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Asymptotic Distribution of Wishart Matrix for Block-wise
Dispersion of Population Eigenvalues

Yo Sheena* and Akimichi Takemural

September, 2006

Abstract

This paper deals with the asymptotic distribution of Wishart matrix and its application
to the estimation of the population matrix parameter when the population eigenvalues are
block-wise infinitely dispersed. We show that the appropriately normalized eigenvectors
and eigenvalues asymptotically generate two Wishart matrices and one normally distributed
random matrix, which are mutually independent. For a family of orthogonally equivariant
estimators, we calculate the asymptotic risks with respect to the entropy or the quadratic
loss function and derive the asymptotically best estimator among the family. We numerically
show 1) the convergence in both the distributions and the risks are quick enough for a
practical use, 2) the asymptotically best estimator is robust against the deviation of the
population eigenvalues from the block-wise infinite dispersion.

Key words and phrases: covariance matrix, Wishart distribution, quadratic loss, Stein’s loss,
asymptotic risk

1 Introduction

Suppose that a p-dimensional random vector y has the covariance matrix 3. The inference for
3} has been studied in enormous amount of literature and is still an important topic from both
theoretical and practical points of view. Often we assume some structure of 3, i.e., restriction
on its parameter space {X | 3 > 0}. A structure, in some cases, arises from a theoretical reason
behind the data. In other cases, it appears as a result of exploratory analysis such as principle
component analysis or exploratory factor analysis.

For example suppose that y is generated in the following multivariate linear model;

y = Bz + e, (1)

where B is a pxm coefficient (factor loading) matrix with rank B = m, x is a latent m x 1 random
vector (common factor) and p x 1 vector e is an error term (unique factor) which is independently
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distributed from @. If we further assume that e has oI, (I,: p-dimensional identity matrix) as
its covariance matrix, X is written as

Y = B, B + 0’1,

where 32, is the nonsingular covariance matrix of . In this case 3 has the eigenvalues A\; > --- >
Ap given by

(2)

2

i +o% ifi=1,...,m,
o’ ifir=m+1,...,p.

where 7; > 0, i = 1,...,m, are the eigenvalues of BX,B’. It is often observed that o2 is quite

small compared to 7;’s, which means that the first group of eigenvalues (A, ..., \;,) is very large
compared to the second group (Ap41,--.,Ap). In this paper we call this state as “(two-)block-wise
dispersion” of the population eigenvalues.

What would happen to the sample covariance matrix, when the eigenvalues of population
covariance matrix are “infinitely” dispersed? This is an interesting question from a theoretical
standpoint. Takemura and Sheena (2005) and Sheena and Takemura (2006) deal with this problem
under “total dispersion” of population eigenvalues, namely

()\2/)\1,)\3/)\2, e 7)‘])/)\;071) — 0

This paper is a generalization of Takemura and Sheena (2005) from a theoretical point of view,
while the practical motivation is as follows; as we saw above, we often come across a practical
situation where the population eigenvalues are block-wise dispersed. It is helpful for the infer-
ence on X in practical situations to understand the behavior of the sample covariance matrix,
when the population eigenvalues are block-wise “infinitely” dispersed. The state of the popula-
tion eigenvalues being infinitely dispersed is a theoretical approximation, but understanding the
limiting behavior leads to a better insight on its neighborhood where the eigenvalues are “largely”
dispersed.

Now we formally state the framework of this paper. Let S = (s;;) be distributed according to
Wishart distribution W,,(n, %), where p is the dimension, n is the degrees of freedom, and X is
the covariance matrix. The spectral decompositions of 3 and S are given by

Y =TAIY, S-=GLG,

where G,T' € O(p), the group of p x p orthogonal matrices, and A = diag(Ay,...,A,), L =
diag(ly,...,l,), are diagonal matrices with the eigenvalues A\; > ... >\, > 0,5, > ... > 1, >0
of ¥ and S, respectively. We use the notations A = (A1,...,A,) and I = (I, ...,[,) hereafter. By
the requirement that -

G=(g;)=TG
has positive diagonal elements, the spectral decomposition S = GLG’ is almost surely uniquely

determined. Then almost surely there exists a one-to-one correspondence between the set {S |
S >0} and £ x Ot (p), where

L={U|L>>1,>0}, O (p)={GeOp)|gi>0,1<i<p}



Let m (m; in Subsection 2.3) denote the dividing point of the first block and the second block
of the eigenvalues. Now we parameterize Al as follows;

) G, ifi=1,...,m,
AZ‘{@-@ ifi=mt1,....p, @)

diOé, 1fz:1,,m,
li_{diﬁ, ifi=m+1,...,p, (4)

In this paper we always consider ¢’s are given and fixed. We also use the notations,

E = diag(&1,- -, &), €= (&,--,8),
D =diag(dy,...,d,), d=(d,....d,).

We will investigating the asymptotic distribution of S as 3/« goes to 0 while E is fixed and its
application to the estimation of 3. The state §/a =~ 0 means that the eigenvalues of 3 are two-
block-wise “largely” dispersed. In the following, the notation §/a — 0 means a limiting operation
n — oo with arbitrary sequences «,, 3,, n = 1,2, ..., such that 3,/a, — 0.

We briefly describe the content of the following sections. In Subsection 2.1 we prepare a
local coordinate system of OF(p) around I,. In Subsection 2.2 we present our main results on
asymptotic distributions and we further discuss the case of multi-block-wise infinite dispersion in
Subsection 2.3. Section 3 deals with the estimation of ¥ from decision-theoretic framework. In
Subsection 3.1 we introduce orthogonally equivariant estimators and two loss functions and in
Subsection 3.2 we calculate the asymptotic risks. We concentrate on the special case of block-wise
identity covariance matrices in Subsection 3.3, which is practically important, and we propose the
best estimator for the case with respect to each loss function. In Subsection 3.4 the convergence
speed of both distributions and risks are numerically evaluated. Together with the application to
discriminant analysis, the numerical comparisons show the superiority of the new estimators. In
Appendix we present the proofs of two lemmas and discuss analytical calculation of the asymptotic
risks.

Before concluding this subsection, we introduce some notational conventions in this paper. In
the sections other than Subsection 2.3, we always consider a same two-block partition of matrices.
For A = (a;;), a p x p matrix, A;; (1 <i,j < 2) denotes the (4, j)-block in the partition

AZ(i; §;Z>, Appimxm,  Ayp:(p—m)x(p—m).

If A is block diagonal, i.e. Aj3 = Ao = 0, we write

. A 0
A= dlag(Alh A22) = < 011 A22 ) :
For the particular case of diagonal matrix A = diag(as,...,a,), we simply write A;, Ay instead

of AH, A22, i.e. A1 = diag(al, Cen ,am), A2 = diag(am+1, . ,Clp). Let a = (aij)1§j<i§p denote
the vector of the elements in the lower triangular part of A, which is correspondingly partitioned
as a = (an, a9y, agl), where

a;; = (aij)1§j<i§ma Qoo = (aij)m+1§j<i§p> Qg1 = (aij)1§j§m<i§p'
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If a is a p-dimensional row vector, i.e., a = (ay,...,a,), then we make a partition of a as

a = (ay,asy), a; = (a1,...,4m), a2 = (Ami1,---,a0).

We write etr X = exp(tr X) for a square matrix X.

2 Asymptotic Distribution

2.1 Local Coordinates

We consider a local coordinate of O (p), u = (u;;)1<j<i<p, around the identity matrix I,,. For the
proof of the existence of such coordinate, see Appendix B of Takemura and Sheena (2005). We
have the following open sets C,, U,V and functions ¢;;, 1 <¢ < j < p;

Ce=A{u||ujl <el1<j<i<p}C RPe-1/2,
0eUCUCcCC,
IPEVC(’)+(p)7

and ¢;;(u) is a C*° function on C, such that G(u) = (g;;(u)) defined by

gij(u) = ¢ (u), 1<i<j<p, 5)
gij(u) = uy, 1<j<i<p,

is a one-to-one function from U onto V. Using V' we can construct a finite open covering of O (p)
as follows. For H; € Ot (m), Hy € OF(p —m), let

V(Hy, Hy) = diag(Hy, H2)V N O (p) = {G | G = diag(Hy, H2)G" , 3G" € V} N O™ (p).
denote the open neighborhood of diag(H7, Hs). Let

O(m,p—m) = {diag(H,, H) | H, € O"(m), Hy € Ot (p —m)}

then
O(m,p—m) C U V(Hl,HQ).
H,€0*t(m),H2e0+ (p—m)
Since O(m,p — m) is compact, we can choose a finite number of sets O = V(HY),HQT)),

7 =1,...,T, such that UI_, O > O(m,p — m). Let OO = O*(p) \ O(m,p — m), then we
have a finite open covering {O}1_, of OF(p). We denote the partition of unity subordinate to
{0 by {1,}T_,. Namely for each 7, ¢, is a continuous function from O*(p) to [0, 1], the
support of ¢, is contained in O, and 7_; 1,(G) = 1.

For O, 1 < 7 < T, we can use u as a local coordinate since G' in O can be uniquely
expressed as H"G(u) with some u in U, where

H" =diag(H" H), 7=1,....T (6)

As we will see later, we do not need a local coordinate for O, since the measure of this area
asymptotically vanishes.



Now we have (I,u) as a local coordinate on each £ x O, 7 =1,...,T. We need another
local coordinate to investigate the asymptotic behavior of S. Let g = (¢i;)1<j<i<p be defined as
follows as another coordinate on O\ for a fixed 7, 7 =1,...,T;if 1 < j <m < i < p,

p
Qij = l;/Q)‘z_l/Q Z (HQ(T))i—m,t—m utj

t=m+1

p
= ARG S (HD) "

t=m+1

and ¢;; = u;; otherwise. If we use matrices Q = (¢;;), U = (w;;) and their partitions, (7) is the
same as

Q= 23722, PHOUL DY, Qu = Uiy, Qo = Un. (8)
Conversely
Uy = ail/Qﬁl/QHéT)/Eé/ZQmD1_1/27 Ui =Qui, Uy =Qx, 9)
or ,
- OGS (HéT))t—m,i—m qj e d;1/2, fl1<j<m<i<np,
U’ZJ t=m+1 (10)
dij, otherwise.

Pairing q = (¢;;)1<j<i<p With d = (dy, . .., d,), we have another local coordinate (d, q) on D x O™,

where
D = (Dl X Dg) N Dg (11)

with

S
I

{dy|dy >--->d, >0}
Dy, = {dy|dps1 >--->dp >0}
{(d1,ds) | dp/dmi1 > B/}

The Jacobian of the transformation J((I,u) — (d,q)) is given by

a(l,u) B ol ou
o Giaa)| = e ()l (55)
— amprm H (d]—% ;Oﬂ_%ﬁ%)

i<m<i

S
|

= o™z prmtTy d

_ m(p—m) mp—m) T pom) ﬁ (12)

2.2 Main Results

The following theorem says that G asymptotically separates into two orthogonal matrices 511, G
on the diagonal blocks.

Theorem 1
1 ASﬁ/O&HO, 521 &0

2 limg/a—0 P(a € 0) =1 for any open set O C O (p) including O(m,p — m).
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Proof. Since 2 is easily proved from 1, we only prove 1 here. Let
S =(5,) = AT'STA™2 = A 3GLG'A" % ~ W,(n, L),
Suppose 1 < j < m < i < p. Note that

Si= (GAL + -+ Gl

[herefore
o N NN
Gij < Si7- = Sii

= 91 lj Z)T]
Since 5;; is distributed independently of 3, for any € > 0, there exists M such that

Sgijif (13)

P(gn < M) > 1 —c¢, V3. (14)

Besides, from the result of Lemma 1 of Takemura & Sheena (2005), for any € > 0, there exists C'
such that

s
P (l] < C) >1—¢, V. (15)

J

From (14) and (15) we have
EMQQLO as é—>0

l; o a

From this fact and (13) we have
3 50 as§—>0, 1<Vj<m<Vi<p.

Next we state a rather technical lemma, which will be used in the proofs of some theorems.
Consider a random variable (G, I, A, a, 3). We are often interested in the asymptotic expectation

of 2(G, 1, A, a, B) as B/a — 0 while T is fixed. For fixed I' and H™ = diag(H\”, H{"), H" ¢
O*(m), HQT) € O*(p — m), somewhat abusing the notation, let

2(d,q,& o, 5;0, H) = 2(THVG(u(d, q,¢ 0, 9)),1(d, @, B), A(§, 0, B), 0, ) (16)

for emphasizing the right-hand side as the function of (d, q, &, a, 3), where G(u), u(d, q, €, «, 3),
I(d,a,f), A&, a, ) are respectively defined by (5), (10), (4) and (3). For w = (w11, w92, ug1), we
have

5}Lrgou(d’q’€’&’ﬁ) = ﬂ}iargo(ull((hl)au22(‘122)7u21(d7(b€aa76)) - (Q117‘b2>0)7 (17)

hence

ﬂ}iarg(] G('Ul(d,q,é,@,ﬂ)) = G(Q11,Q22,0). (18)



Lemma 1 Suppose that there exist some a < 1/2 and b > 0 such that
2(TG, LA, B)| <betr(aGLG'A™") a.e. in (G,1) (19)

and suppose that for each T, T =1,...,T, limg/q—ox(d, q,§, o, 3;T, H®™) exists and equals to a
function

fr(H(T)G((Im q22,0),d,Q2,§). (20)
Then
}iIEOE[:E(G,l,)\,a,ﬁ)] (21)
= E[-Tr(diag(Gll(Wll), Gzz(Wm)), (d1<Wll)> dz(W22)), Zoy, 5)],

where the expectation on the right side of (21) is taken with respect to the following mutually
independent distributions

Wi ~ Wy(n, &),
W22 ~ Wp—m(n - m, EQ>7 (22)
Zoy o~ N(p—m)xm<07 Ip—m ® Im)a

and G4s(Wy,),ds(Wys), s = 1,2, are the components in the unique spectral decomposition of Wi
fors=1,2;

W11 = GllDlG/llJ Dl = dia’g(dh s 7dm)7 dl = (d17 s 7dm)7

. 23
WQQ = G22D2G122, D2 = d1ag(dm+1, e ,dp), d2 = (dm—i—la e dp> ( )

The proof is given in Appendix.
The following theorem on the asymptotic distributions is actually a corollary of Lemma 1. Let

Wi = GuD Gy,
Way = G DoG'o,
221 _ 0[1/2ﬁ—1/252—1/2§«21Di/Q7
where all the elements on the right-hand side are defined in Section 1.

Theorem 2 As §/a — 0,
/W/n i) Wm(n, El),

W 4, W,_m(n —m, By),
221 i N(p—m)Xm(07 Ipfm ® Im)

and WH, WQQ, Zoy are asymptotically mutually independently distributed.



Proof. Let ©1; : m x m symmetric matrix, @sy : (p — m) X (p — m) symmetric matrix and
Oy : m X (p —m) matrix. Consider the moment generating function

.Q?(G, l, )\, a, ﬁ) = exp(tr W]_]_@]_]_ + tr WQQ@QQ + tr 221@21)

2 —_—~
= eXp(Z tr Wsse)ss + tr Zglegl).

s=1

For H™ = diag(H\", H{"), H\” € O*(m), H{) € OF(p— m), we have
2
rTHOGu), LA 0,8) = exp{} tr(H"G(u))..D.(HVG(u)),,0,
s=1

+tr a1/2ﬁ71/25271/2(H(T)G<u))21D%/2@21}-

From (5)
(H(T)G(U))m = H2(T)U217
hence from (8)
a1/2671/25271/2(H(T)G(u))ZlD%ﬂ = Q..
This leads to

2
I’(d’ q, €7 Q, ﬁa F7 H(T)) = eXp{Z tr(H(T)G(u>)SSDS(H(T)G(U’))ISSGSS + tr Q21®21}7
s=1

with u = u(d, q, &, «, 3). Therefore from (18)
lim z(d,q.§ a,6;T,H”
im o(d,q.& 0. 3 )
2

= eXP{Z tl"(H(T)G(CIn, q22, 0>)sst(H(T)G(Q11; q22, 0>>/5s®ss +tr Q21(")21}-

s=1

From Lemma 1,

ﬁ}imo E[exp(tr Wllgll + tr WQQ@QQ + tr 221921)]

2
= E[GXP{Z tr Gss(Wss)Ds(Wss)Gss(Wss)/@ss + tr 221621}}
s=1

= E[etr WH@H]E[etr WQQ@QQ}E[etr Zgl @21],

where in the second and third equations the expectations are taken with respect to the distributions
(22) in Lemma 1. 1

2.3 Multi-block Partition

In this section, we extend Theorem 2 into multi-block cases. We partition (1,...,p) into k blocks;

1st block (mo+1,---,mq),
2nd block  (m1 +1,...,my),

kth block  (my_q +1,---,my),
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where
meg=0<mg <mg<---<myp=p.

Let [i], : =1,...,p, denote the block containing i, i.e.,
[i]=s, iftmg1+1<i<ms,.

We also use the notations my =ms —ms_1, s =1,...,k, for the block sizes.
Correspondingly to the above partition, we make the following partition of a p X p matrix

A = (ay);

A - Ay
A= oo ,  Ag img X my matrix, 1 <s,t <k.
At - A
For a diagonal matrix A = diag(ay,...,a,), we use the notation
A 0
A= : A, =diag(am, 1+1,---,am.), s=1,... k.
0 A,

Consider the following parametrization of I, A

Ai = Gap, 1<i<p.
li = diap, 1<1i<p,

In this subsection we again consider that &;’s are fixed. Now we define /W/ss, Zt, 1<t<s<k;

/V\V/ss = assD35/557

o 1/2 —1/2m—1/2/~ 1/2
ZSt - at as / ‘:‘5 / GStDt 9

where notations of the right-hand side are defined in Section 1. The following theorem is the
extension of Theorem 2.

Theorem 3 As (as/ay,a3/ag, -+, ap/ag—1) — 0,

d p—
Wss - Was(n - m5—17‘=‘8)7 1 é S S ka
A,

Zst Nfsxmt(O,Iﬁh@Imt), 1<t<s<k,

and Wss(l <s<k), Zst(l <t < s <k) are asymptotically mutually independently distributed.

Proof. Though we can prove the theorem in the same manner as the proof of Theorem 2, it is
notationally too cumbersome. Instead we will prove the theorem by using Theorem 2 recursively.
Let iy =y and 1y = ayfoy—1, t=2,... k, then [[;_;rs = a5, s=1,..., k. Note for 1 <i <p,

[4]
Tt.
1

[4]
l; = dia[i] = d; H Tt, i = Loy =&
t=1 t



We consider the moment generating function
E[exp (tr Z W..0,, + tr Z Zst@st)]
1<t<s<k

where O4(1 < s <k)and Ou(1 <t < s < k) are respectively a mg X ms symmetric matrix and
a m; X mg matrix. We have

k
R lexp(tr Z WO, + tr 1<t<§;<k Z,0,)]
B (m,}.i,%)ao E {eXp (tr Xk: WO +tr Zst@st)}

1<t<s<k

= lim --- lim E[exp (tI‘ Z Wss@ss +tr Z ZSt@St)}

0
2 k=0 1<t<s<k

We omit technical arguments on uniform convergences, which guarantees the decomposition of
lim(.,, . ,)—o in the second line into step by step limiting operations lim,, o ---lim, o in the
third line.

Consider the partitions;

(em = -
— Y (k—1 : —
G = Gy o where G*~1 = : . :
G 1k ~ ~

G e Giio1 G

Define D*, E* as partitioned matrices;
(k—1) (k—1)
D" = L 0 ) B = A -—0 )

LY = diag(ly, ..., lm,_,), A*D = diag(Ay, ..., A, ).
Leta=1, 0=qa = Hle r.. Then

I_ Lt 0 A= AR Do 0
0 D.5 |’ 0 BB )

Since as rp — 0, 3/a — 0, from Theorem 2, we have

where

Sk=1) _ a(k—l)L(k—l)a(k—l)/ A ka_1<n7A(k—1))’
/W/kk i ka(n — Mg—1, Ek)7
Ekti)Nkaﬁlt<OaIﬁlk®Ifnt)v 1§t§k_17
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and the asymptotic distributions are mutually independent. Therefore

lim F {exp (tr Xk: W,.0,, + tr > Zst@stﬂ
k=0 s=1 1<t<s<k
= F [exp (tr kz_:l ﬁ/’ss(s(kfl))@% + tr Z Zt(S(k’l))Gstﬂ
s=1 1<t<s<k—1
xFE {etr /vxv/kk@kk} X ]ﬁl E[etr Zktgkt} )

t=1

where the expectations on the right-hand side is taken with respect to the above asymptotic dis-
tributions. If we apply Theorem 2 again to S*~1 and recursively to the upper-left block Wishart
distribution which asymptotically arises, we gain the result. 1

Note that Theorem 3 reduces to Theorem 2 of Takemura and Sheena (2005) for the extreme
case of 1-element blocks mg =1, s = 1,...,p. Therefore Theorem 3 is a generalization of Theorem
2 of Takemura and Sheena (2005).

3 Application to Estimation of X

3.1 Loss Functions and Orthogonally Equivariant Estimators

In this section, we apply the asymptotic result on the distribution of S to the estimation of X
when (3/a vanishes. We take a decision-theoretic approach to evaluate the performance of the
estimators. We deal with the two loss functions; one is Stein’s loss (entropy loss) function

Li(Z, %) =tr(Z27Y) — log |[EX7Y — p, (24)
and the other is a scale-invariant quadratic loss function
Ly(2, %) = tr(ZZ ™ — I,)2 (25)
The associated risk functions are denoted as
Ry(2, %) = E[Lqy(2,2)], d=1,2.
The classical estimator of ¥ is the unbiased estimator
SV =nts,

which has been widely used for many statistical analysis, especially with statistical software pack-
ages. However, as James and Stein (1961) showed, this estimator is neither minimax nor admissible
with Stein’s loss function (24). The same drawback with respect to the quadratic loss function
(25) was reported by Olkin and Selliah (1977). Following these initiative papers, much literature
has been written seeking for a superior estimator to 3V, See Pal (1993) for the review on the
estimation of 3. In this paper we only refer to orthogonally equivariant estimators proposed by

11



Stein (1977), Dey and Srinivasan (1985) and Krishnamoorthy and Gupta (1989). An estimator of
the form ~
Y =G¥(L)G, W (L) = diag(y1(1), ..., ¥(1))
is called orthogonally equivariant; i.e., 2(GSG') = GE(S)G', VG € O(p).
Stein (1977) and Dey and Srinivasan (1985) proposed the orthogonally equivariant estimator,

335D defined by
Wi(l) = LAT®, I1<i<p,

where A/ = (n+p+1—2i)~% 3:5D5 ig of simple form but dominates 3V with substantially better
risk w.r.t the loss function (24). It is also a minimax estimator. See Dey and Srinivasan (1985) and
Sugiura and Ishibayashi (1997) for more details. Order preservation among ;(l), i =1,...,p, is
discussed in Sheena and Takemura (1992).

The orthogonally equivariant estimator $KC ig defined by

where A9 is given by
(A9 ... ,Ags)’ —A'b

with a p X p matrix A = (a;;) and a p x 1 vector b = (b;) defined by

(n+p—=2i+1)(n+p—2i+3), if i=j,
Clij = (n—i—p—Qz—i—l), lf i>j,
(n—i—p—2j+1), if j>u,

by = n+p+1—-2i, i=1,...,p.
356G is conjectured to be a minimax estimator which dominates 3V w.r.t. the loss function (25).
This was proved by Sheena (2002) for the case p = 2.
In this section we only consider orthogonally equivariant estimators given by

¥i(l) = cils, 1<i<p (26)

with some constant ¢; (1 < i < p), or in the matrix expression,
U(L)=L'*CLY?, ~ C =diag(cy,...,c,).

It is interesting that 32505 and £KC are also the minimum risk estimators among the estimators of
the form (26) respectively for L; (-, -) and Ly(-, -) when all the population eigenvalues are dispersed.
See Takemura and Sheena (2005) for more details.

3.2 Asymptotic Risk
This subsection is devoted to the calculation of the asymptotic risks szd(fz, 3)

Ry(Z,X) = lim Ry(E,®), d=1,2,

=1
B/a—0

12



for an orthogonally equivariant estimator defined by (26). Note that
Ri(2,X) = Eltr GLY2CLY*G'TA™'TY] —log|C| — E[log |[Z7/28%7 2| —p
= E[tr GLY?*CLY*G'TA'T] — i log ¢; — fj EllogX2_;1] — p- (27)
=1 =1
Ry(%,X) = E[tr(GLY?CLY*G'TA™'T - I,)?]
= E[tr(GLY?CLY*G'TA'T")?] — 2E[tr GLY*CLY*G'TA'T"] + p.  (28)

For the evaluation E[log |2~/28%71/2|], see e.g. (10) in p.132 of Muirhead (1982).
We start with the following lemma, the proof of which is given in Appendix.

Lemma 2

ﬁ}imOE[tr GLY’CL'*G'TA'T|
= E[tr Gy, D)*C\D)Y*G B[] + Eltr G2 Dy *C. DY G, 55 ]

+(p —m) tr Cy, (29)

ﬁ}imo E[tr(GLY*CLY*G'TA™'T)?]

= E[tr(G11DY*Ci DG ETY?) + E[tr(Gas Dy *Co DY Gl =5 t)]
+2(p — m)Eltr C2D1* G, B Gy DY?] + 2 tr CL E[tr B; ' G Dy > Co Dy * Gy
+(p—m)(p—m+2)Zc?+2(p—m) Z CiCs, (30)

=1 1<i<s<m

where the expectations on the right-hand side in (29) and (30) are taken with respect to the dis-
tributions in (22) and the decompositions in (23).

Now suppose that under the distribution of W, s = 1,2, in (22) and their spectral decompo-
sition in (23), we estimate E;, s = 1,2, by the following orthogonally equivariant estimators

, = GuD*c,D*GY, C, = diag(cy, ..., cm),
2 = G22D;/202D;/2G,227 C, = diag(cm-i-la cee 7Cp>a

[ o

then the risks w.r.t. each loss function (24), (25) are given by

Ri(B1,8)) = E[tr(EE]") —log|E 87! — m,
Roi(82,8n) = E[tr(B28;") — log|E:8; | — p+ m],
Ri»(E1,8)) = E[tr(EE]" —I,,)7,

Ry (B, Es) Eltr(8,8' — I,_,)?.

The following theorem gives the decomposition of the asymptotic risk, Rd(f), Y)), into the risks
R14, Rog and the residuals R3q for d =1, 2.
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Theorem 4 Ford=1,2,
Ry(2,%) = R1a(E1, 1) + Roa(E2, B) + Raa,
where .
Rs1 = (p—m) 221%
and )
Ry = 2(p—m)E[tr C?D)*G,,E7'G11D}?] + 2tr C, E[tr B; ' G, DY > C, DY G,

p-mp-mt )1 2p-m) Y e —2p-m) e

i=1 1<i<s<m =1
All the expectations are taken with respect to the distributions (22) and the decompositions (23).
Proof. From (27),
Ri(£1.%) = E[trGDy*CD/*G\E;Y) — Y loge, — Y Ellogx? ;] — m,
i=1 i=1

R P P
R21(32,3,) = Eltr G22D%/202D;/2G/22551] - Z log ¢; — Z Ellog X?L—i—&-l] —p+m.

i=m-+1 i=m+1
Using (29) together with the above result, we have the result for Ry (3%, ). From (28),
Ris(£,%1) = E[t(GuDy*C\D{*G, B - 2E[tr G Dy*C DG B Y +m,
RQQ(EQ, 22) = E[tr(GQQD;/QCQD;/QGé2551)2] - 2E[t1" GQQD%/QCQD;/2G,22E2_1} + p—m.

Using (30) and (29) together with the above result, we have the result for EQ(ZA], Y). 1

3.3 Minimum Asymptotic Risk Estimator

Consider the model (1) and suppose 71 = - -+ = 7,,,(= 7) in (2). Then a = 7 + 02 and 3 = ¢ and

(1l

1= Imy EQ - Ip—m‘ (31)

This assumption may not be very realistic. However note that it is trivially satisfied in the one-
factor model m = 1, which is frequently used in practice. In this subsection we focus on the
estimation of 3 under the condition (31). In this case, since we have no unknown parameters
anymore, the asymptotic risk is uniquely determined, hence we can derive the “best” i.e., minimum
asymptotic risk estimator among the orthogonally equivariant estimators of the form (26). The
following theorem gives the asymptotic risk for the case (31).

Theorem 5 If &, = I,,, 2y = I, ,,,, then the asymptotic risk Rd(fl, Y), d=1,2, is given by the
following function of ¢ = (c1,...,¢p)".

p p

Ri(%,%) = Z(bici —logec;) — Z Ellog X7217i+1] - D (32)

i=1 i=1

Ry(2,%) = cAc—2bc+p, (33)
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where b= (by,...,b,)" is given by

b Eld]+p—m, if 1 <i<m,
i = Bldi, ifm+1<i<p,

and p X p symmetric matriv A = (a;;) is given by

Eldi +2(p —m)di] + (p—m)(p—m +2), if1<i=j<m,
Eld2), ifm+1<i=j<p,
p—m, if 1 <e¢# 75 <m,

E ifl1<i<m<j<p,
B it1<j<m<i<p,
0, otherwise.

All the expectations are taken with respect to the distribution (22) and the decompositions (23)
with El = Im, EQ = Ip—m-

Proof. Evaluating Rjd(f)j, 3;), 1 <j,d <2in Theorem 4 when 5y = I,,,, E5 = I,,_,,,, we have
the following results.

S

Rll(é1,31> = [L1(§17Im>] = E[tI‘ él — log |é1| — m]

= E[Zdicl- — log\WHH — Zlogci -m

= ZE[dZ] Ellog [Wh,] Zlog c; —m.
i=1
~ p
Ry (B2, By) = Z Eldi]c; — Ellog |[Way|] — Z logc; —p+m.
i=m+1 i=m+1

p p
RQQ(EQ, 52) = Z E[df]c? — 2 Z E[dz]cl +p — m.
i=m-+1 i=m-+1

Next we calculate R3y in Theorem 4 when &, = I,,,, E3 = I,,_,,. Note that
2(p — m)E[tr C?Dy*G/,27'G11DY?] = 2(p — m)E[tr C?D;]

m

= 2(p—m))_ Eldic,

2trClE[tr_51G22D1/202D1/2G/22] = 2(

NE
D
N—
./-\ ~
Il
]~
=
=
N—
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Therefore

R = 3 eH(p—m)p—m-+2)+2(p— m)Eld])

+2(p—m) > ccs+2 > ccEld]—2(p—m)> .
1<i<s<m 1<i<m<s<p i=1
Combining above results, we see that (32) and (33) hold. 1

Corollary 1 The minimum asymptotic risk with respect to the loss function Ly(-,+) is given by

p p
> logb; — > Ellog xi_;_4)-

i=1 i=1

It 1s attained by SMA given by ¢; = b, i =1,...,p. The minimum asymptotic risk with respect

to the loss function Ly(-,-) is given by
p—bA'S.
It is attained by EM42 given by ¢ = A~'b.
Proof. The results are easily obtained by the minimization >%_; (b;c; —log¢;) or ¢ Ac —2b'c.

The calculation of the asymptotic risks in Theorem 5 and the ¢;’s of SMAL gpd SMA2 requires
the evaluation of E[d;], E[d?],i = 1,...,p, that is, the first and the second moment of the eigen-
values of the Wishart distribution with the identity covariance matrix. Generally we need to make
use of Monte Carlo simulation or numerical integration for the evaluation of the moments of the
eigenvalues. However when p is small and n is appropriately even or odd depending on p, the
analytic evaluation is feasible. See Section A.3 in Appendix for this evaluation.

Tables 1-5 give ¢;’s for SU $5DS $KG EA]MAl, $MA2 when p = 3,4 with several values of n.
The value of ¢;’s for the minimum asymptotic risk estimators flMAl, SMA2 ig calculated by the
aforementioned analytic method. Note that for the case p = 2, the minimum asymptotic risk
estimator naturally coincides with 25P5 (3K which is the minimum asymptotic risk estimator
for Li(Ls) when we see the total dispersion of population eigenvalues (see Takemura ans Sheena
(2005)). Asit is well known, n='l; (i = 1,..., p) tends to overestimate the corresponding eigenvalue
of 3 when i is small, while it tends to underestimate the corresponding eigenvalue of 3 when 1
is large. The estimators 315D , S modify this tendency by increasing weight ¢; < --- < ¢,. It
is seen from the tables that M4, ;M A2 enlarge the weight difference within each block in most

cases; for example when p = 4, m = 2, the relation between ¢;’s of L5085 (EKG) (say 505 (cKC), j =

1,...,4) and those of XMA1(EMA2) (say M4 (MA2) j=1,... 4) is found as
MA; SDS SDS MA; MA; SDS SDS MA;
ot <t < et <yt 3t <estt <t <l
and
C{VIAQ < c{m < cé(G < céWA?, céV[AQ < cé(G < CfG < cﬁ“?

The tables also give asymptotic risk comparison w.r.t. L; among the estimators SV, BSDS,

3 MAL (see “Asy.Risk1”) and that w.r.t. Ly among the estimators 3V, 335G 53M42 (see “Asy.Risk2”).
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Table 1: p=3,m=1

n=4 »U ESDS EKG 21\/1A1 E]WAQ n==6 »U ESDS EKG EJ\/IAl EI\/IA2
c1 0.2500 | 0.1667 | 0.1060 | 0.1667 | 0.1019 c1 0.1667 | 0.1250 | 0.0855 | 0.1250 | 0.0828
() 0.2500 | 0.2500 | 0.1332 | 0.2000 0.1321 c2 0.1667 | 0.1667 | 0.1030 | 0.1304 0.0977
c3 0.2500 | 0.5000 | 0.1902 1.0000 0.4491 c3 0.1667 | 0.2500 | 0.1352 | 0.4286 0.2675
Asy.Riskl | 2.1969 | 1.6592 1.4392 Asy.Riskl | 1.2387 | 0.9820 0.8270

R.R.R. 24.47 34.49 R.R.R. 20.72 33.23

Asy.Risk2 | 3.0000 1.4120 1.2792 Asy.Risk2 | 2.0000 1.1056 0.9644
R.R.R. 52.93 57.36 R.R.R. 44.72 51.78
n==8 »U »SDS SKG SMAy SMA n =10 >U »SDs SKG SMA, SMAz
c1 0.1250 | 0.1000 | 0.0724 | 0.1000 | 0.0707 c1 0.1000 | 0.0833 | 0.0630 | 0.0833 | 0.0619
c2 0.1250 | 0.1250 | 0.0849 | 0.0980 | 0.0782 c2 0.1000 | 0.1000 | 0.0723 | 0.0790 | 0.0655
c3 0.1250 | 0.1667 | 0.1053 | 0.2632 | 0.1878 c3 0.1000 | 0.1250 | 0.0865 | 0.1872 | 0.1438
Asy.Riskl | 0.8749 | 0.7187 0.5966 Asy.Riskl | 0.6765 | 0.5692 0.4676

R.R.R. 17.85 31.81 R.R.R. 15.85 30.88

Asy.Risk2 | 1.5000 0.9140 0.7812 Asy.Risk2 1.2000 0.7817 0.6591
R.R.R. 39.07 47.92 R.R.R. 34.86 45.07
n =20 ZU ESDS ZKG Z]VIAl EI\JAQ n =50 EU ZSDS EKG 2]\/[141 ZA{AQ
c1 0.0500 | 0.0455 | 0.0385 | 0.0455 | 0.0383 c1 0.0200 | 0.0192 | 0.0179 | 0.0192 | 0.0178
c2 0.0500 | 0.0500 | 0.0418 | 0.0410 | 0.0370 c2 0.0200 | 0.0200 | 0.0185 | 0.0173 | 0.0166
c3 0.0500 | 0.0556 | 0.0460 | 0.0735 | 0.0647 c3 0.0200 | 0.0208 | 0.0193 | 0.0248 | 0.0236
Asy.Riskl | 0.3164 | 0.2819 0.2251 Asy.Riskl | 0.1236 | 0.1155 0.0901

R.R.R. 10.89 28.84 R.R.R. 6.51 27.05

Asy.Risk2 | 0.6000 0.4598 0.3745 Asy.Risk2 | 0.2400 0.2093 0.1647
R.R.R. 23.37 37.59 R.R.R. 12.79 31.39

Table 2: p=3,m =2

n=5 EU ESDS EKG EIVIAI EJWAQ n="17 EU 2SDS EKG 2]\/[A1 E]\IAQ
c1 0.2000 | 0.1429 | 0.0944 | 0.1154 | 0.0891 c1 0.1429 | 0.1111 | 0.0784 | 0.0893 | 0.0726
() 0.2000 | 0.2000 | 0.1158 | 0.3000 0.1791 c2 0.1429 | 0.1429 | 0.0930 | 0.2083 0.1417
c3 0.2000 | 0.3333 | 0.1580 | 0.3333 0.1464 c3 0.1429 | 0.2000 | 0.1184 | 0.2000 0.1122
Asy.Riskl | 1.5769 | 1.3073 1.2107 Asy.Riskl | 1.0238 | 0.8688 0.7801

R.R.R. 17.10 23.23 R.R.R. 15.14 23.81

Asy.Risk2 | 2.4000 1.2543 1.1919 Asy.Risk2 1.7143 1.0182 0.9455
R.R.R. 47.74 50.34 R.R.R. 40.61 44.84
n=09 »U »SDS SKG SMAy SMA n=11 >U »SDs SKG SMA, SMAz
c1 0.1111 | 0.0909 | 0.0674 | 0.0732 | 0.0616 c1 0.0909 | 0.0769 | 0.0592 | 0.0623 | 0.0537
c2 0.1111 | 0.1111 | 0.0781 | 0.1577 | 0.1162 c2 0.0909 | 0.0909 | 0.0674 | 0.1260 | 0.0980
c3 0.1111 | 0.1429 | 0.0950 | 0.1429 | 0.0914 c3 0.0909 | 0.1111 | 0.0794 | 0.1111 0.0771
Asy.Riskl | 0.7635 | 0.6592 0.5793 Asy.Riskl | 0.6107 | 0.5342 0.4622

R.R.R. 13.66 24.12 R.R.R. 12.52 24.31

Asy.Risk2 | 1.3333 0.8585 0.7821 Asy.Risk2 1.0909 0.7430 0.6663
R.R.R. 35.61 41.34 R.R.R. 31.89 38.93
n =21 ZU ESDS ZKG Z]WAl EJMAQ n =51 EU ZSDS EKG ZJVIAI ZA{AQ
c1 0.0476 | 0.0435 | 0.0371 | 0.0361 0.0331 c1 0.0196 | 0.0189 | 0.0175 | 0.0164 | 0.0158
c2 0.0476 | 0.0476 | 0.0401 | 0.0613 | 0.0537 c2 0.0196 | 0.0196 | 0.0182 | 0.0232 | 0.0220
c3 0.0476 | 0.0526 | 0.0439 | 0.0526 | 0.0435 c3 0.0196 | 0.0204 | 0.0189 | 0.0204 | 0.0189
Asy.Riskl | 0.3040 | 0.2755 0.2281 Asy.Riskl | 0.1191 | 0.1117 0.0881

R.R.R. 9.37 24.97 R.R.R. 6.21 25.99

Asy.Risk2 | 0.5714 0.4473 0.3815 Asy.Risk2 | 0.2353 0.2066 0.1666
R.R.R. 21.71 33.24 R.R.R. 12.20 29.18
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Table 3: p=4,m=1

n=5 EU ESDS EKG EIVIAl E]WAQ n="17 EU zSDS EKG EJMAl EZ\{AQ
c1 0.2000 | 0.1250 | 0.0822 | 0.1250 | 0.0759 c1 0.1429 | 0.1000 | 0.0690 | 0.1000 | 0.0647
() 0.2000 | 0.1667 | 0.0973 | 0.1200 0.0927 c2 0.1429 | 0.1250 | 0.0796 | 0.0883 0.0726
c3 0.2000 | 0.2500 | 0.1222 | 0.3333 0.2310 c3 0.1429 | 0.1667 | 0.0959 | 0.2000 0.1559
ca 0.2000 | 0.5000 | 0.1746 | 1.5000 | 0.6931 c4 0.1429 | 0.2500 | 0.1259 | 0.5956 | 0.3816
Asy.Riskl | 3.0752 | 2.0603 1.5303 Asy.Riskl 1.8508 | 1.2955 0.9241

R.R.R. 33.00 50.24 R.R.R. 30.01 50.07

Asy.Risk2 | 4.0000 1.8435 1.4655 Asy.Risk2 | 2.8571 1.4923 1.1116
R.R.R. 53.91 63.36 R.R.R. 47.77 61.10
n=09 EU ESDS EKG EJVIAl 21\/[142 n=11 EU ESDS EKG E]\/[Al EA/IAQ
c1 0.1111 | 0.0833 | 0.0600 | 0.0833 | 0.0571 c1 0.0909 | 0.0714 | 0.0533 | 0.0714 | 0.0513
c2 0.1111 | 0.1000 | 0.0681 | 0.0707 | 0.0602 c2 0.0909 | 0.0833 | 0.0596 | 0.0593 | 0.0517
c3 0.1111 | 0.1250 | 0.0798 | 0.1429 0.1179 c3 0.0909 | 0.1000 | 0.0685 | 0.1111 0.0949
cq 0.1111 | 0.1667 | 0.0990 | 0.3497 0.2553 c4 0.0909 | 0.1250 | 0.0819 | 0.2413 0.1890
Asy.Riskl | 1.3436 | 0.9790 0.6852 Asy.Riskl | 1.0585 | 0.7956 0.5496

R.R.R. 27.13 49.00 R.R.R. 24.84 48.08

Asy.Risk2 | 2.2222 1.2591 0.9083 Asy.Risk2 1.8182 1.0927 0.7730
R.R.R. 43.34 59.13 R.R.R. 39.90 57.49
n =21 ZU ESDS ZKG 21\4A1 EA/IAQ n =51 EU ESDS EKG EA{Al EJ\/IAQ
c1 0.0476 | 0.0417 | 0.0346 | 0.0417 | 0.0341 c1 0.0196 | 0.0185 | 0.0170 | 0.0185 | 0.0169
c2 0.0476 | 0.0455 | 0.0372 | 0.0338 | 0.0311 c2 0.0196 | 0.0192 | 0.0176 | 0.0154 | 0.0148
c3 0.0476 | 0.0500 | 0.0404 | 0.0526 | 0.0483 c3 0.0196 | 0.0200 | 0.0182 | 0.0204 | 0.0197
ca 0.0476 | 0.0556 | 0.0444 | 0.0879 | 0.0782 cq 0.0196 | 0.0208 | 0.0189 | 0.0278 | 0.0266
Asy.Riskl | 0.5127 | 0.4183 0.2769 Asy.Riskl | 0.2016 | 0.1777 0.1122

R.R.R. 18.41 45.99 R.R.R. 11.88 44.36

Asy.Risk2 | 0.9524 0.6708 0.4526 Asy.Risk2 | 0.3922 0.3207 0.2055
R.R.R. 29.57 52.47 R.R.R. 18.22 47.59

The risks are analytically calculated except for evaluating >0, Eflog x2_,,,] by Monte Carlo sim-
ulation method using 10° random numbers. “R.R.R.” under “Asy.Riskl” or “Asy.Risk2” shows
the risk reduction rate defined by

R . AU . . <
RRER of S — The risk of ThAe risk of X < 100.
The risk of XU

It has been observed that 35P5 and $5¢ drastically reduce the risk of XY when the population
eigenvalues are close to each other. Lin and Perlman (1985) reports that when ¥ = I,, R.R.R.
of 3505 often reaches 70%. See also Sugiura and Ishibayashi (1997) for a risk comparison by
elabarate simulation. In the situation of the block-wise dispersion, the risk reduction rate of these
estimators rarely approaches 50%. Especially when n is as large as 50, the rate is always under
20%. On the other hand, the risk reduction rates of S MA and BM42 gre constantly over 30% and

often reach 50% irrespective of the values of n. It is interesting that $MA2 glways outperforms
SMA1in view of R.R.R.

3.4 Simulation studies

In this subsection, we evaluate the performance of f)MAl, $MA by Monte Carlo simulation
under the situation (31). As we saw in the previous subsection, in view of the asymptotic risks,
SMA - $IMA provide better risk reduction compared to $SDS  BKCG Iy practical point view,
however, it is important to see how largely the population eigenvalues must be dispersed so that
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Table 4: p=4,m =2

n=>5 »U »SDS »KG SMAy SMA n="17 »U »SDs SKG SMA, SMAz
c1 0.2000 | 0.1250 | 0.0822 | 0.1034 | 0.0762 c1 0.1429 | 0.1000 | 0.0690 | 0.0820 | 0.0632
c2 0.2000 | 0.1667 | 0.0973 | 0.2308 | 0.1261 c2 0.1429 | 0.1250 | 0.0796 | 0.1724 | 0.1055
c3 0.2000 | 0.2500 | 0.1222 | 0.2000 | 0.1173 c3 0.1429 | 0.1667 | 0.0959 | 0.1304 | 0.0885
cq 0.2000 | 0.5000 | 0.1746 1.0000 0.3988 c4 0.1429 | 0.2500 | 0.1259 | 0.4286 0.2425
Asy.Riskl | 3.0752 | 2.2687 1.9819 Asy.Riskl 1.8508 | 1.4334 1.2107

R.R.R. 26.23 35.55 R.R.R. 22.55 34.59

Asy.Risk2 | 4.0000 1.8668 1.7317 Asy.Risk2 | 2.8571 1.5273 1.3728
R.R.R. 53.33 56.71 R.R.R. 46.54 51.95
n=29 EU ESDS EKG EJWAl EJMAQ n=11 EU ZSDS EKG Z]\JAl EJ\IAQ
c1 0.1111 | 0.0833 | 0.0600 | 0.0682 | 0.0546 c1 0.0909 | 0.0714 | 0.0533 | 0.0586 | 0.0482
c2 0.1111 | 0.1000 | 0.0681 | 0.1362 | 0.0910 c2 0.0909 | 0.0833 | 0.0596 | 0.1119 | 0.0798
c3 0.1111 | 0.1250 | 0.0798 | 0.0980 | 0.0719 c3 0.0909 | 0.1000 | 0.0685 | 0.0790 | 0.0609
ca 0.1111 | 0.1667 | 0.0990 | 0.2632 | 0.1727 cq 0.0909 | 0.1250 | 0.0819 | 0.1872 | 0.1337
Asy.Riskl | 1.3436 | 1.0774 0.8908 Asy.Riskl | 1.0585 | 0.8700 0.7080

R.R.R. 19.81 33.70 R.R.R. 17.81 33.11

Asy.Risk2 | 2.2222 1.2992 1.1422 Asy.Risk2 1.8182 1.1337 0.9792
R.R.R. 41.54 48.60 R.R.R. 37.65 46.14
n =21 ZU ESDS ZKG Z]VIAl EI\JAQ n =51 EU ZSDS EKG 2]\/[141 ZA{AQ
c1 0.0476 | 0.0417 | 0.0346 | 0.0349 | 0.0330 c1 0.0196 | 0.0185 | 0.0170 | 0.0162 | 0.0153
c2 0.0476 | 0.0455 | 0.0372 | 0.0577 | 0.0531 c2 0.0196 | 0.0192 | 0.0176 | 0.0227 | 0.0211
c3 0.0476 | 0.0500 | 0.0404 | 0.0410 | 0.0352 c3 0.0196 | 0.0200 | 0.0182 | 0.0173 | 0.0163
ca 0.0476 | 0.0556 | 0.0444 | 0.0735 | 0.0615 cq 0.0196 | 0.0208 | 0.0189 | 0.0248 | 0.0232
Asy.Riskl | 0.5127 | 0.4477 0.3477 Asy.Riskl | 0.2016 | 0.1857 0.1377

R.R.R. 12.68 32.18 R.R.R. 7.90 31.73

Asy.Risk2 | 0.9524 0.7013 0.5722 Asy.Risk2 | 0.3922 0.3331 0.2544
R.R.R. 26.36 39.92 R.R.R. 15.06 35.13

Table 5: p=4,m =3

n=4 »U »SDS »KG SMAy SMA n==6 »U »SDs SKG SMAy SMAz
c1 0.2500 | 0.1429 | 0.0919 | 0.1071 0.0852 c1 0.1667 | 0.1111 | 0.0749 | 0.0812 | 0.0678
c2 0.2500 | 0.2000 | 0.1111 | 0.2500 | 0.1670 c2 0.1667 | 0.1429 | 0.0873 | 0.1667 | 0.1248
c3 0.2500 | 0.3333 | 0.1449 | 0.6000 | 0.2383 c3 0.1667 | 0.2000 | 0.1072 | 0.3733 | 0.2028
ca 0.2500 | 1.0000 | 0.2174 | 1.0000 | 0.1698 cq 0.1667 | 0.3333 | 0.1461 | 0.3333 | 0.1209
Asy.Riskl | 4.8592 | 3.6569 3.4447 Asy.Riskl | 2.2985 | 1.7446 1.5186

R.R.R. 24.74 29.11 R.R.R. 24.10 33.93

Asy.Risk2 | 5.0000 2.0872 1.9697 Asy.Risk2 | 3.3333 1.6702 1.5097
R.R.R. 58.26 60.61 R.R.R. 49.89 54.71
n==8 EU ESDS EKG EZWAl EA/[AQ n =10 EU ZSDS EKG Z]\JAl 2]\4A2
c1 0.1250 | 0.0909 | 0.0642 | 0.0660 | 0.0569 c1 0.1000 | 0.0769 | 0.0565 | 0.0560 | 0.0493
c2 0.1250 | 0.1111 | 0.0733 | 0.1250 | 0.0999 c2 0.1000 | 0.0909 | 0.0636 | 0.1000 | 0.0833
c3 0.1250 | 0.1429 | 0.0870 | 0.2591 0.1670 c3 0.1000 | 0.1111 | 0.0737 | 0.1944 | 0.1385
cq 0.1250 | 0.2000 | 0.1108 | 0.2000 | 0.0966 ca 0.1000 | 0.1429 | 0.0896 | 0.1429 | 0.0810
Asy.Riskl 1.5538 1.2032 0.9929 Asy.Riskl 1.1828 | 0.9327 0.7412

R.R.R. 22.57 36.10 R.R.R. 21.15 37.34

Asy.Risk2 | 2.5000 1.3948 1.2111 Asy.Risk2 | 2.0000 1.1991 1.0067
R.R.R. 44.21 51.56 R.R.R. 40.05 49.66
n =20 ZU ESDS ZKG EJWAl EJMAQ n =50 EU ESDS EKG Z]\JAl EJ\IAQ
c1 0.0500 | 0.0435 | 0.0358 | 0.0326 | 0.0303 c1 0.0200 | 0.0189 | 0.0172 | 0.0151 0.0146
c2 0.0500 | 0.0476 | 0.0386 | 0.0500 | 0.0455 c2 0.0200 | 0.0196 | 0.0179 | 0.0200 | 0.0192
c3 0.0500 | 0.0526 | 0.0421 | 0.0808 | 0.0694 c3 0.0200 | 0.0204 | 0.0186 | 0.0271 0.0256
ca 0.0500 | 0.0588 | 0.0465 | 0.0588 | 0.0450 ca 0.0200 | 0.0213 | 0.0193 | 0.0213 | 0.0192
Asy.Riskl | 0.5385 | 0.4484 0.3218 Asy.Riskl | 0.2069 | 0.1836 0.1207

R.R.R. 16.73 40.24 R.R.R. 11.28 41.65

Asy.Risk2 | 1.0000 0.7122 0.5395 Asy.Risk2 | 0.4000 0.3293 0.2236
R.R.R. 28.78 46.05 R.R.R. 17.68 44.11
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the use of 2MAd, d = 1,2, is recommended. The convergence speed of the distributions given in
Theorem 2, which is an interesting topic by itself, is closely related to this problem.

To see the convergence speed in both distributions and risks, we carried out Monte Carlo
Simulation for the two cases p =3, m =1 and p = 4, m = 1. In each case, we took 11 values
1.0, 0.8, 0.6, 0.4, 0.2, 107%(i = 1,...,6) in the convergence parameter 3, while « is fixed at 1. We
took three different values of n in each case and generated 10° random Wishart matrices under
given p, n, 3. The result is given in Table 6 (p = 3,m = 1) and Table 7 (p = 4,m = 1). The upper
part of each table shows the speed of the distributional convergence in Theorem 2. Note that
when &y = I,,, &y = I,_,,, the asymptotic distribution of a diagonal element of W,, s = 1,2,
is a x? distribution. The labels in the tables are given as follows with x2(«), 2(«) denoting the
lower o percentage points of x? distribution with n degrees of freedom and the standard normal
distribution, respectively ;

Table 6

Prob 1la = P(Wy; < x2(0.05)), Prob 1b = P(W7; < x2(0.95)),
Prob 2a = P((Was)11 < x2_,(0.05)), Prob 2b = P((Way)11 < x2_,(0.95)),
Prob 3a = P((Wa)as < x2_,(0.05)), Prob 3b = P((Was)as < x2_,(0.95)),
Prob 4a = P((Zx )11 < 2(0.05)), Prob 4b = P((Z1)1 < 2(0.95)),
Prob 5a = P((Zy1)a1 < 2(0.05)), Prob 5b = P((Z21)21 < 2(0.95)),
Table 7

Prob la = P(Wy; < x2(0. 05)), Prob 1b = P(Wy; < Xn(o.95)),
Prob 2a = P((Wa)1; < Xn 1(0.05)), Prob 2b = P((W2 1 < Xn 1(0.95)),
Prob 3a = ((Wz )33 < x2_,(0.05)), Prob 3b = P((Wg )33 < x2_1(0.95)),
Prob 4a = ((221)11 < 2(0.05)), Prob 4b = P((Z2 )11 < 2(0.95)),
Prob 5a = P((Zy)s1 < 2(0.05)), Prob 5b = P((Za)s1 < 2(0.95)).

In the lower part of each table, “Risk 1.*” and “Risk 2_*” show the risks of the corresponding
estimator X* respectively for L; and Ls. The tables show that

1. The convergence of the diagonal elements of Wss, s = 1,2, is so rapid that when g = 0.1,
the asymptotic distribution already gives a good approximation for the exact distribution.
When g = 0.1, every probability of the diagonal elements is within 0.01 deviation from the
exact asymptotic probability.

2. The convergence speed of Z is quite slow compared to that of the diagonal elements of
W,,, s =1,2. For a good approximation as above, 3 must be as small as 107 or 107°.

3. The risks also rapidly converge to the asymptotic risks so that § = 0.1 is small enough to
give a good approximation. Actually all the risks in the tables when 3 = 0.1 are within the
+5% interval centered at the exact asymptotic risk.

4. The risk of ZMAd ¢ = 1,2, is always lower than that of the competing estimators. Most
notably their superiority in risk is kept even when the population eigenvalues are all equal.
It seems that f}MAd, d = 1,2, has robustness to the deviation from the dispersion of the
population eigenvalues.
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Table 6: p=3,m=1

n = 10 1 0.8 0.6 0.4 0.2 10-1 10—2 10-3 10— 1 10-5 106 Asymp.
Prob la 0.4994 | 0.3992 | 0.2814 | 0.1551 | 0.0695 | 0.0534 | 0.0501 | 0.0491 | 0.0507 | 0.0491 | 0.0508 | 0.0500
Prob 2a 0.4091 | 0.3273 | 0.2321 | 0.1321 | 0.0677 | 0.0558 | 0.0516 | 0.0489 | 0.0504 | 0.0495 | 0.0502 | 0.0500
Prob 3a 0.4121 | 0.3302 | 0.2311 | 0.1317 | 0.0684 | 0.0564 | 0.0503 | 0.0499 | 0.0505 | 0.0499 | 0.0518 | 0.0500
Prob 4a 0.2024 | 0.1799 | 0.1502 | 0.1072 | 0.0597 | 0.0385 | 0.0263 | 0.0255 | 0.0294 | 0.0429 | 0.0499 | 0.0500
Prob 5a 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0269 | 0.0500 | 0.0500
Prob 1b 0.9700 | 0.9636 | 0.9572 | 0.9531 | 0.9503 | 0.9507 | 0.9499 | 0.9514 | 0.9496 | 0.9497 | 0.9496 | 0.9500
Prob 2b 0.9993 | 0.9985 | 0.9955 | 0.9871 | 0.9695 | 0.9576 | 0.9508 | 0.9498 | 0.9503 | 0.9488 | 0.9498 | 0.9500
Prob 3b 0.9994 | 0.9983 | 0.9957 | 0.9874 | 0.9693 [ 0.9582 | 0.9508 | 0.9509 | 0.9496 | 0.9500 | 0.9497 | 0.9500
Prob 4b 0.6174 | 0.6492 | 0.6986 | 0.7671 | 0.8528 | 0.8924 | 0.9236 | 0.9255 | 0.9301 | 0.9451 | 0.9515 | 0.9500
Prob 5b 0.4137 | 0.4673 | 0.5465 | 0.6624 | 0.7937 | 0.8530 | 0.8971 | 0.8994 | 0.9001 | 0.9275 | 0.9504 | 0.9500
Risk 1.U 0.6769 | 0.6753 | 0.6786 | 0.6779 | 0.6777 | 0.6778 | 0.6784 | 0.6757 | 0.6759 | 0.6758 | 0.6800 | 0.6765

Risk 1.SDS 0.4589 | 0.4611 | 0.4770 | 0.5038 | 0.5409 | 0.5580 | 0.5701 | 0.5687 | 0.5690 | 0.5684 | 0.5727 | 0.5692
Risk 1-MA1 | 0.3595 | 0.3644 | 0.3824 | 0.4091 | 0.4400 | 0.4553 | 0.4677 | 0.4668 | 0.4677 | 0.4660 | 0.4704 | 0.4676
Risk 2_U 1.1996 | 1.1997 | 1.2017 | 1.1976 | 1.1983 | 1.1989 | 1.1980 | 1.1966 | 1.2020 | 1.1990 | 1.2021 | 1.2000
Risk 2_.KG 0.7117 | 0.7132 | 0.7228 | 0.7407 | 0.7641 | 0.7748 | 0.7815 | 0.7812 | 0.7806 | 0.7811 | 0.7839 | 0.7817
Risk 2.MA2 | 0.6109 | 0.6147 | 0.6255 | 0.6397 | 0.6540 | 0.6625 | 0.6706 | 0.6703 | 0.6704 | 0.6689 | 0.6725 | 0.6591

n = 20 1 0.8 0.6 0.4 0.2 10~ T 10~2 10-3 10~1 10—° 10-F Asymp.
Prob 1a 0.6164 | 0.4550 | 0.2706 | 0.1187 | 0.0574 | 0.0523 | 0.0495 | 0.0506 | 0.0517 | 0.0491 | 0.0498 | 0.0500
Prob 2a 0.5114 | 0.3837 | 0.2285 | 0.1027 | 0.0608 | 0.0537 | 0.0511 | 0.0498 | 0.0505 | 0.0490 | 0.0494 | 0.0500
Prob 3a 0.5081 | 0.3856 | 0.2309 | 0.1043 | 0.0594 | 0.0528 | 0.0511 | 0.0508 | 0.0493 | 0.0513 | 0.0499 | 0.0500
Prob 4a 0.2493 | 0.2196 | 0.1684 | 0.1100 | 0.0560 | 0.0377 | 0.0257 | 0.0264 | 0.0328 | 0.0483 | 0.0513 | 0.0500
Prob 5a 0.0015 | 0.0015 | 0.0008 | 0.0002 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0003 | 0.0451 | 0.0497 | 0.0500
Prob 1b 0.9767 | 0.9661 | 0.9595 | 0.9543 | 0.9515 | 0.9484 | 0.9513 | 0.9500 | 0.9498 | 0.9498 | 0.9494 | 0.9500
Prob 2b 0.9995 | 0.9984 | 0.9936 | 0.9816 | 0.9631 | 0.9547 | 0.9513 | 0.9499 | 0.9498 | 0.9511 | 0.9500 | 0.9500
Prob 3b 0.9994 | 0.9983 | 0.9940 | 0.9815 | 0.9623 | 0.9552 | 0.9520 | 0.9516 | 0.9499 | 0.9501 | 0.9505 | 0.9500
Prob 4b 0.5542 | 0.6008 | 0.6689 | 0.7653 | 0.8592 | 0.8975 | 0.9200 | 0.9257 | 0.9334 | 0.9499 | 0.9508 | 0.9500
Prob 5b 0.3123 | 0.3793 | 0.4993 | 0.6566 | 0.8026 | 0.8574 | 0.8953 | 0.8998 | 0.8987 | 0.9457 | 0.9503 | 0.9500
Risk 1.U 0.3178 | 0.3179 | 0.3181 | 0.3171 | 0.3183 | 0.3178 | 0.3177 | 0.3175 | 0.3177 | 0.3171 | 0.3176 | 0.3164

Risk 1.SDS 0.2363 | 0.2390 | 0.2486 | 0.2628 | 0.2767 | 0.2802 | 0.2829 | 0.2830 | 0.2833 | 0.2827 | 0.2832 | 0.2819
Risk 1_.MA1 | 0.1880 | 0.1923 | 0.2023 | 0.2115 | 0.2200 | 0.2236 | 0.2261 | 0.2262 | 0.2267 | 0.2260 | 0.2262 | 0.2251
Risk 2_U 0.5995 | 0.6011 | 0.6008 | 0.5992 | 0.5999 | 0.6006 | 0.5992 | 0.5987 | 0.6005 | 0.6003 | 0.6011 | 0.6000
Risk 2_.KG 0.4085 | 0.4117 | 0.4226 | 0.4384 | 0.4530 | 0.4568 | 0.4595 | 0.4598 | 0.4600 | 0.4593 | 0.4594 | 0.4598
Risk 2.MA2 | 0.3563 | 0.3606 | 0.3674 | 0.3706 | 0.3744 | 0.3775 | 0.3792 | 0.3794 | 0.3801 | 0.3797 | 0.3793 | 0.3745

n = 50 1 0.8 0.6 0.4 0.2 10T 10—2 10—3 10—4 10—° 10=6 Asymp.
Prob la 0.7358 | 0.4769 | 0.2076 | 0.0793 | 0.0532 | 0.0503 | 0.0484 | 0.0506 | 0.0506 | 0.0485 | 0.0501 | 0.0500
Prob 2a 0.6110 | 0.4089 | 0.1725 | 0.0720 | 0.0549 | 0.0511 | 0.0512 | 0.0498 | 0.0505 | 0.0489 | 0.0499 | 0.0500
Prob 3a 0.6079 | 0.4100 | 0.1737 | 0.0732 | 0.0564 | 0.0513 | 0.0495 | 0.0484 | 0.0487 | 0.0489 | 0.0504 | 0.0500
Prob 4a 0.2992 | 0.2529 | 0.1788 | 0.1042 | 0.0541 | 0.0368 | 0.0271 | 0.0274 | 0.0411 | 0.0493 | 0.0500 | 0.0500
Prob 5a 0.0200 | 0.0109 | 0.0031 | 0.0002 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0072 | 0.0490 | 0.0506 | 0.0500
Prob 1b 0.9823 | 0.9707 | 0.9606 | 0.9532 | 0.9511 | 0.9499 | 0.9485 | 0.9503 | 0.9489 | 0.9500 | 0.9505 | 0.9500
Prob 2b 0.9995 | 0.9979 | 0.9883 | 0.9696 | 0.9567 | 0.9519 | 0.9503 | 0.9511 | 0.9498 | 0.9506 | 0.9498 | 0.9500
Prob 3b 0.9996 | 0.9977 | 0.9889 | 0.9705 | 0.9557 | 0.9528 | 0.9495 | 0.9499 | 0.9500 | 0.9506 | 0.9498 | 0.9500
Prob 4b 0.5050 | 0.5599 | 0.6582 | 0.7701 | 0.8610 | 0.8967 | 0.9231 | 0.9266 | 0.9408 | 0.9502 | 0.9495 | 0.9500
Prob 5b 0.2273 | 0.3156 | 0.4805 | 0.6648 | 0.8100 | 0.8613 | 0.8960 | 0.8993 | 0.9066 | 0.9494 | 0.9498 | 0.9500
Risk 1.U 0.1223 | 0.1226 | 0.1227 | 0.1229 | 0.1228 | 0.1228 | 0.1226 | 0.1223 | 0.1228 | 0.1221 | 0.1230 | 0.1236

Risk 1.SDS 0.1006 | 0.1026 | 0.1074 | 0.1117 | 0.1137 | 0.1143 | 0.1145 | 0.1143 | 0.1148 | 0.1140 | 0.1149 | 0.1155
Risk IMA1 0.0814 | 0.0843 | 0.0867 | 0.0871 | 0.0882 | 0.0888 | 0.0891 | 0.0891 | 0.0896 | 0.0887 | 0.0895 | 0.0901
Risk 2_U 0.2391 | 0.2399 | 0.2400 | 0.2401 | 0.2402 | 0.2404 | 0.2403 | 0.2391 | 0.2405 | 0.2389 | 0.2406 | 0.2400
Risk 2_.KG 0.1874 | 0.1906 | 0.1982 | 0.2049 | 0.2079 | 0.2087 | 0.2091 | 0.2086 | 0.2096 | 0.2083 | 0.2097 | 0.2093
Risk 2.MA2 | 0.1641 | 0.1673 | 0.1669 | 0.1643 | 0.1649 | 0.1654 | 0.1658 | 0.1656 | 0.1665 | 0.1650 | 0.1663 | 0.1647

Because of the robustness, f]MAd, d = 1,2, seem to be useful for various applications. Now
as the last topic in this section, apart from a decision-theoretic approach, we evaluate these new
estimators’ performance in discriminant analysis. We use a well-known example of Fisher’s iris
data. The data consists of 50 samples from each of the three groups(species) with 4-dimensional
variable (x;:sepal length(cm), zo:sepal width(cm), x3:petal length(cm), z4:petal width(cm)). We
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Table 7: p=4,m=1

n=11 1 0.8 0.6 0.4 0.2 10-1 10—2 10-3 10— 1 10-5 106 Asymp.
Prob la 0.5852 | 0.4760 | 0.3396 | 0.1881 | 0.0751 | 0.0554 | 0.0517 | 0.0497 | 0.0495 | 0.0498 | 0.0489 | 0.0500
Prob 2a 0.3156 | 0.2620 | 0.1937 | 0.1166 | 0.0660 | 0.0557 | 0.0505 | 0.0494 | 0.0510 | 0.0501 | 0.0492 | 0.0500
Prob 3a 0.3146 | 0.2620 | 0.1920 | 0.1172 | 0.0651 | 0.0560 | 0.0515 | 0.0503 | 0.0496 | 0.0494 | 0.0503 | 0.0500
Prob 4a 0.1955 | 0.1794 | 0.1533 | 0.1124 | 0.0650 | 0.0431 | 0.0283 | 0.0284 | 0.0315 | 0.0449 | 0.0507 | 0.0500
Prob 5a 0.1312 | 0.1206 | 0.1005 | 0.0685 | 0.0342 [ 0.0205 | 0.0131 | 0.0131 | 0.0172 | 0.0391 | 0.0497 | 0.0500
Prob 1b 0.9761 | 0.9676 | 0.9610 | 0.9547 | 0.9521 | 0.9510 | 0.9500 | 0.9510 | 0.9495 | 0.9508 | 0.9501 | 0.9500
Prob 2b 0.9986 | 0.9977 | 0.9948 | 0.9863 | 0.9690 | 0.9581 | 0.9505 | 0.9510 | 0.9507 | 0.9509 | 0.9493 | 0.9500
Prob 3b 0.9985 | 0.9979 | 0.9947 | 0.9861 | 0.9681 | 0.9570 | 0.9509 | 0.9515 | 0.9499 | 0.9508 | 0.9508 | 0.9500
Prob 4b 0.6525 | 0.6774 | 0.7152 | 0.7789 | 0.8576 | 0.8979 | 0.9251 | 0.9276 | 0.9310 | 0.9454 | 0.9501 | 0.9500
Prob 5b 0.5899 | 0.6184 | 0.6607 | 0.7327 | 0.8304 | 0.8751 | 0.9091 | 0.9115 | 0.9185 | 0.9399 | 0.9508 | 0.9500
Risk 1.U 1.0566 | 1.0583 | 1.0552 | 1.0592 | 1.0577 | 1.0583 | 1.0603 | 1.0544 | 1.0574 | 1.0573 | 1.0559 | 1.0585

Risk 1.SDS 0.6514 | 0.6572 | 0.6714 | 0.7092 | 0.7558 | 0.7781 | 0.7954 | 0.7920 | 0.7943 | 0.7942 | 0.7927 | 0.7956
Risk 1-MA1 | 0.4064 | 0.4154 | 0.4367 | 0.4738 | 0.5104 | 0.5295 | 0.5485 | 0.5471 | 0.5484 | 0.5478 | 0.5468 | 0.5496
Risk 2_U 1.8199 | 1.8213 | 1.8147 | 1.8170 | 1.8175 | 1.8199 | 1.8210 | 1.8147 | 1.8206 | 1.8180 | 1.8176 | 1.8182
Risk 2_.KG 1.0173 | 1.0214 | 1.0291 | 1.0493 | 1.0749 | 1.0876 | 1.0939 | 1.0921 | 1.0929 | 1.0926 | 1.0915 | 1.0927
Risk 2.MA2 | 0.5967 | 0.6075 | 0.6326 | 0.6767 | 0.7268 | 0.7516 | 0.7728 | 0.7724 | 0.7737 | 0.7733 | 0.7719 | 0.7730

n =21 1 0.8 0.6 0.4 0.2 10~ T 10~2 10-3 10~1 10—° 10-F Asymp.
Prob 1a 0.7030 | 0.5419 | 0.3317 | 0.1428 | 0.0601 | 0.0532 | 0.0503 | 0.0505 | 0.0498 | 0.0495 | 0.0509 | 0.0500
Prob 2a 0.4043 | 0.3183 | 0.2017 | 0.0985 | 0.0579 | 0.0547 | 0.0508 | 0.0495 | 0.0492 | 0.0505 | 0.0505 | 0.0500
Prob 3a 0.3995 | 0.3222 | 0.2019 | 0.0975 | 0.0581 | 0.0527 | 0.0507 | 0.0504 | 0.0496 | 0.0497 | 0.0493 | 0.0500
Prob 4a 0.2413 | 0.2156 | 0.1748 | 0.1172 | 0.0601 | 0.0421 | 0.0297 | 0.0292 | 0.0344 | 0.0480 | 0.0503 | 0.0500
Prob 5a 0.1720 | 0.1533 | 0.1185 | 0.0711 | 0.0331 | 0.0201 | 0.0141 | 0.0137 | 0.0211 | 0.0484 | 0.0505 | 0.0500
Prob 1b 0.9830 | 0.9737 | 0.9627 | 0.9557 | 0.9502 | 0.9506 | 0.9503 | 0.9504 | 0.9497 | 0.9505 | 0.9505 | 0.9500
Prob 2b 0.9989 | 0.9977 | 0.9929 | 0.9809 | 0.9617 | 0.9548 | 0.9507 | 0.9501 | 0.9488 | 0.9500 | 0.9514 | 0.9500
Prob 3b 0.9988 | 0.9975 | 0.9935 | 0.9805 | 0.9628 | 0.9549 | 0.9509 | 0.9502 | 0.9501 | 0.9496 | 0.9487 | 0.9500
Prob 4b 0.5985 | 0.6278 | 0.6881 | 0.7757 | 0.8657 | 0.8998 | 0.9262 | 0.9272 | 0.9339 | 0.9476 | 0.9494 | 0.9500
Prob 5b 0.5303 | 0.5632 | 0.6291 | 0.7282 | 0.8368 | 0.8794 | 0.9118 | 0.9130 | 0.9219 | 0.9479 | 0.9504 | 0.9500
Risk 1.U 0.5121 | 0.5136 | 0.5135 | 0.5116 | 0.5115 | 0.5128 | 0.5110 | 0.5127 | 0.5115 | 0.5109 | 0.5119 | 0.5127

Risk 1.SDS 0.3503 | 0.3552 | 0.3677 | 0.3871 | 0.4056 | 0.4134 | 0.4167 | 0.4183 | 0.4172 | 0.4169 | 0.4177 | 0.4183
Risk 1_-MA1 | 0.2241 | 0.2315 | 0.2461 | 0.2568 | 0.2650 | 0.2715 | 0.2759 | 0.2772 | 0.2759 | 0.2764 | 0.2765 | 0.2769
Risk 2_U 0.9512 | 0.9514 | 0.9537 | 0.9503 | 0.9516 | 0.9521 | 0.9477 | 0.9535 | 0.9520 | 0.9501 | 0.9505 | 0.9524
Risk 2_.KG 0.6059 | 0.6109 | 0.6233 | 0.6429 | 0.6607 | 0.6669 | 0.6692 | 0.6708 | 0.6700 | 0.6695 | 0.6707 | 0.6708
Risk 2.MA2 | 0.3510 | 0.3622 | 0.3861 | 0.4114 | 0.4326 | 0.4433 | 0.4516 | 0.4532 | 0.4521 | 0.4524 | 0.4525 | 0.4526

n =51 1 0.8 0.6 0.4 0.2 10-1 10—2 10-3 10— 1 10-5 10-6 Asymp.
Prob la 0.8209 | 0.5805 | 0.2691 | 0.0916 | 0.0533 | 0.0492 | 0.0498 | 0.0504 | 0.0501 | 0.0504 | 0.0500 | 0.0500
Prob 2a 0.5101 | 0.3626 | 0.1647 | 0.0721 | 0.0560 | 0.0522 | 0.0501 | 0.0502 | 0.0501 | 0.0504 | 0.0500 | 0.0500
Prob 3a 0.5098 | 0.3610 | 0.1669 | 0.0722 | 0.0555 | 0.0533 | 0.0500 | 0.0507 | 0.0479 | 0.0498 | 0.0506 | 0.0500
Prob 4a 0.2912 | 0.2595 | 0.1878 | 0.1118 | 0.0604 | 0.0415 | 0.0303 | 0.0291 | 0.0403 | 0.0507 | 0.0491 | 0.0500
Prob 5a 0.2191 | 0.1863 | 0.1307 | 0.0689 | 0.0308 | 0.0196 | 0.0133 | 0.0148 | 0.0313 | 0.0501 | 0.0499 | 0.0500
Prob 1b 0.9891 | 0.9762 | 0.9649 | 0.9548 | 0.9507 | 0.9501 | 0.9504 | 0.9501 | 0.9504 | 0.9505 | 0.9497 | 0.9500
Prob 2b 0.9992 | 0.9970 | 0.9889 | 0.9700 | 0.9573 [ 0.9526 | 0.9502 | 0.9498 | 0.9503 | 0.9507 | 0.9504 | 0.9500
Prob 3b 0.9990 | 0.9973 | 0.9891 | 0.9712 | 0.9565 | 0.9521 | 0.9499 | 0.9513 | 0.9503 | 0.9506 | 0.9492 | 0.9500
Prob 4b 0.5383 | 0.5836 | 0.6703 | 0.7803 | 0.8683 | 0.9022 | 0.9272 | 0.9286 | 0.9411 | 0.9494 | 0.9503 | 0.9500
Prob 5b 0.4666 | 0.5129 | 0.6101 | 0.7334 | 0.8386 | 0.8789 | 0.9081 | 0.9153 | 0.9312 | 0.9496 | 0.9503 | 0.9500
Risk 1.U 0.2018 | 0.2022 | 0.2019 | 0.2017 | 0.2019 | 0.2017 | 0.2020 | 0.2017 | 0.2020 | 0.2023 | 0.2018 | 0.2016

Risk 1.SDS 0.1566 | 0.1592 | 0.1658 | 0.1721 | 0.1758 | 0.1768 | 0.1780 | 0.1777 | 0.1780 | 0.1783 | 0.1779 | 0.1777
Risk IMA1 0.1037 | 0.1083 | 0.1109 | 0.1088 | 0.1104 | 0.1113 | 0.1125 | 0.1124 | 0.1123 | 0.1124 | 0.1125 | 0.1122
Risk 2_U 0.3923 | 0.3939 | 0.3920 | 0.3916 | 0.3920 | 0.3924 | 0.3927 | 0.3919 | 0.3931 | 0.3929 | 0.3920 | 0.3922
Risk 2_.KG 0.2896 | 0.2938 | 0.3038 | 0.3127 | 0.3179 | 0.3194 | 0.3208 | 0.3203 | 0.3211 | 0.3215 | 0.3208 | 0.3207
Risk 2.MA2 | 0.1785 | 0.1867 | 0.1943 | 0.1959 | 0.2010 | 0.2033 | 0.2057 | 0.2055 | 0.2054 | 0.2056 | 0.2059 | 0.2055

downloaded the data from the website http://www-unix.oit.umass.edu/ statdata. We let
azy), 1=1,2,3, 7 =1,...,50 denote the jth sample in the ith group. The estimator to be tested
are the traditional estimators f]U, 33508 , $KC and the new estimators XA]MAl, $MA2 which are
formulated under the condition p =4, m = 1. "

(2

We carry out cross validations. Suppose a learning data set y;”, j =1,..., N, is chosen from
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Table 8: 10-sample-set

Learning | XV 3PS | BEG | MAL | $IM A,
Data Set
1 82.50 | 83.33 | 83.33 | 81.67 | 82.50
2 85.83 | 85.00 | 85.00 | 85.00 | 85.00
3 82.50 | 82.50 | 82.50 | 82.50 | 82.50
4 81.67 | 83.33 | 82.50 | 85.83 | 84.17
5 76.67 | 77.50 | 77.50 | 79.17 | 79.17
Average | 81.83 | 82.33 | 82.17 | 82.83 | 82.67

Table 9: 5-sample-set

Learning U SDS | $KG SMA 1 STMA-2

Data Set
1 66.67 | 71.85 | 68.89 | 75.56 | 75.56
2 78.52 | 80.00 | 78.52 | 85.19 | 82.96
3 41.48 | 41.48 | 41.48 | 44.44 | 42.96
4 43.70 | 46.67 | 45.93 | 53.33 | 50.37
5 88.89 | 88.15 | 88.89 | 92.59 | 90.37
6 73.33 | 7852 | 77.78 | 89.63 | 88.15
7 64.44 | 68.89 | 6741 | 73.33 | 71.85
8 73.33 | 75.56 | 72.59 | 82.96 | 79.26
9 73.33 | 75.56 | 72.59 | 82.96 | 79.26
10 69.63 | 72.59 | 71.85 | 82.22 | T7.78

Average | 67.33 | 69.93 | 68.59 | 76.22 | 73.85

the ith group, ¢+ = 1,2,3. Estimates for the population covariance matrix of the ith group are
calculated from XV, 29P5 $EG $MAL 5iMA2 hased on

where g = N-! Z;V:l y](»i). As a discriminant function, we use a Mahalanobis distance based

on each estimates 3V (A®D), 5PS(AD), BKG(AD) 5MAY(AW) SSMA2(AD) | that is, for a test
data x R
MD; = (x —gYE (A Yz —gP), i=1,23.

The eigenvalues of the covariance matrix within each group is as follows;

Group 1: (0.234,0.039,0.027, 0.009),
Group 2: (0.482,0.075,0.056,0.011), (34)
Group 3: (0.688,0.107,0.057,0.036).

We observe that 1) in each group, the largest eigenvalue are about 6 times as large as the

second largest eigenvalue, 2) the second largest eigenvalue is about 3-7 times as large as the
smallest eigenvalue. We are interested in the performance of M4¢ d = 1,2, with the population
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eigenvalues in (34) which are considered as a deviation from (0o, ¢, ¢, ¢), the ideal eigenvalues for
SMA G =1,2.
We made three types of cross validations.

1. Leave-one-out: For a chosen (i,7), i =1,2,3, 7 =1,...,50, leave mgi) out from the whole
data to be a test data, and use the rest as a learning data set. We repeat this trial for every
possible (i, 7). Consequently 150 trials were carried out.

2. 10-sample-set: First choose a:gi), . ,mgzg, 1 =1,2,3, as a learning data set and use all the

rest as a test data. Next use mg’f, e ,a:éio), 1 =1,2,3, as a learning data set and the others
as a test data. Repeatedly change a learning data set until every data is used once as a
learning data. Totally we carried out 600(= 120 x 5) trials.

3. b-sample-set: First choose :cﬁ“, e ,azéi), 1 =1,2,3, as a learning data set and use all the rest

as a test data. Next use wg), e ,a:%), 1 =1,2,3, as a learning data set and the others as a
test data. Repeatedly change a learning data set until every data is used once as a learning

data. Totally we carried out 1350(= 135 x 10) trials.

We summarize the result on the correct classification percentage (“C.C.P.” for abbreviation)
of each discriminant function.

1. Leave-one-out: All the discriminant functions returned the same classification for every test

data and scored 96.67% of C.C.P. The misclassification occurred at the sample a:%), a:g),

a:%), azgi), a:g;) With as much as 49 learning data, all the discrininant functions work quite

correctly and make no differences among the functions.

2. 10-sample-set: See Table 8 for the C.C.P. in each learning data set and the average. De-
pending on the learning data set, different discriminant functions records the best C.C.P,
but the margins are small and negligible. It seems that even 10-sample-learning set is too
large to differentiate the functions.

3. b-sample-set: See Table 9 for the C.C.P. in each learning data set and the average. In every
learning data set, the functions based on f)MAd, d = 1,2, outperform the other functions.
Especially SMA always keeps the highest C.C.P. In total, SMA and BM42 record better
C.C.P. than 2V by 8.89% and 6.52% respectively, while the margins of £5P5 and $5€ over
32U are respectively 2.60% and 1.26%.

A Appendix

A.1 Proof of Lemma 1

In the following, ¢; (i = 1,...,7) represents some constant independent of «, 3.

The random variables I = (ly,...,,) and G = I"G have the following joint density function
with respect to the product measure between Lebesgue measure on £ and the invariant probability
pon OF(p).

p n P n—p—1 1 .
o TINETIG T - 1) et (—QGLG’A‘1>.
i=1 =1

j<i
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We have
Elz(G, I\ a,08)] = Elz (rc”;,z,x a, )]

- cll_[)\ // #(TG, 1\, a, ) Hz

=1 1<

X etr (—;GLG’A1> du(G)dl.

n—p—1
2

Using the finite open cover O, 7 =0, ..., T, in Subsection 2.1, we have
T
E[LU(G, la )‘7 «, 6)] = Z IT?
7=0
where

I - CIHA e @(TG. Lo, 8) 11 10 - 1)

i=1 j<i

X etr <—2GLG’A1> du(G)dl,

First we consider Iy. Let M denote the support of ¢g. From (19),

n— -1

p
| < 01HA // (TG, Lo 8) [ ° [0 —1)
=1

J<i

« etr <—1GLG’A 1) du(G

n—p—1

U

< cle)\ s Hz | (AR <—GLGA )du(G)dl

i<t

= CgP(GEMlEIFAF/),

(35)

(36)

where A = (1 — 2a)"'A. Note OF(p) \ M is an open set including O(m,p — m), hence by 2 of

Theorem 1, limg/q—o P (CN;' eO0O(p)\ M| X = I‘AI") = 1, which means
P(GeM|E=TAT") -0

as 3/a — 0. Therefore

lim Iy = 0. 37
= (37)
Now we focus ourselves on I, 7 = 1,...,T. Since pu is invariant and the support of ¢, (G) is
contained in O, we have
I, = o H A2 / / L(HOG) s(THOG, 1A, o, ) H R | (PN
i=1 1<t

1
X etr (—2H(T)GLG/H(T)’A‘1> du(G)dl.
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We want to express the integral with respect to du(G) in terms of the local coordinates u on U.
It is well known that the invariant measure du(G) has the exterior differential form expression

i>j

where g; is the ith column of G. Substituting the differential

dgz'j e duz], 7> j,
09i;
dgij = Ldug, <7,

into (38) and taking the wedge product of the terms, we see that
i>j i>j
where J*(u) is the Jacobian expressing the Radon-Nikodym derivative of the measure on U induced

from the invariant measure on O (p) with respect to the Lebesgue measure on RS An explicit
form of J*(w) for small dimension p is discussed in Appendix B in Takemura and Sheena (2005).
Since J*(u) is a C* function on U, it is bounded and has a finite limit as u — 0. By the change
of variables (I, G) — (l,u), I, is written as

I - C4HA [ e HOGw) o HOG @) LA ) [T T - 1)
=1 7<t

1
X etr <—2H<T>G<U)LG’(u)H<T>'A—1) T (w)dudl,

Consider further coordinate transformation (I,u) — (d, q) for each 7. Notice

P nopot Rl minpol) S Gmm)nepo)
[1e = (14 Tt (39)
=1 =1
m(m—1) _(p—m)(p—m—1)
j<i j<m<i j<i<m m<j<i
Bd; L —
ST e Tl
J<m<t ] j<i<m m<jg<i 7=1
o oM (p—m)+ =) g(%m)(’;m*l) : (40)

and

tr HG(u) LG (u) H™'A™!

(7) )
= tr {( Hl(T)GH(’“') Hl(T)Glz(u) ) diag(ly, ..., 1)
H2 Ggl(’LL) H2 G22(u>

/ (T)/ / T)/
X ( G/ll(u)Hl(T)/ Glzl(u>H2T)/ ) diag(A\( ... ,/\;1)}
G12(U)H1 G22(u>H2
= tr HVGy1(w) DG (w)HE + tr H Gao(w) Dy Gy (w) HI'ES !
+ 11 QuQhy + o' Btr HY Grap(u) DoGly(uw) HY'ET, (41)
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where w is actually the abbreviation for u(d, q, &, a, 3) defined by (10). For notational simplicity
we use the same abbreviation u = u(d, g, &, «, 3) for the rest of this proof. From (12), (16), (39),
(40) and (41), we have

L=c[ | w(HOGw)(d q.€a 0T, H)h(d,q.¢ 0, 5) dddg
Rp(p— Rﬂ

where RE. ={d|d; >0, i=1,...,p} and h(d, q,&, a, 3) is defined as follows;
h(d7q,€70@5) = I(’Ll, € U)J*<’U,) (dl € Dla d2 € D27 (dladQ) € D3)
1

XHd"é" a7 0 @—d) I @-d) II (1—§Zj)

i=m+1 j<i<m m<j<i i<m<i

X exp(—; tr Z HS(T)GSS('U,)DSG’SS(u)HS(T)’Es_I)

s=1
1 T T) I e—
X etr(—glele) X etr(—faﬂf 'G1o(u) DG, (w)H'E; 1).

We will show that

L (HDG(w))x(d, q,&, o, 3;T, H)h(d, q,€, a, §)

is bounded in (o, 3). First I(u € U)J*(u) < K for some K (> 0) since J*(u) is bounded on the
compact set U. Clearly

d;
0<I(di €Dy, dy €Dy, (di,do) € Ds) [] (1 v ) L
j<m<i Oéd
From the condition (19), we have
z(d, q,&,0,3;T, H?)| = [2(THTG(u),l, A, )|
< betr(aH"G(u)LG (u)H™'A™Y) a.e. in (d, q).
Therefore
1(HOG(u)z(d, q, € o, 5; T, HD)h(d, q, &, , B)]
m n—m—l p n—p—1
i:l i=m+1 j<i<m m<j<i
1 —2a 2 () ' (r)r=—1
X exp(— 5 try H"G(u)D,G (u)H{'E; )
s=1
1—2a
X etr(_TQQIQ,m)- (42)
Note that

IuelU)<I(ueC) <I(luj|=lg| <e 1<j<i<m, m<j<i<p).
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Choose some € such that £ > &, i =1,...,p. Consequently the left-hand side of (42) is bounded
by h(d, q), where

h(d,q) = (Mﬂ<€1<j<i<m,m<j<i§m
n—m-—1 n—p—1
XHd T H di = I 1y —dil ] 1d; —dil
i=m-+1 Jj<i<m m<j<i
¢ L 1-2
X exp(—s— 1 —2a) d) X etr( aQ21Q21)

=1

Let vy =m(m —1)/2, vo=(p—m)(p—m —1)/2, v3=m(p —m). We have

/ / 7(1 dgdd = / / / / B(dq dCIn dqs dqga dd
REJRp(p— 1>/2 RE JRvs JR"2 JR"

n—m-—1 p n—p—1
= o f, T4 T a7 T1 10 -al I 1
Ry =1 i=m—+1 j<i<m m<j<i

c—1

xeXp(—g— 1 —2a) S d)ddx /sza etr(—
i=1

X/ 1 dqu / 1 dq22 < 0.
(—575)’/1 (_676)U2

The integrability of h(d, q) guarantees the use of the dominated convergence theorem; From (18)
and (20)

5 ) dqgz

: _ : (1) ; . (1)
Jim L= o Lovinl , ol e (HG(w)) lim 2(d,q.& 0. 5T, H)
X ﬁ}imoh(d, q,§ o, 3) dddg

= 5 LT(H(T)G(CI117¢12270))fF(H(T)G(Q11,QQ270)7d7 Q21,8)
Rpr(p—1)/2 R:’_
X ﬁ}imo h(d,q, &, «,3) dddgq.

We consider limg,q—0 h(d, q, &, o, 3). First notice that

lim ](dl € Dy, d, € D, (dl,dg) € Dg) = ](dl € Dl)](dg c Dg),

B/a—0
):L

lim H(

B/a—0 7<m<i

From (17), we find

lim J*(uw) = J*(q11, g22,0),
B/orms0 ( ) (Q11 q22 )

BILIEO](U/ e U) =1((qi1, g22) = (w11, u20) € Up),

where Uy = {(w11, u22)| (211, U29,0) € U} denotes the slice of U by w2 = 0, and that

ﬁ}ggo Gu(u) = Gii(qu1,g22,0) € O (m),
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B}iargo Ga(u) = Ga(qi1, 92, 0) € O+(p —m),
limOGgl(u) = 0,

16 / Tr=—1) _
(_27H1 Gi2(u) D2 Gp(u)Hy "By ) =1

lim etr
B/a—0

Since dp is invariant, especially w.r.t. both of the transformations
G — diag(Hl, HQ)G, G — G’dlag(Hl, HQ), (43)

the measure on U, given by
J*(qu1, @22, 0)dq1dqs: (44)

induces the invariant measure on Vj, the slice of V' by Gy = 0, w.r.t. (43) through

G(Qll, q22, 0) = diag(Gn((hl, q22, 0)7 G22(CI11, q22, 0)) (45)

If G411 and G, independently follow the invariant probability distributions respectively on O (m)
and OT(p — m), then the distribution on Vj given by

Gy = diag(GH, G22) (46)

is also invariant w.r.t. the transformations (43), hence must be proportional to the above-mentioned
distribution on V4 given by (45) and (44). Consequently

lim I, = e / . / / L(HO Gz (HDGo, d, Qa1 €)1(dy € D1)I(ds € Ds)
Rm(p—m Rp Vo

B/a—0
n—m-1 P n—p—1
ST VI | OIS
=1 i=m-+1 j<is<m m<j<i

S

1
X exp(—§ tr Z HgT)GsstGgsﬂgr)/E—l)
s=1
1
X etr<—§Q21QIQ1)dM1(G11) dps(Gaz) dd dgo,
where Gy is given by (46), and jui1, po are the invariant probability measures respectively on O (m)
and O (p —m).

Let O% denote the slice of O™ by Gy = 0. Since O = HOV, O = H™V,. Consequently
foreach 1 <7 <T,

hm IT = C6/ / /() (Go) (Go,d Q21 5) (dl € Dl)l(dz S DQ)
Rm(p—m) RP O T
p

Bl
de"?I 11 d 1 (4 —d) [[ (d; —dy)

i=m+1 j<i<m m<j<i

n—p 71

1 2 /= 1 /
X exp(—§ tr Z GSSD GSS = ) etr(—§Q21Q21>d/L1 (Gll) d/J/Q(GQQ) dd dq21.
s=1
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Note that UZ_, O(()T) = O(m,p—m) and ¢.(Gy) vanishes on O(m,p—m) \O(()T). Therefore we have

lim I, = ¢ / / LT(Go)fr(Go,d, Q21,8)1(dy € D1)I(d; € Dy)
B/a—0 Rm(p—m) Rp O(m,p—m)
m n—m-—1 n—p—1
<[[di = H di * I (& —d) T (dj—dy)
=1 1=m+1 j<i<m m<j<i

1
X exp(—§ tr Z G..D.G,E;") etr(——QmQQl)dul(Gn) dpis(Glas) dd dgyy .(47)
s=1

From (35), (37) and (47), we have

lim FElz(G,l, A\ «, ()]

B/a—0

= Gy, d, ,€)I(dy € Dy)I(dy € D
/M/Rp/m(pm/m 7r(Go,d, Qu1, €)I(dy € Dy)I(dy € D)
XH E H d; II (& —di) I] (d;—di) (48)
i=1 i=m—+1 j<i<m m<j<i

1 2 1
X exp(—§ tI’Z GSS_D G;s'—gl) X etr(—ngQ’Ql)dul(Gn) d,ug(GQQ) dd dq21.
s=1

Under the distribution (22) and the spectral decompositions (23), the joint density function of
(d1,G11) ((da, Gy2)) with respect to the product measure of Lebesgue measure on R (RY™)
and the invariant probability measure p1 (pg) on O (m) (OF(p —m)) is given by the following
functions, Fi(di, G11) (Fa(ds, G22));

n L n—m—1 1
Fi(Gu,di) = Ki|E| > ][ d; 7 II (- di)etr(_§G11D1G'115fl)
=1

1<j<i<m
T n—p—1 1
Fy(Ga,dy) = Ko|Bs|7 2 [ d ° 1T (dj—di)etr(—§G22D2G’2252‘1),
i=m-+1 m<j<i<p

with K7, Ky as normalizing constants. The density function of Zy, is given by
1 !
Fg(Zgl) = Kg etr(—§Z21Z21),

where K3 is a normalizing constant. Using Fi(G11,d1), Fo(Gag, ds), F5(221), we can rewrite the
right-hand side of (48) as

ir(Go, (di,dy), Z
07/Rm(pfm) /DQ /D1 /(9+(p_m) /(9+(m) :)Zp( 0’( L 2>a 21,5)

><F1(G11, dl)FQ(G227 d2)F3(221)dM1(G11) dMQ(G22) dd; ddy dzs;.

If we consider the special case z(G, 1, A, a, f) = 1, we notice that ¢; = 1.
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A.2 Proof of Lemma 2
Using Lemma 1, we will calculate

lim Eftr GL'Y*CLY?G'TA'T],

B/a—0
ﬂ}unoE[tr(GLmC’Ll/QG’I‘A‘lI")2].
Let
(G, L\ a,8) = tr(GLY?’CLY*G'TA™'TY),
23(G, LA a,3) = tr(GLY2CLY?G'TA™'TY)?,
then

PP
21 (TG, LA a,p8) = ZZ/\lejcjgfj
i=1j=1
p P 1
max ¢) > A igr = 3(max ;) tr(gGLG'A_l)
j

i=1j=1

IN

IN

1
3 Jetr(-=GLG'A™),
(mjaxcj)e r(3 )
(TG, L\ a,8) = tr(A"YV2GLY?CLY*G'A~V/?)?
p
< (wAPGLPCLPEAT) = (XX A )
=1 j=1
p P 1 2
< (maxcJ SN 1l]gw) = {G(maxcj)tr(gGLG’A_l)}
=1 7=1 J
1 A —1\12 2 1 /A —1
< {G(mjaxcj)etr(éGLGA )} —36(mjaxcj) etr(gGLGA ),
hence (19) is satisfied for both z; and x2. Now let
B(G,1,\) = A"PHOGLY?
for each 7. Then we have
o (THYG, I\, 0,3) = tr BCB,
2,(THYG, I\, 0,3) = tr(BCB')%
We notice that
B = A'HOG(u)L'Y?
_ ATV HOG ()L ATV HD Gy (u) LY
A VPHOUGLY? Ay YV2HL) Goy(u) LY
—1/2H(7')G (uw)D 1/2 Of1/261/251—1/2111(7')C_‘rvm(U)ID;/2
- ( 1/25 1/2-—-—1/2H U1D1/2 52_1/2H2(T)G22('U,)D%/2 )
B (E P H 1(u)D}/2 a—l/%l/?E;”zH{T)Gm(u)D;/Q)
=, P HY Gos(u) Dy

=2
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Substitute u(d, q, &, a, ) with w in the last matrix and denote it by B(d, q, &, «, 3). Then

xl(d7 q7€7 a? /8; F? H(T)) = trB<d7 q7€7 a? /B)CB,(d7 q7 57 a?ﬁ)?
x2(d7q7£7&7 /6;F7H(T)) = tr(B(d7 q7£7a7ﬁ>CB/<d7q7€7 CY’ /6))2'

Therefore

ﬁ}ggoxl(d,q,S,a,ﬁ;I‘,H(T)) = tr BCH,

B}iargoxz(dvq,E,a,ﬁ;F,H(”) = tr(BCB')?,
where _ _

SV
is given by

B, = & 1/21'11 G11(‘111,Q2270)D 7= Ey /Q(H(T)G(QmQQ2>O))11D1/2,
0,

BIZ -
B, = Q217
ng = _1/2H2 Ggg(qll, qs2, 0)D1/2 = Eg_l/Q(H(T)G(qlb q22, 0))22D;/2,

because of (18). By straightforward calculation we have
tI'(BCB,) = ftr BIICIBil + tr 31202312 + tr Bglclgél + tr BQQCgBéz

2
= Z tf(H(T)G(QH, q22, 0))55D;/QCS D§/2(H(T)G(Q11, q22, 0))/3855_1 +tr Qzlle/zb

tr(BCB')? = tr(CB'B)?
_ tr< C\(B},B1 + B}, By)) C1Bj By, >2
C,B/, By C,B/,B>,

= tr(Cy(B),By, + B} By)))* + 2tr C1 B, B»xC, B}, By, + tr(Cy B}, By,)?
= tr (ClD%m(HmG(QH, q22, 0))/115f1(H(T)G(Q11, q22, 0))11D%/2 + CIQ/21Q21)2

+2tr (Cy /2152_1/2(H(T)G(Q11, q22, 0))22D;/2C2

XD1/2(H(T)G((111,Q227 0))5E 2'~2 Qzl)
+tr(CoD;* (H T G(qu1, 422, 0))58, ' (H 7V G(qu1, g2, 0))22 D).

Consequently we have the following results; all the asymptotic expectations below are taken with
respect to the distributions in (22) and the spectral decompositions (23).

ﬁ}imOE[tr GL'’CL'*G'TA'T|
= Eltr GUD% 2C'lDl/zGln:1 | + Eltr G22D1/202D%/2G§2551] (49)

—|—E[t1‘ Zgl Cl Zél]
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lim Etr(GLY*CLY*G'TA'T")?]

B/a—0
= Eltr(C;DY*G BT G D + C, 2} Z1)?]
12E[tr C, Z5, By * Gy DY > Cy DY Gy By Zoy
+E[tr(Co DY GlEy Gy Dy *)?]
= E[tr(GnDy*C,Dy*G/ B )]
+2tr E[C DG, B 'G11D)/*C\|E[Z}, Z]
+E[tr C1Z3, Z51C1 Zy, Z] (50)
+2tr B[E, 2Gay Dy’ C, DY G, By ?) B[ 25, CL Z,)
+E[tr(GoDy*C,DY* Gl E7 1.
We further calculate the expectations related to Zs;. It is obvious that
E[Z5C1Zy) = (tr C )y, E[Z3Z51] = (p — m) Ly, (51)

since (Zs1)5, 1 <1 <p—m, 1 < j < m, are all independently distributed as the standard normal
distributions. Letting T' = (t;;) = Z}, Z2 we have

E[tr Cl Zél Zgl Cl Zél Zgl] = E[tr CchlT] Z CZE[(TCHT)”]
i=1
= Z Zt = > ccBlt], (52)
i=1 i=1s=1
while
p—m
E[t}] = E[(>_(Z2);i(Zn);s)%]
j=1
p—m
= B[) (Z21)5(Z21)}s +2 Y (Z21)jui( Z21)j15(Zo1) 12 (Zon) jos)- (53)
Jj=1 J1<Jj2
We also have
3, ifi=s,
iz = 150 (54
1, ifi=s,
El(Z21),i(Z21)j,5(Zn) jpi(Z21) jos] = { 0 ifidts (55)
Substituting (54),(55) into (53), we have
271 (p_m)(p_m+2)7 ifi:S,
pr) = { 0o e (56)
Consequently from (52) and (56),
Eltr C1Z5,Z5C1Z} Zs1) = (p—m)(p — m + 2) Z c? +2(p—m) Z CiCs. (57)
i=1 1<i<s<m

Substituting (51) and (57) into (49), (50), we have the result.
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A.3 Analytic Evaluation of Asymptotic Risk

We illustrate an analytic calculation of E[d;], E[d?], i = 1,...,p, by the case p = 4, m = 1 and
n(> 4) even. Suppose S ~ Wj(n, I,). Note the density function of I = (I3, 1, l3) is given by (see
e.g. Theorem 3.2.18 of Muirhead (1982))

Hz (b = ) (s = 1) (12 = L) exp(—5 Y 1i).

=1 =1

—_

where u = u(n) = (n — 4)/2, which is an integer, and

Ki(n) = 7T3/2/(23"/2F(n/2)f‘((n —1)/2)T(n/2 — 1)F(3/2)F(1)r(1/2)).
Let
Al :ll_ZQ, AQZZQ_ZS, Agzlg.

The density function f3(A) of A = (A, Ay, A3) is given by
fg(A) = Kg(n)Ag(AQ + Ag)u<A1 + AQ + A3)u
1
XAlAQ(Al + Ag) eXp(—§<A1 + 2A2 + ?)Ag))

— Ks(n )(i( )NA“ )(ij&j( )( )ASNA“ )

s=0 t=0

X(Xl:A{ A; J)A1A2A3 eXp( 1(A1 +2A2—|—3A3))

= Ks(n) i i i uis <u> (“) (” ; 3) AT AT ABuimst

S

0
X eXp( (A + 24, + 3A3)>

We define a function F3(xy, z9, x3;n) of nonnegative integers z;, i = 1,2,3, as

Fs(ﬂl?l,ﬂ?z, T35 ") = E[A?A?Ags]-

Fy(x1, w9, m33m) = iiiu s( )( >< ;S>

1=0 j=0 s=0 t=0

Then

0 1
X /0 AT exp( =5 A1) dy
X /O AL o (A ) dA
X / A3u—izs—thes exp(—zAg)dAg

- roges s (00 )

X23u i+j—t+x1+x3+3 3—3u+i+s+t—x3—1

X(J+s+a+DIi—7+t+2+25)!
X(Bu—i—s—t+x3)!
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Note that for the case p = 4, m = 1, the distributions of d;, = 1,...,4, in Theorem 5 is given

as follows; dy = Wiy ~ x2 and dy > d3 > d, are the ordered eigenvalues of Wy, ~ Wi(n — 1, I).
Using Ay = dy — ds, Ay = d3 — dy, Az = dy and F3(x1, 29, 73;n) as above, we can calculate
b= (b1,...,bs) and A = (a;j)1<ij<a in Theorem 5 as follows;

by = E[di|+(p—m)=n+3,

by = FEldy] = E[A1+ Ay + As] = F3(1,0,0;n — 1) + F3(0,1,0;n — 1)
+F3(0,0,1;n — 1),

by = FElds] = E[Ay+ Ag] = F5(0,1,0;n — 1) + F3(0,0,1;n — 1),

b = Eld) = E[As] = F(0.0,1in 1),

an = Eldi +2(p—m)di] + (p—m)(p —m+2)
n®+2n +6n+ 15 = n? 4+ 8n + 15,
3
az = Eld] =ED_Al+2 Y AA
i=1 1<i<j<3
= F3(2,0,0;n — 1) + F3(0,2,0;0 — 1) + F3(0,0,2n — 1)
+2F3(1,1,0;n — 1) + 2F5(1,0,1;n — 1) + 2F3(0,1,1;n — 1),
= E[dj] = E[A] + A% + 2A,A3]
= F3(0,2,0;n — 1)+ F3(0,0,2;n — 1) + 2F3(0,1, 1;n — 1),
ayy = Eldj] = E[Ag] = 1(0,0,2;n — 1),
ajps = a9 = Fldy] = F5(1,0,0;n — 1) + F3(0,1,0;n — 1) 4+ F3(0,0,1;n — 1),
a3 = az = Flds] = F5(0,1,0;n — 1) + F3(0,0,1;n — 1),
ayy = Qa4 = E[d4] = F3(0707 Iin — 1)7

(23 = (32 = G4 = Qup = Q34 = Qg3 = 0.

a33
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