn

3
), where Xi is a partial schedule obtained from Xi by revers-

ing all venues. Note that the time complexity to construct the tournament Y is
O(n2) (i.e., MCM runs in linear time of the input and output).

Consider the case that n ≡ 1 mod 3. We construct a single round-robin
tournament X completely same as the above case. For each i ∈ {1, 2, . . . , (n −
1)/3}, we denote a partial schedule of X consisting of a sequence of three slots
(3i − 2, 3i − 1, 3i) by Xi. We construct a double round-robin tournament Y by
concatenating partial schedules: Y = (X1, X1, X2, X2, X3, . . . , Xn−1

3
, Xn−1

3
).

Consider the case that n ≡ 2 mod 3. Let G̃e (resp., G̃o) be a directed graph
obtained from Ge (resp., Go) by reversing the direction of the edge between
n/2 − 1 and n/2 + 2. We construct a single round-robin tournament X as well
as the above cases using directed graphs G̃e and G̃o. For each i ∈ {2, 3, . . . , (n−
2)/3}, we denote a partial schedule of X consisting of a sequence of three slots
(3i − 3, 3i − 2, 3i − 1) by Xi. We denote a partial schedule of X consisting of
two slots (1, 2) by X1 and two slots (n − 2, n − 1) by X(n+1)/3. We construct
a double round-robin tournament Y by concatenating above partial schedules:
Y = (X1, X1, X2, X2, X3, . . . , Xn+1

3
,Xn+1

3
).

Lemma 2. Y is a feasible double round-robin tournament.

Proof. It is clear that Y is a double round-robin tournament. Repeater does
not appear in the tournament Y ; when the game A at B appears in slot s, the
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game B at A appears in slot s − 3 or s + 3 (if a partial schedule of three slots
includes slot s), or appears in slot s−2 or s+2 (if a partial schedule of two slots
includes slot s).

We estimate the maximum length of home stand/road trip. We first consider
partial schedules of six or four slots (Xi,Xi) and (Xi, Xi). Four consecutive
games in these partial schedules must have both of home and away games since
they include two games of the same pair of teams. Thus, the maximum length
of home stand/road trip in these partial schedules is at most three. We then
consider partial schedules of six or five slots (Xi, Xi+1) and (Xi, Xi+1). Each
team has at most three consecutive home/away games in single round-robin
tournaments X and X (where X is a single round-robin tournament obtained
from X by reversing all venues). Thus, the maximum length of home stand/road
trip in these partial schedules is also at most three. Hence, the length of any home
stand and that of any road trip in Y is at most three. ¤

Lemma 3. The total number of breaks of double round-robin tournament Y is

B(Y ) =





(4/3)n2 − (8/3)n + 2 (n ≡ 0 mod 3),
(4/3)n2 − 3n + (8/3) (n ≡ 1 mod 3),
(4/3)n2 − (13/3)n + (10/3) (n ≡ 2 mod 3).

Proof. We first consider the second slot of a partial schedule Xi that has three
slots. If a team has a break (resp., no break) at the second slot of Xi in X, this
team has two breaks (resp., no break) at the second slots of Xi and Xi in Y .
These properties are similar to the third slot of Xi that has three slots and the
second slot of Xi that has two slots.

We then consider the first slot of a partial schedule Xi. In order to know the
number of breaks at the first slots of Xi and Xi in Y , we check the followings:
(1) a team has a break or not at the first slot of Xi in X, and (2) a team has
different type games (i.e., home and away) at the first and last slots of Xi or not.
The number of positive answers for above questions is equal to the number of
breaks at the first slots of Xi and Xi in Y . We note that the following property
makes the checking process easier: the single round-robin tournament X does
not have patterns HHHH, AAAA, HAH nor AHA.

Now, we compute the number of breaks in Y . We first consider the case that
n ≡ 0 mod 3. Teams 1, u (u ≡ 0 mod 3) and n− 1 have (4/3)n− 2 breaks each;
other teams have (4/3)n− 3 breaks each. In total, we have (4/3)n2 − (8/3)n + 2
breaks in the double round-robin tournament Y .

We then consider the case that n ≡ 1 mod 3. Team n has (4/3)n − (4/3)
breaks. Teams u (u ≡ 0 mod 3, u < n/2), n/2 and v (v ≡ 1 mod 3, n/2 < v < n)
have (4/3)n− (7/3) breaks each. Other teams have (4/3)n− (10/3) breaks each.
Thus, the total number of breaks of Y is (4/3)n2 − 3n + (8/3).

We finally consider the case that n ≡ 2 mod 3. Team n has (4/3)n − (8/3)
breaks. Teams 1, u (u ≡ 0 mod 3, u < n/2 − 2), n/2 − 2, n/2, n/2 + 2 and
v (v ≡ 2 mod 3, n/2 + 2 < v < n) have (4/3)n − (11/3) breaks each. Other
teams have (4/3)n− (14/3) breaks each. Hence, the total number of breaks of Y
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is (4/3)n2 − (13/3)n + (10/3). ¤

Let the total number of trips of a feasible tournament Y be D(Y ). Using The-
orem 1 and Lemmas 1, 2 and 3, we have the following theorem on the Modified
Circle Method.

Theorem 2. The Modified Circle Method produces a feasible tournament Y such
that

D(Y ) =





(4/3)n2 − (2/3)n − 1 = LB(n) + (1/3)n − 1 (n ≡ 0 mod 3),
(4/3)n2 − (1/2)n − 4/3 = LB(n) + (1/3)n − 1/3 (n ≡ 1 mod 3),
(4/3)n2 + (1/6)n − 5/3 = LB(n) + (5/6)n − 5/3 (n ≡ 2 mod 3).

4.2 Minimum Break Method

We propose the algorithm named Minimum Break Method (MBM). Before start-
ing the explanation of MBM, see the following lemmas as for the number of
breaks in a single round-robin tournament.

Lemma 4 (de Werra [1]). For any single round-robin tournament of n teams,
the number of breaks is not less than n − 2. There exists a single round-robin
tournament that has n − 2 breaks for any even n.

Lemma 5 (Miyashiro and Matsui [4]). For any single round-robin tourna-
ment of n teams, the number of breaks is not more than n2−3n+2. There exists
a single round-robin tournament that has n2 − 3n + 2 breaks for any even n.

Let X be a single round-robin tournament satisfying the following conditions:

(C1) the number of total breaks B(X) is equal to n − 2;
(C2) no team has a break at each slot s ∈ {1, 4} mod 6 (if n ∈ {0, 1} mod 3)

or s ∈ {0, 3} mod 6 (if n ≡ 2 mod 3).

It is known that any single round-robin tournament must have at least n −
2 breaks; hence, X is a tournament with the minimum number of breaks. Here,
we have two open problems: (1) such single round-robin tournament X exists or
not, and (2) if X exists, an efficient algorithm to construct X exists or not. We
predict that a single round-robin tournament X that satisfies Conditions (C1)
and (C2) exists for any even n.

In order to obtain a single round-robin tournament satisfying Conditions
(C1) and (C2), we adopt the following strategy. We first replace Condition (C2)
to another condition:

(C1) the number of total breaks B(X) is equal to n − 2;
(C2’) no team has a break at each slot s ∈ {1, 2, 4} mod 6 (if n ∈ {0, 1} mod 3)

or s ∈ {0, 1, 3} mod 6 (if n ≡ 2 mod 3), and exactly two teams have a break
at each slot s ∈ {0, 3, 5} mod 6 (if n ∈ {0, 1} mod 3) or s ∈ {2, 4, 5} mod 6
(if n ≡ 2 mod 3).

If a tournament satisfies Conditions (C1) and (C2’), it always satisfies Conditions
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(C1) and (C2). We then try to find a single round-robin tournament satisfying
Conditions (C1) and (C2’). When n ≤ 50, we have obtained such single round-
robin tournaments by solving integer programming problems (e.g., see [3]).

Now we construct another single round-robin tournament X ′ from X by
reversing venues for each even slot. This tournament X ′ satisfies that exactly
two teams have n − 2 breaks and other teams have n − 3 breaks; hence, X ′ is a
single round-robin tournament with the maximum number of breaks. Moreover,
X ′ satisfies that every team has a break at slot s satisfying s ≡ 1 mod 3 (if
n ∈ {0, 1} mod 3, except for s = 1) or s ≡ 0 mod 3 (if n ≡ 2 mod 3).

We then construct a double round-robin tournament Y ′ with X ′. If n ≡ 0
mod 3, we denote a partial schedule of X ′ consisting of a sequence of three
slots (3i−2, 3i−1, 3i) by X ′

i for each i ∈ {1, 2, . . . , (n/3)−1}, and we denote a par-
tial schedule of X ′ consisting of two slots (n−2, n−1) by X ′

n/3. If n ≡ 1 mod 3,
for each i ∈ {1, 2, . . . , (n − 1)/3}, we denote a partial schedule of X ′ consisting
of a sequence of three slots (3i−2, 3i−1, 3i) by X ′

i. If n ≡ 2 mod 3, we denote a
partial schedule of X ′ consisting of a sequence of three slots (3i−3, 3i−2, 3i−1)
by X ′

i for each i ∈ {2, 3, . . . , (n − 2)/3}, and we denote a partial schedule of X ′

consisting of two slots (1, 2) by X ′
1 and two slots (n−2, n−1) by X ′

(n+1)/3. Now
we construct a double round-robin tournament Y ′ by concatenating above par-
tial schedules as follows: Y ′ = (X ′

1,X
′
1, X

′
2, X

′
2, X

′
3, X

′
3, X

′
4, X

′
4, X

′
5, . . .), where

X ′
i is a partial schedule obtained from X ′

i by reversing all venues.

Lemma 6. Y ′ is a feasible double round-robin tournament.

Proof. It is clear that Y ′ is a double round-robin tournament. Repeater does
not appear in the tournament Y ′; when the game A at B appears in slot s, the
game B at A appears in slot s − 3 or s + 3 (if a partial schedule of three slots
includes slot s), or appears in slot s−2 or s+2 (if a partial schedule of two slots
includes slot s). We then show that the length of any home stand and that of
any road trip is at most three. We first consider a partial schedule of six or four
slots (X ′

i,X
′
i): four consecutive games in this partial schedule must have both of

home and away games since they include two games of the same pair of teams.
No team has a break at the first slot of X ′

i in the tournament Y ′, thus four or
more consecutive home/away games do not appear in a partial schedule of six
or five slots (X ′

i, X
′
i+1). Hence, the length of any home stand and that of any

road trip is at most three. ¤

Lemma 7. The total number of breaks of double round-robin tournament Y ′ is

B(Y ′) =





(4/3)n2 − 3n + 2 (n ≡ 0 mod 3),
(4/3)n2 − (7/3)n + 2 (n ≡ 1 mod 3),
(4/3)n2 − (11/3)n + 2 (n ≡ 2 mod 3).

Proof. The single round-robin tournament X ′ satisfies that exactly two teams
have n−2 breaks and other teams have n−3 breaks. Moreover, X ′ satisfies that
every team has a break at slot s satisfying s ≡ 1 mod 3 (if n ∈ {0, 1} mod 3,
except for s = 1) or s ≡ 0 mod 3 (if n ≡ 2 mod 3). Thus, we have the following
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properties on X ′
i: (1) every team has a break at the first slot of each X ′

i in X ′

except for X ′
1, (2) no team has a break at the first slot of each X ′

i in Y ′, and
(3) every team has one or two breaks at the second and third slots (resp., zero
or one break at the second slot) of each X ′

i of three slots (resp., two slots).
Consider a partial schedule X ′

i of three slots. If a team has two breaks at
the second and third slots in X ′

i (i.e., HHH or AAA), this team has four breaks
in a partial schedule (X ′

i, X
′
i) in Y ′ (i.e., HHHAAA or AAAHHH). If a team

has just one break at the second and third slots in X ′
i (i.e., HHA, HAA, AAH

or AHH), this team has three breaks in a partial schedule (X ′
i, X

′
i) in Y ′ (i.e.,

HHAAAH, HAAAHH, AAHHHA or AHHHAA). Consider a partial schedule X ′
i

of two slots. If a team has one break at the second slot in X ′
i (i.e., HH or AA),

this team has two breaks in a partial schedule (X ′
i, X

′
i) in Y ′ (i.e., HHAA or

AAHH). If a team does not have a break at the second slot in X ′
i (i.e., HA or

AH), this team has one break in a partial schedule (X ′
i,X

′
i) in Y ′ (i.e., HAAH

or AHHA).
Now, we can compute the number of breaks for each team in a double round-

robin tournament Y ′ as follows:

(number of partial schedules of three slots) + (number of breaks) + 1,

and we can compute the total number of breaks of double round-robin tourna-
ment Y ′. ¤

Using Theorem 1 and Lemmas 1, 6 and 7, we have the following theorem for
the Minimum Break Method.

Theorem 3. If there is a single round-robin tournament satisfying Conditions
(C1) and (C2), the Minimum Break Method produces a feasible tournament Y’
such that

D(Y ′) =





(4/3)n2 − (1/2)n − 1 = LB(n) + (1/2)n − 1 (n ≡ 0 mod 3),
(4/3)n2 − (5/6)n − 1 = LB(n) (n ≡ 1 mod 3),
(4/3)n2 − (1/6)n − 1 = LB(n) + (1/2)n − 1 (n ≡ 2 mod 3).

Note that, as mentioned before, we obtained single round-robin tournaments
satisfying Conditions (C1) and (C2) for n ≤ 50. Thus, using MBM with those
single round-robin tournaments, we obtained feasible double round-robin tour-
naments Y ′ for instances up to 50 teams.

5 Results

We summarize our results on CDTTP appeared in this paper. For instances with
n ≡ 0 mod 3 teams, MCM gives better solutions compared to MBM. In contrast,
for instances with n ∈ {1, 2} mod 3 teams, MBM performs better though it needs
single round-robin tournaments satisfying Conditions (C1) and (C2). In addition,
when n ≡ 1 mod 3, MBM yields a solution that attains LB(n), i.e., an optimal
solution. We obtained single round-robin tournaments satisfying Conditions (C1)
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Table 1. Results for 16 ≤ n ≤ 24.

n LB(n) MCM MBM known

16 327 332 *327 327
18 414 419 426 417
20 520 535 529 520
22 626 633 *626 628
24 744 751 755 750

*: our solutions that attain the lower bound LB(n),
known: the known best solutions in [6], as of August 2006.

and (C2) for instances with up to 50 teams. Table 1 shows the results for 16 ≤
n ≤ 24: for n = 16, 22, MBM gave optimal solutions; for n = 20, our lower bound
showed that the known best solution is an optimal solution.

6 Conclusions

In this paper, we have considered the constant distance traveling tournament
problem (CDTTP), a simple variant on TTP. We computed a lower bound of the
optimal value of CDTTP. The proposed lower bound seems effective; we could
show that some existing and our double round-robin tournaments are optimal
using the proposed lower bound. We also proposed two algorithms to construct
feasible tournaments. Our algorithms first construct single round-robin tourna-
ments, divide them to partial schedules with two or three slots, and concatenate
them to make double round-robin tournaments. The Modified Circle Method is
a simple heuristic algorithm that runs in linear time of the size of the timetable.
The Minimum Break Method produces optimal solutions for instance with n ≡ 1
mod 3 teams, if we can obtain single round-robin tournaments satisfying some
constraints.

Our future work is to improve algorithms to construct feasible tournaments
for the CDTTP. If we could have positive conclusions for the open problems
appeared in Section 4.2, MBM becomes a polynomial time algorithm. Another
work for future is to tackle other variants on TTP (e.g., the circular distance
traveling tournament problem).
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