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Abstract

A new method is proposed for designing Galerkin schemes that retain the en-
ergy dissipation or conservation properties of nonlinear evolution equations such
as the Cahn-Hilliard equation, the Korteweg-de Vries equation, or the nonlinear
Schrodinger equation. In particular, as a special case, dissipative or conservative
finite-element schemes can be derived. The key device there is the new concept of
discrete partial derivatives. As examples of the application of the present method,
dissipative or conservative Galerkin schemes are presented for the three equations.
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1 Introduction

In this paper, the numerical integration of partial differential equations
(PDEs for short) which have some “energy” conservation or dissipation prop-
erties is considered. For example, the Cahn-Hilliard (CH) equation

0 0? 0?
a—?:%<pu+ru3+qa—;;>, O<zxz<L,t>0, (1)

where p < 0, < 0,7 > 0, has the “energy” dissipation property
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when appropriate boundary conditions are imposed. The Korteweg-de Vries
(KdV) equation,

ou 0

1, 0%

has the energy conservation property

d L1, 1/[/ou\’

— —u’— = | — dz =0

dt/o (6“ 2 (m) ) e
again, when appropriate boundary conditions are imposed. The nonlinear
Schrodinger (NLS) equation,

ou 0%u
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where i = /=1, p = 3,4,..., and v € R, has the “energy” conservation
dul> 2
] —7|u|”+1) de=0, >0,

property
d /L
dt /0 |0 p+1

under appropriate boundary conditions.

It is widely accepted that numerical schemes which retain the dissipation or
conservation properties of the PDEs are advantageous in that they often yield
physically correct results and numerical stability [2]. We call such schemes
“dissipative/conservative schemes” in this paper. In the literature, this area
was first approached by the development of a number of specific schemes cor-
responding to specific problems; the interested reader may refer to [1,3,4,9,10]
among others (see also references in [5,7]). A more unified method was then
given in [5-8], by which dissipative or conservative finite-difference schemes
can be constructed automatically for certain classes of dissipative/conservative
PDEs. More specifically, this method targets dissipative/conservative PDEs
which are defined using a variational derivative. In Furihata [5], real-valued
equations of the form

du (9 G B
a—(—l) (a_x> E, 8—0,1,2, (4)

were considered, where 0G/du is the variational derivative of G(u, u,) with re-
spect to u(z,t). Under appropriate boundary conditions, these PDEs becomes
dissipative. For example, the CH equation belongs to this class with s = 1 and
G(u,uz) = pu?/2 +rut/4— qu2 /2 (where u, = Ou/Odz). Furihata also targeted
real-valued conservative PDEs of the form

au a 25—16G
E:<%> S s=L23. (5)



The KdV equation is an example of this class with s = 1 and G(u, u,) = u®/6—
u,? /2. Later, Matsuo and Furihata [7] considered complex-valued conservative
equations of the form

Ou oG
IE = —%, (6)

where dG/du is a complex variational derivative, and @ is the complex con-
jugate of u. An example of this class is the NLS equation. Dissipative PDEs
of the form du/0t = —3G/du, were also treated. The key step for the above
studies was the introduction of the “discrete variational derivative,” which is
a rigorous discretization of the variational derivative. Using the discrete varia-
tional derivative, a finite-difference scheme is defined analogously to the orig-
inal equation, so that the dissipation/conservation property is automatically
retained. Due to this underlying idea, the method is now called the “discrete
variational derivative method” (DVDM). The method does, however, suffer
from drawbacks due to being based on the finite-difference method. Specifi-
cally, the use of non-uniform grids and application to two- or three-dimensional
problems with complex domain structures are not straightforward.

As a natural solution to this difficulty, we here propose a new method for
designing Galerkin schemes that retain energy dissipation or conservation
property. We limit ourselves to spatially one-dimensional cases for brevity,
which is still enough to illustrate our essential idea. The resulting Galerkin
schemes include as a special case finite-element schemes, which are highly flex-
ible at handling spatially complex structures. The finite-element schemes can
be implemented only with cheap H'-elements (this feature shall be impor-
tant when this method is extended to two- or three-dimensional problems).
To be more specific, our ideas are summarized as follows: In order for the
dissipation/conservation property, we borrow the concept of discrete deriva-
tive from the DVDM. In the present study, however, we abandon the dis-
crete variational derivative, which generally includes second-derivatives .,
and thus would require C''-elements, but newly introduce the concept of “dis-
crete partial derivatives” instead. We also propose to introduce intermediate
variables and to consider mixed formulations appropriately, in order to unfold
the higher-order derivatives such as (9/0z)% in (4).

This paper is organized as follows: In Section 2 the target equations are
defined. Section 3 is devoted to the proposed Galerkin method, while in Sec-
tion 4 several application examples are shown. Finally, Section 5 offers some
concluding remarks.

2 Target equations

Target PDEs and their dissipation or conservation properties are summa-
rized. The first class is that given by all real-valued PDEs of the form of



equation (4):

du (070G B
5 = (1) (m) s s=012.. (4)

As mentioned above, these PDEs are dissipative.
Proposition 1 (Dissipation property of (4)) Let us assume that bound-
ary conditions satisfy

oG oul”
—| =0. t
Ou, 3tL 0 >0, (7)
Let us also assume when s > 1 that
o1 8GN (9% G\ |" _
() (Z) v oo

Then solutions to the PDEs (4) satisfy

/ (u,u,)dx <0, t > 0.
dt

That 1s, the PDEs are dissipative.

A proof can be found in [5]. Throughout this paper we call G(u,u,) the
“local energy,” and [ G(u,u,)dz the “global energy.” As stated above, the
CH equation (1) is a member of this class with s = 1 and G(u, uy) = pu?/2 +
rut/4 — qu,® /2.

The second class is the real-valued conservative PDEs of the form of equation

(5): -
ou o0\ 8G
a:<%> E, 821,2,3,.... (5)

Proposition 2 (Conservation property of (5)) Let us assume that bound-
ary conditions satisfy (7) and

5t §G 925-1-7 s\ 1" .
Kaf—%) (W@)L =0, >0, 5=1...s (9)
Then solutions to the PDEs (5) satisfy

That is, the PDFEs are conservative.
The KdV equation (2) is an example of this class with s = 1 and G(u, u,) =
u? /6 — u,? /2.
The third class of PDEs considered in this study are the complex-valued
PDEs (6):
3u oG

Yor T ou (6)



Proposition 3 (Conservation property of (6)) Let us assume that bound-
ary conditions satisfy

L
[aa@ GG@] 0 (10)

u, 01 o, 0t ),
Then solutions to the PDEs (6) satisfy
d LG d
&/0 (u, uz)dr =0, t>0.

That is, these PDEs are conservative.
A proof is given in [7]. Upon setting G (u, u) = —|ug|? + 2y|u[P/(p+1), it
can be seen that the NLS equation (3) is an example of this class of equations.

3 The new Galerkin method

In this section the new method for designing dissipative or conservative
Galerkin schemes is presented for the PDEs (4), (5), and (6) separately.

3.1 Dissipative schemes for the real-valued PDEs (1)

We commence by introducing the concept of “discrete partial derivatives.”
Suppose that local energy is of the form

M

G(u,ug) = Y filw)gi(us), (11)

=1

where M € {1,2,...}, and f;, g, are real-valued functions. For example, the
local energy of the CH equation (1) can be expressed in this form with M =
3, filu) = pu?/2,01(us) =1, fo(u) = ru'/4,g2(us) = 1, f3(u) = 1,g5(us) =
—qug,? /2. Let us denote the Galerkin approximate solution by u™ ~ u(z, mAt)
(At is the time mesh size). Then “discrete partial derivatives” are defined as
follows.

Definition 4 (Discrete partial derivatives) We call the discrete quanti-
ties

0Ga  _ f: (fz(u“”“’) - fz(u(m’)> <9l(u§m+l)) +gl(“§fm))> , (12)

3(u(m+1), u(m)) - — w(m+1) _ g (m) 5
0G4 _ = [ Li@) + (™) g(ul™ ) — gi(ul™) 13
8(u(m+1) u(m)) = ; 5 D) o) , (13)

T , Ug Uz — Ug
the “discrete partial derivatives,” which corresponds to 0G/0u and 0G [Ou,,
respectively ! .

I Expressions similar to (f(a) — f(b))/(a — b) should be interpreted as f’(a) when
a=b.



It can be easily verified that, corresponding to the continuous chain rule:

L (0G 0G
dt/ (u, uy dx—/0 (autﬂLau t)dfv,

the following discrete chain rule holds (hereafter G/(u(™,u{™) is abbreviated
as G(u™) to save space.)

Theorem 5 (Discrete chain rule (real-valued case)) Concerning the dis-
crete partial derivatives (12) and (13), the following identity holds.

L oG (m+1) _ g, (m)
/ m+1 G(u(m))) dz :/ d U Uu
At o | O(ulmtD) ylm)) At
0Gy ulm ) — gy (m)

Now we are in a position to describe our schemes for the equation (4). The
simplest case s = 0 and general cases s = 1, 2,... are treated separately. Let
us denote the trial space by S, and the test space by W;. We also use the
notation (f, g) = [ fgdz, and its associated norm || - ||,.

Scheme 1 (Galerkin scheme for s = 0) Suppose u® (z) is given in S,. Find
u™ € S (m=1,2,...) such that, for any v € W,

. ) 9Gy 0G4
T’ vl =— a(u(erl), u(m)) yU | — a(U:(z:m+1)’ U:(vm)) , Ugp

0G4 L
+l8(u(m+1) (m))v] . (15)

T , Ug 0
Because the discrete partial derivatives (12) and (13) do not include second
derivatives, the scheme can be implemented using only H'-elements, such as
the standard piecewise linear function space. The scheme is dissipative in the
following sense.
Theorem 6 (Dissipation property of Scheme 1) Assume that boundary
conditions and the trial and test spaces are set such that

0G4 w(mh — oy m\ 1"
[8(u(m+1) ) ( At =0, (16)

T y W 0

and (u™) —u™) /At € W hold. Then Scheme 1 is dissipative in the sense
that
1

L /OL (G(u(m-i-l)) _ G(u(m))) dz <0, m=0,1,2,....

PROOF.



i | " (G ) - Gut™)) do

0G4 u(m+) — g (m) 0G4 u{mH) — qfm)
~ A\ A(ulm D), ulm)’ At " A(ul" ) ulmy’ At
wm+1) _ g, m) || 9G wm+D) — g m\ 1"
— + < 0.
At > Lo@d™™ ul™)y At

0
The first equality is by Theorem 5. The second one is shown by making use of

expression (15) and the assumption (u(™*") —u(™)/At € W,. The inequality
is shown by the assumption (16). O

The assumption (16) corresponds to the condition (7). The assumption
(™) —u(m)) /At € W, can be usually satisfied with natural choices of S, and
W,. For example, when the Dirichlet boundary conditions u(0) = a, u(L) =b
are imposed, it is natural to take Sy = {u|u(0) = a, u(L) = b} and Wy =
{v]v(0) =0, v(L) = 0}. In this setting the assumption is satisfied.

Next we proceed to the general case s > 1. We first observe that by recur-
sively introducing intermediate variables: p; = —(P2)zay -« - Ps—1 = —(Ds)azs
and ps = 0G/du, the original equation (4) can be rewritten as a system of
equations u; = (Ps)az, Pji—1 = —(Pj)zz (J € J), and ps = 6G/du, where the set
J=1{2,...,s} when s > 2 or J = () when s = 1. This leads us to the following

scheme. We assume the trial spaces 51, ..., Ssy1, and test spaces Wy, ..., W,y

accordingly.

Scheme 2 (Galerkin scheme for s > 1) Suppose that v (z) is given in
L 1

Ser. Find u™ € Sooy, p72 e sy, L pU" e S, (mo=0,1,..)

such that, for any vy € Wy, ..., vsy1 € Wiy,

(m+1) _ , (m) 1 1
u Uu m+= m+5
(Tﬂﬂ) = <(p§ +2))1‘7 (Ul)x> + {(pg Jr2))901)1

0G4
o la(u(m+1) u(m))vs+1] : (]‘9)

T , Uz 0

The equation (18) is dropped when J = (). This scheme can be also imple-

mented only with H'-elements. The dissipation property is summarized in the
next theorem.

Theorem 7 (Dissipation property of Scheme 2) Assume that boundary

conditions and the trial and test spaces are set such that (i) the condition

1 11L&
ﬂwmmmm¢m)@memﬁﬁozouszmﬁxmwmmU—

u™) /At € Wyy1; and (iv) W; 2 Sep1; (= 1,2,...,5). Then Scheme 2 is



dissipative in the sense that

m+1 (m) .
At/ ~Gu™))dz <0,  m=0,1,2....

PROOF
m+1 (m)
Az / - G(u )) dz

Gy u(m+1) _ o, (m) 0Gy uém-l—l) . U(zm)
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ety D — gy lm) . Gy wm+D) g m)\ 1
= | Ps ) At a(u;(nm+1) u(m)) At
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The second equality is shown by using equation (19) with v, = (u(™+) —

1
u™)/At. The third equality is given by using equation (17) with v; = pgm+2)
and the assumption Sy C W;. By repeatedly making use of equation (18) with

j = s,2,s —1,3,... in this order, which is allowed by the assumption (iv),

m+1 m+1 L
( +2))1~p( +2)

(p1 s

it can be seen that the right-hand side is equal to — ||( (41 /2) |2 when s is

odd, or — ||ps/2 ||2 otherwise, and so the proof is complete. All the boundary
terms vanish as a result of the boundary-condition assumptions. O

Remark 8 We can see the perfect matching between Proposition 1 and The-
orem 7. As noted before, the assumption (16) corresponds to the condition
(7). It can be also checked that the assumption (ii) in Theorem 7 exactly
corresponds to the condition (8), since the latter can be rewritten as [(p;)s
ps+1-jl6 =0 (j =1,...,s) with the intermediate variables p;.

3.2 Conservative schemes for the real-valued PDEs (5)

Conservative schemes for the PDEs (5) are proposed using the discrete par-
tial derivatives introduced in the previous section. The simplest case s = 1
and general cases s = 2,3, ... are treated separately. Let Sy,...,Ssy1 be trial
spaces, and Wy, ..., W, be test spaces.

Scheme 3 (Galerkin scheme for s = 1) Suppose that v (z) is given in

1
Sy. Find u™t)) € S, p§m+2) € Sy such that, for any vi € Wi, vy € Wy,

w(m+) _ o, (m) m+l
<T’U1> = ((pg +2))$7U1> (20)
(m+3) _ Gy Gy
() = (a(u<m+l>,u<m>>’“2> " <a<ugm+l> e
0Gy r
— ooy ooy V2 . (21)
|~a(uf(13 +1),U;(1; )) 0



Theorem 9 (Conservation property of Scheme 3) Assume that bound-
ary conditions and the trial and test spaces are set such that (i) the condition

(16) is satisfied; (ii) [(pﬁ"*%’)?] — 0; (ii) (ulmH) —um) /AL € Wo; and (iv)

S, C W,. Then Scheme 3 is conservatwe in the sense that

) (m) _ B
At/ ~G™))dz=0, m=012,....

PROOF

A / u(mHD) G(u(m))) dx

() w(mFD) _ g (m) . Gy wm+) g m\ 1"
P ) At a(u;(tm—i—l) u(m)) At

) YT 0
m+1 m+i
(6" ) =0

The first equality is shown by using equation (21) with v, = (u(™+") (™) /At,

while the second equality is given by using equation (20) with v; = p§m+ )

and the assumption S; C W;. The last equality is from the assumption (ii).
O

In order to describe the scheme for s > 2, let us define the set J =
{2,...,s} \{n+ 1} when s = 2n (n = 1,2,...), or J = {2,...,s} \ {n}
when s =2n—1(n=2,3,...).

Scheme 4 (Galerkin scheme for s > 2) Suppose that v (z) is given in

Sert. Find u™ € Sy, p7 e sy, pU" e s, (mo=0,1,.. )

such that, for any vy € Wi, ..., vs11 € Wy,

u(m+1) _ u(m) L mal
(Tﬂﬂ) = ((pg 2))907 (Ul)x> + {(pg 2))xU1

L

, (22)

= (05 w)) + [0 D] G, o9
= () (0as):)  (when s = 2), 24)

)
)

(pnrff%), vn> = ((p%m%))w, vn> (when s =2n — 1), (25)
)

- 9Ga el
B a(u(mﬂ), u(m)) »Ust1 | + a(ug(tm-l—l) u(m)) ’ (Us-l—l):v

y W

0G g
_ la(u(m-i-l )Us+1] . (26)
The equation (23) is dropped when J = (). The conservation property is

summarized in the next theorem.
Theorem 10 (Conservation property of Scheme 4) Assume that bound-
ary conditions and trial and test spaces are set such that (i) the condition



1 L 1 ma1E
(16) is satisfied; (ii) [(pSZ"*f))?L — 0 and [(pﬁ-m“))mpiJ@? =0 e
(iii) (um+D —ulm) /At € Wyyy; and (iv) W; D Seii; (j = 1,...,5). Then

Scheme 3 1s conservative in the sense that

m+1 (m) _ -
At/ - G(u ))dx—O, m=0,1,2,....
PROOF The proof is similar to Theorem 7.
(m m m+3 m+3
(G0 = Gt de = — ()., 68,
ma L mal
- (p% ), 0 ),)  (when s = 2n),

(pgfﬁ),pgzmﬁ)) (when s = 2n — 1),

s m+5 mt3
= (=1 (B ), =0,

In the second equality the equation (23) is repeatedly used. The third equality
is either from (24) or (25). O

Remark 11 The assumptions in Theorem 10 exactly correspond to those in
Proposition 2, which can be checked similarly to Remark 8.

3.3 Conservative schemes for the complex-valued PDEs (6)

Before defining schemes, we first introduce complex versions of the discrete
partial derivatives. Suppose that the local energy is again of the form of equa-
tion (11), but that f, and g, are real-valued functions of a complez-valued
function u(zx,t), which satisfy fi(u) = fi(a ) and ¢;(u;) = ¢(4,). Throughout
this section, we use the notation (f, g) = [’ fgdz. Then the complex discrete
partial derivatives are defined as follows:

Definition 12 (Complex discrete partial derivatives) We call the dis-
crete quantities

0G4 MDY f () (D g
A(um+1) | y(m) :§<|um+1|_|u |2>< 2 )

<gz( ui™ ) + gz(ug(pm))> , (27)

2

9G4 — f:(fz( ul™) + fi(ul )) gu(ug™) — gi(uf™)
(m+1)  (m)y "7

2 ulm WQ_ngf

TN

which correspond to 0G /Ou and 0G| du, respectively, “complex discrete partial
deriwatives.”

10



Note that the complex discrete partial derivatives satisfy

8Gd . 8Gd 0Gd . aG’d
O(uCm D, ulm) | p(utm s ) \a(ud™ ) ™)) gD, uim)

) , Uz

The following identity holds concerning the complex partial derivatives.
Theorem 13 (Discrete chain rule (complex-valued case))

L aG u(m+1) — u(m)
m+1 (m) — d
G — G do = [ s ( A7 >d°””

0Gy ulm ) — g (m)
z z d .C.
+/0 D o) ( A7 r 4+ (c.c.),

where (c.c.) denotes the complex conjugates of the preceding terms.

Making use of the complex discrete partial derivatives, a conservative scheme
for the PDEs (5) is proposed as follows:
Scheme 5 (Galerkin scheme for the PDEs (5)) Suppose that u(%(z) is
given in S;. Find u™ € S, (m =1,2,...) such that, for any v € Wy,

. u(m+1) - u(m) 8Gd aGd
i|—\v|=— - ,U | — _— U,
At 8(u(m+l), u(m)) 8(Ug(ym+1) ug(tm))

)

. l dGy ]L
v| .
a(u:(vm+1), u:(vm)) .
Theorem 14 (Conservation property of Scheme 5) Assume that bound-
ary conditions are imposed so that

0G4 ) (u(m+1) - u(m)> r
- —~ + (c.c.)| =0,
l(@(ugg “),u& )) At o

and (u(™+) —u(m) /At € Wy. Then Scheme 5 is conservative in the sense that

m+1 (m) i .
At/ ~G™))dz=0, m=012....

PROOF
m+1 (m)
X / - G(u )) dz

( 0Gy ulm+1) _ u(m)> 0Gy u(mD) _ g, (m) ce)
= , + , —5 g + (c.c.
O(ulm+1) 4 (m)) At a(u(mﬂ) o At

y(m+1) _ o (m)

At

11



4 Application examples

Application examples for the Cahn-Hilliard equation (1), the KdV equation
(2), and the nonlinear Schrodinger equation (3) are presented. Suppose that
the interval [0, L] is partitioned appropriately, and let S, € H'(0, L) be, for
example, the piecewise linear function space over the grid.

4.1 The Cahn-Hilliard equation

The CH equation (1) is an example of equation (4) with s = 1 and G(u, u,) =
pu?/2 +rut/4 — qu,?/2, which is usually solved subject to the boundary con-
ditions

0 (6G
u and -~ < 5u> at x (29)
Motivated by nature of the boundary conditions, let us set the trial spaces as
S1,S2 ={v | v &€ Sy v,(0) =v,(L) =0}, and the test spaces as Wy, Wy = Sj,.

1
Then Scheme 2 reads as follows: find u(™ € S, and p§m+2) € 51 such that, for

all v, € Wy and v,y € W,

u(m+1) _ o, (m) m L
<T7U1> = - ((pg +2))m7 (U1)m> ) (30)

(m+1) _ 0G4 0Gq
(pl ) U?) - (a(u(m+1), U(m)) ) ’U2> + (8(u(m+1) u(m)) ) (,UZ)fL‘ (31)

T , Uz

hold, where the terms

0G4 u(mD) gy (m)

a(u(m—l—l), 2
(m+1)\2 (m)\2 (m+1) (m)
. (u )2+ (ul™) u +u | (32)
2 2
oG ulm ) 4 g (m)
= ), (33)
8(u55 SR )) 2
are obtained from definitions (12) and (13). Note that the boundary term
1
[(p§m+2))xvl]§ which should appear in equation (30) and also the [%Ug]é
term in (31) vanish, because (p§m+5))$ =y =™ =0atax =0,L It

is easily checked that all the assumptions in Theorem 7 are satisfied, and
thus the scheme is dissipative. This scheme coincides with the Du-Nicolaides
scheme [4], except in the fact that Du and Nicolaides discussed this scheme
only with (unphysical) zero Dirichlet boundary conditions.

Remark 15 In practice, the trial spaces can be taken as S; = Sy = S
as in the standard elliptic problems. Then the boundary conditions (29) are
automatically recovered as the natural boundary conditions from the equations
(30) and (31).

12



Remark 16 The scheme has an additional conservation law:

A L m+1) _ g m)
— [ ———dz =0 =0,1,2,... 34
T

which can be easily seen from the equation (17) with v; = 1.

4.2 The Korteweg-de Vries equation

The KdV equation (2) is an example of equation (5) with s = 1 and
G(u,u,) = u®/6 — u,?/2. The periodic boundary conditions are assumed:

u(0,t) = u(L,t), u,(0,t) = u,(0, L), t>0. (35)

Let us select the trial and test spaces S} = Sy = Wy, = Wy = {v | v €
Sh, v(0) = v(L), v,(0) = v,(L)}. (Strictly speaking, we consider the L-periodic
problem on z € (—o0,00), and slightly staggered L-periodic grid which does
not have nodes on x = 0, L, in order to avoid the ambiguity of u, at x = 0, L.)

(m

1
Then Scheme 3 reads as follows: find (™ € S, and p,; *a) € S; such that, for

all v, € Wy and v,y € W,
u(m+1) — u(m) m 1
<T7U1> = ((pg +2))m7'U1> ) (36)

(m+1) _ 0G4 0G4
(%) = <a<u<m+1>,u<m>>’“2> ’ (a(uw“%ugm))’(”)“" )

hold, where

0G4 (u(m+1))2 + um+1),,(m) 4 (u(m))2
DD, ) 6 ’ (38)
0G4 u{m+Y 4 gl
=2 z_ 39
a(u&m+1), ugm,)) 2 ( )

are obtained from definitions (12) and (13). The boundary term appearing in
(21) vanishes due to the periodicity of S; and Wj. Due to the periodicity of
Sy, the assumption [(pngr%))Z]oL = 0 is satisfied. The periodicity also implies
that condition (16) is satisfied, thus all the assumptions in Theorem 9 are
satisfied, and hence the scheme is conservative. To the best of our knowledge,
this scheme seems new.

Remark 17 The scheme also has the additional conservation law (34). Set

vy = 1 in the equation (20).
4.3  The nonliear Schrodinger equation

Let us consider the NLS equation (3) under the periodic boundary condition
(35). This is an example of equation (5) with G (u, u,) = —|uz|*+27v|u|P™/(p+
1). Let us select the trial and test spaces S} = Wp = {v | v € Sy, v(0) =
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v(L),v,(0) = vy(L)}. Then Scheme 5 becomes: find u € Sy such that, for all
v e Wy,

. U(m+1) — U(m) 8Gd 8Gd
i|—————v) = — ,u | — — 0, |,
At a(u(m+1), u(m)) 8(U;(nm+1) u:(vm))

where the terms

aGd |u(m+1) |p+1 — |u(m) |p+1 u(m+1) -+ u(m) 40
A(ulm+D) u(m) N |u(mFD) 2 — [y (m) |2 9 ’ (40)
oG (m+1) (m)
et T (41)
a(u(wm-l-l), u(wm)) 2

are obtained from definitions (27) and (28). The boundary term appearing in
Scheme 5 vanishes due to the periodicity of S; and W;. The periodicity also
implies that condition (16) is satisfied, and thus the conservation property
follows from Theorem 14. It may be noted that this scheme is simply the
Akrivis-Dougalis-Karakashian scheme [1].

5 Concluding remarks

In this paper, a new method for designing dissipative/conservative Galerkin
(or finite-element) schemes has been proposed. The resulting schemes by the
method can be implemented only with cheap H' elements. Though we limited
ourselves to spatially one-dimensional cases in this paper, the essential idea
must be also valid in two- or three-dimensional cases. In such circumstances,
however, more careful considerations on boundary and spatial integrations
are required (note that all the spatial integrations should be done in machine
accuracy in order for the strict dissipation or conservation). These issues will
be discussed elsewhere in the near future.

As application examples, three schemes for the CH, KdV, and NLS equa-
tions have been presented. The schemes for the CH and NLS coincided with
the novel schemes in the literature whose theoretical aspects are well-known.
The scheme for the KdV seems new, and we are now investigating the scheme
both experimentally and theoretically. We are also trying to apply the method
to other dissipative/conservative PDEs. These results will be reported as soon
as it is ready.

Finally, it is worth mentioning that the time mesh size can be changed
adaptively in actual computation without destroying the strict dissipation or
conservation property. It can be easily seen in each dissipation or conservation
theorem. This feature can help reducing overall computational costs.
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