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Parametric modeling based on the gradient maps
of convex functions

Tomonari SEI ∗

October 11, 2006

Abstract

A unified framework of parametric statistical modeling based on the gradient
maps of convex functions is presented. The treated data are assumed to be con-
tinuous. A class of statistical models called g-flat models is introduced as an affine
subspace of the space of gradient maps. This model has many good properties in-
cluding the concavity of the log-likelihood function. An application to detect the
three-dimensional interaction of data is investigated.
Keywords: convex function, exact sampling, g-flat model, gradient representation,
perturbation method, three-dimensional interaction.

1 Introduction

In this paper we propose a method of multivariate statistical modeling based on the

gradient maps of convex functions.

For introduction let us consider a one-dimensional random variable Y with a cumu-

lative distribution function Q(y) = P[Y ≤ y] and consider a strictly increasing function

g : R → R. Then the random variable X defined by g(X) = Y has the distribution

function

F (x) := P[X ≤ x] = P[Y ≤ g(x)] = Q(g(x)).

If Q is continuous and strictly increasing, then g is uniquely determined from F since

g(x) = Q−1(F (x)). Thus, if such a distribution function Q is fixed, a statistical model

{Fθ(·) | θ ∈ Θ} corresponds one-to-one with a set {gθ(·) | θ ∈ Θ} of strictly increasing

functions on R. Remark that any increasing function g on R is the gradient dψ/dx of a

convex function ψ on R, and vice versa.

∗Department of Mathematical Informatics, Graduate School of Information Science and Technology,
The University of Tokyo, Japan. sei@stat.t.u-tokyo.ac.jp
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We generalize this argument to multivariate distributions. Let Y be a random vector

subject to an m-dimensional probability distribution Q and let ψ be any convex function

on Rm. Then a random variable X is constructed by the unique solution to (∇ψ)(X) = Y ,

where ∇ = (∂/∂xi)
m
i=1. The distribution of X is given by P (A) = Q((∇ψ)(A)) for any

Borel set A. Here a question arises: for any continuous distribution P , is there a convex

function ψ such that P (A) = Q((∇ψ)(A)) for any A? Several researchers showed that

this question is positively answered. We state the fact in Section 2. We will call ∇ψ

the gradient representation of P , and show that the gradient representation enables the

‘exact sampling’ from P as a natural extension of the inverse-function method.

We propose a useful class of statistical models called g-flat model. A g-flat model

is a set of probability distributions Pθ whose gradient representation is affine with re-

spect to the parameter θ. The g-flat model has good properties such as concavity of

the log-likelihood function, nonnecessity of the normalization constant, description of in-

dependency, inclusion of all the multivariate normal distributions and possibility of the

conic extension. We describe these properties and compare them with other statistical

models in Section 3.

There is an important application of g-flat models. From the practical point of view,

a model that describes the three-dimensional interaction of data is needed. However, this

interaction is not described by any normal distribution and there is almost no tractable

model to analyze it. We give an answer to this problem by using the g-flat model. An

example of the distribution with the three-dimensional interaction is given in Section 2

and applied to a real data in Section 3.

We touch on some historical notes. Box & Cox (1964) introduced a class of coordinate-

wise transformation like Yi = gi(Xi) for i = 1, . . . , m to deal with non-normal data. This

transformation is a special case of our gradient representation. De Oliveira (1997) used the

coordinate-wise transformation to the prediction problem together with Bayesian infer-

ence. In non-parametric statistics, Easton & McCulloch (1990) generalized the quantile-

quantile plot to multivariate data by means of the transportation problem. The trans-

portation problem is closely connected with the gradient representation (see Remark 5).

This paper is organized as follows. We define the gradient representation of probability

densities and give three examples in Section 2. The g-flat model is defined in Section 3.

In this section we investigate the properties of g-flat models, give numerical results of

an information quantity and apply a g-flat model to a real data. We give two addi-
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tional theoretical results: one is the symmetry of distributions (Section 4), and another

one is asymptotic analysis with respect to small perturbation of the potential function

(Section 5). Finally we have some discussion in Section 6.

2 The gradient representation of multivariate distri-

butions

2.1 The existence and uniqueness theorem

In McCann (1995) the following theorem was proved.

Theorem 1 (McCann 1995). Let P and Q be any probability distributions on Rm.

Assume that P (U) = 0 for any Borel set U ⊂ Rm with Hausdorff dimension m− 1. Then

there exists a convex function ψ such that for any Borel set A,

Q(A) = P ((∇ψ)−1(A)). (1)

The function ψ is P -a.e. unique up to arbitrary additive constant.

From Theorem 1 the following definition is consistent.

Definition 2 (gradient representation). Let p and q be the probability density functions

of the distributions P and Q, respectively. We call the gradient map ∇ψ determined by

(1) the gradient representation of the density p with respect to the reference density q.

The convex function ψ is called the potential function. In this paper the reference density

q is assumed to be the standard normal density φ(y) = (2π)−m/2 exp(−y>y/2).

In general the gradient representation of a given density p is not explicitly expressed

(see Remark 5 below). Instead we construct a set of the transformations y = g(x) to

define a set of densities p(x) (Figure 1). We denote the probability density having the

gradient representation g by p[g], which is uniquely determined by change of variables:

p[g](x) = φ(g(x)) det[∇g>(x)]. We recall that the reference density is the standard normal

density φ(y).

Let C2
^(Rm) be the set of twice continuously differentiable and strictly convex func-

tions. We define the set of gradient maps onto Rm by

Gall :=
{
g : Rm → Rm | ∃ψ ∈ C2

^(Rm), ∀x ∈ Rm, g(x) = ∇ψ(x), g(Rm) = Rm
}

.
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q(y)

y=g(x)
y=g’(x)

p[g](x)

p[g’](x)

all densities

Figure 1: A reference density q(y), gradient maps g(x) and resultant densities p[g](x).

The set Gall is a subset of the linear space C1(Rm → Rm) that consists of all continuously

differentiable maps from Rm to Rm. All the gradient maps g considered in this paper

are included in Gall. Although we are not aware of the characterization of the set P :=

{p[g](x) | g ∈ Gall} of densities, this class is sufficiently flexible as will be elucidated in

the following sections.

Let us prove that Gall is a convex cone in C1(Rm → Rm). We use the following lemma

from convex analysis.

Lemma 3 (Rockafeller 1972, Corollary 13.3.1). Let ψ be a differentiable convex function

on Rm. Then the range of ∇ψ is Rm if and only if ψ is co-finite, in that limλ→∞ ψ(λx)/λ =

∞ for any x 6= 0.

Theorem 4. The set Gall is a convex cone.

Proof. We show c1g1 + c2g2 ∈ Gall for any g1, g2 ∈ Gall and c1, c2 > 0. Since there

exist convex functions ψ1, ψ2 ∈ C2
^(Rm) such that gi = ∇ψi, we have c1g1 + c2g2 =

∇(c1ψ1 + c2ψ2). Since ψ1 and ψ2 are co-finite, c1ψ1 + c2ψ2 is also co-finite.

Theorem 4 is used to construct the g-flat model in the next section.

Remark 5. Brenier (1991) showed the existence and uniqueness theorem (Theorem 1) un-

der the condition where the support of P and Q is bounded. Rüchendorf & Rachev (1990)

proved existence of ψ for any P and Q with finite second moments (
∫ |x|2P (dx) < ∞ etc.).

The latter paper generalized the existence theorem to the case of infinite-dimensional

spaces.
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Theorem 1 is closely related to the Monge-Kantorovich transportation problem (MKP).

This problem is formulated as follows. For given two probability measures P and Q on

Rm, find a measure Γ on Rm × Rm that solves the following optimization problem.

W (P,Q) = min

{∫
|x− y|2Γ(dx, dy) | Γ(dx,Rm) = P (dx), Γ(Rm, dy) = Q(dy)

}
. (2)

The MKP is an infinite-dimensional linear programming problem. The minimum value

W (P, Q) is called the Wasserstein metric between P and Q. Rüschendorf & Rachev

(1990) proved that for any probability distributions P and Q with finite second moments,

a measure Γ is a solution to (2) if and only if y ∈ ∂ψ(x) Γ-a.e. for some closed convex

function ψ. Here ∂ψ(x) denotes the subgradient of ψ (see Rockafeller 1972, p. 214). A

similar result is proved by Knott & Smith (1984). There are many references on the MKP.

A consulting book is Rachev & Rüschendorf (1998).

One of the statistical methods related to the MKP is the multivariate generalization

of the quantile-quantile plot by Easton & McCulloch (1990). Their method is essentially

to solve the MKP when P and Q are the empirical measure of given data sets {xi}n
i=1 and

{yi}n
i=1. If the solution to the MKP is close to the identity map, it is concluded that the

two data sets are similar.

To find the optimal transformation g = ∇ψ for given P and Q is difficult in general.

Abdellaoui (1998) showed that if the support of Q is finite, the optimal transformation g

is explicitly written. He also proposed an algorithm to give a sequence converging to g.

For two-dimensional distributions Knott & Smith (1984) gave a procedure to find g that

transports the uniform distribution over a bounded set A to the uniform distribution over

another bounded set B, by using complex functions.

2.2 Exact sampling

If we determine the gradient map g ∈ Gall, then samples drawn from p[g](x) are exactly

obtained on the basis of the inverse-function method. A sample X from p[g](x) is obtained

by solving g(X) = Y , where Y is a sample from the standard normal distribution. Since g

is the gradient map of a convex function ψ, we can solve g(X) = Y by solving the convex

optimization problem

X = argmin
x∈Rm

{ψ(x)− Y >x}.

The solution exists uniquely for any Y because ψ is co-finite (see Lemma 3).
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An independently and identically distributed (i.i.d.) sequence {X(i)}n
i=1 is simultane-

ously obtained by solving

(X(1), . . . , X(n)) = argmin
(x(1),...,x(n))

n∑
t=1

{ψ(x(t))− Y (t)>x(t)},

where {Y (t)}n
t=1 is an i.i.d. sequence from the standard normal distribution. This proce-

dure is valuable for the vector-oriented programming languages like R and MATLAB.

2.3 Examples

We give three examples having the explicit gradient representation. The first example is

the distribution of three-dimensional interaction, the second one is the distribution quite

different from the normal distribution and the third one is related to an electric circuit.

To generate samples, we use the exact sampling described in the preceding subsection.

Example 1 (Distributions with three-dimensional interaction). Let m = 3 and define

ψ(x) =
x>x

2
+ ε

4∑

λ=1

arctan(e>λ x),

where

(e1, e2, e3, e4) =




1 −1 −1 1
1 1 −1 −1
1 −1 1 −1


 (3)

and ε ∈ R is a small number such that convexity of ψ is assured. A result of numerical

experiments when ε ranges over {0.00, 0.05, . . . , 0.35} is shown in Figure 2. The result

shows that the third cumulant of p[∇ψ](x) is unignorable. In Section 5 an asymptotic

expression of the third cumulant is obtained under the limit as ε → 0.

Example 2 (Curtain-type distribution). Let m = 2 and define ψ(x) by

ψ(x1, x2) =





(2t)−1
(
−q|x2|+

√
(q2 + 1)x2

2 + x2
1

)2

if |x2| ≥ |x1|,
(2/t)−1

(
q|x1|+

√
x2

2 + (q2 + 1)x2
1

)2

if |x2| < |x1|,

where t = 0.05 and q = (1 − t)/
√

2t. Samples drawn from the density p[∇ψ](x) and the

contour {x | ψ(x) = 1} are shown in Figure 3. The curvature radius r of the contour is

(1 + t2)1/2 if |x2| > |x1| and (1 + t−2)1/2 if |x2| < |x1|.
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Example 3 (Diode distribution). Let m = 2 and define

ψ(x1, x2) =
1

2
(x2

1 + x2
2) + f(x1 − x2), f(u) =

u2

2
I{u≥0},

where I{u>0} denotes the indicator function of the set {u ∈ R | u > 0}. Scatter plot of

samples are shown in Figure 4 (a). There is a boundary along the line x2 = x1 due to

the irregularity of the function f(u). We can easily resolve this unrealistic boundary by

replacing f(u) with a sufficiently smooth function, for example, (log(exp(u) + 1))2. We

call this distribution the diode distribution since there is an electric circuit with a diode

that attains the characteristics of this transformation (see e.g. Murota 2003, Section 2.2

for the relation between electric circuits and convex functions). Let us consider the circuit

given in Figure 4 (b). Assume that the diode is ideal: the diode connects its end-points

if V1 > V2, and disconnects otherwise. Let the resistance values be Ra = Rb = Rc = 1.

Then the circuit equation is

{
I1 = V1 + (V1 − V2)I{V1>V2},
I2 = −(V1 − V2)I{V1>V2} + V2.

The right hand side is the gradient of ψ(V1, V2) = 1
2
(V 2

1 +V 2
2 )+ 1

2
(V1−V2)

2I{V1>V2}. Hence,

if (I1, I2) is normally-distributed, the samples of (V1, V2) are distorted as Figure 4 (a).

3 The g-flat model

3.1 Definition and properties

We denote the probability density having the gradient representation g by p[g]. The

Jacobian matrix of g is denoted by G = ∇g>. The density p[g] is explicitly expressed as

p[g](x) = φ(g(x)) det G(x), where φ(y) = (2π)−m/2 exp(−y>y/2). Recall that Gall is the

set of all the continuously differentiable gradient maps of convex functions.

Definition 6 (g-flat model). A statistical model is called a g-flat model if it is represented

as

M = {p[g](x) | g ∈ G }, G = {g | g =

p∑
a=1

θaga, (θa) ∈ Θ} ⊂ Gall,

where (ga)
p
a=1 is a set of gradient maps and Θ is a convex subset of Rp.
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Figure 2: A simulation on the distribution with three-dimensional interaction. (a) Scatter
plot of samples drawn from p(x1, x2). The small parameter ε is 0.35. The sample size
is 1000. (b) Scatter plot of p(x1, x2|x3 > 0). (c) Scatter plot of p(x1, x2|x3 < 0). (d)
The third cumulants κ112 and κ123 against ε ∈ {0.00, 0.05, . . . , 0.35}. The sample size is
10000. The 95% confidence interval is based on the bootstrap method. The straight line
(1.237ε) is obtained by asymptotic analysis in Subsection 5.2. (e) The marginal correlation
Cor[x1, x2] and the conditional correlations Cov[x1, x2|x3 ≥ 0] and Cov[x1, x2|x3 < 0]
against ε ∈ {0.00, 0.05 . . . , 0.35}.
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Figure 3: A simulation on the curtain-type distribution. (a) Scatter plot of 500 samples.
(b) The contour of the potential function.
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Figure 4: A simulation on the diode distribution. (a) Scatter plot of 500 samples. The
solid line is x2 = x1. (b) An electric circuit satisfying I = ∇ψ(V ).
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Remark 7. The convex subset Θ is typically written as the first quadrant Θ = Rm
≥0 or

the simplex Θ = Rm
≥0 ∩ {

∑p
a=1 θa = 1}. But these sets are restrictive in some situations.

For example, the normal model {N(µ, Σ)} is expressed in the gradient representation as

M = {p[g](x) | g(x) = Ax + b, A ∈ Sym+(Rm), b ∈ Rm}

where Sym+(Rm) is the set of all positive definite matrices.

The following theorem is one of the motivations to use the g-flat model.

Theorem 8. Let M = {p[g](x) | g ∈ G } be a g-flat model. Then the log-likelihood

function is concave with respect to g.

Proof. It is sufficient to prove that θ ∈ (0, 1) 7→ log p[gθ](x) is concave, where gθ(x) =

(1− θ)g0(x) + θg1(x) is the convex combination of arbitrary gradient functions g0 and g1

in G . The logarithm of p[gθ] is given by

log p[gθ] = −g>θ gθ/2 + log det(Gθ)

and therefore

∂2
θ log p[gθ] = −(g1 − g0)

>(g1 − g0)− tr[G−1
θ (G1 −G0)G

−1
θ (G1 −G0)] ≤ 0.

The equality holds if and only if g1 = g0 and G1 = G0.

From this theorem, if θ̂ is a local maximal point of log p[gθ], then it is actually the

unique global maximal point. The numerical computation of the maximum likelihood

estimator (MLE) is relatively simple. The penalized likelihood log p[gθ]− λ pen(θ) is also

concave whenever the penalty term pen(θ) is convex with respect to θ.

In the following, we enumerate the other properties of the g-flat models. We first

remark that the multivariate normal model can be combined with any g-flat model. Con-

sider any g-flat model M = {p[g](x) | g(x) =
∑p

a=1 θaga(x), θ ∈ Θ}. Then we can

combine M with the normal model by putting

M′ = {p[g](x) | g(x) = Ax + b +

p∑
a=1

θaga(x),

θ ∈ Θ, A ∈ Sym+(Rm), b ∈ Rm}

This property of the g-flat model is particularly important for multivariate analysis be-

cause many statistical methods for multivariate data are based on the normal model and

our g-flat model may enable to extend the methods.

10



Next we compare the g-flat model with the exponential family. Recall that a model

M is called an exponential family (or e-flat family) if M is written as

M = {pθ(x) = c(x) exp(

p∑
a=1

θata(x)− ψ(θ)) | θ ∈ Θ},

where (ta(x)) is a set of functions and ψ(θ) is the normalizing constant that guarantees
∫

pθ(x)dx = 1. For given (ta(x)), to compute ψ(θ) is difficult in general and the Markov

Chain Monte Carlo (MCMC) method is needed. Although the MCMC method is powerful

especially in Bayesian analysis, it sometimes forces high-cost computations. On the other

hand, the g-flat model is normalization-free so that the probability density is explicitly

expressed.

Let us focus on the independence of two or more random variables. In the gradient

representation, independence of variables is described by the (infinite-dimensional) affine

subset in the set of all the gradient functions. Assume that p(x1, x2) = p1(x1)p2(x2) and

denote the gradient representation of p, p1 and p2 by g, g1 and g2, respectively. Then we

obtain g(x1, x2) = g1(x1) + g2(x2). Remark that this property does not hold if a mixture

family is considered. Recall that a model M is called a mixture (or m-flat) family if M
is written as M = {p | p(x) =

∑p
a=1 θapa(x), θ ∈ Θ}.

We proceed to consider the conditional independence of two or more random variables.

Unfortunately, the conditional independence is not described by affine subset in the gra-

dient representation. For example, let g(x) = Ax with a positive definite matrix A. Then

x has the distribution N(0, A−2). For the case where x ∼ N(0, Σ), it is widely known

that x1 and x2 is conditionally independent given (x3, · · · , xm) if and only if (Σ−1)12 = 0.

This condition is given by a non-affine relation

(A2)12 = A11A12 + A12A22 + · · ·+ A1mAm2 = 0

in terms of A.

Finally we point out that any g-flat model has the conic extension. If the g-flat model

is given by M = {p[g](x) | g ∈ G }, then the model M̃ defined by the following formula

is also a g-flat model:

M̃ := {p[g](x) | g ∈ G̃ }, G̃ = {g | g = aḡ + b, ḡ ∈ G , a > 0, b ∈ Rm}.

We call M̃ the conic extension of M. The conic extension makes the model flexible. For

any x0 ∈ Rm there exists a sequence {gn}∞n=1 in G̃ such that the distribution p[gn](x)dx

11



converges weakly to the Dirac distribution δx0(dx). In fact, take any gradient map g ∈ G

and consider the sequence gn(x) = n(g(x)−g(x0)) in G̃ . We remark that any e-flat models

have a similar extension called the exponential dispersion model in that the dispersion

parameter plays a role of our scaling parameter a > 0 (e.g. Jørgensen 1987). However

the exponential dispersion model is not e-flat with respect to the dispersion parameter in

general.

We summarize these properties in Table 1.

Table 1: Properties of models.

Advantages g-flat model m-flat model e-flat model
Log-likelihood is concave © © ©
All normal distributions can be included © − ©
Normalization is not needed © © −
Independency can be described © − ©
Conditional independency can be described − − ©
Conic extension is available © − −

3.2 Numerical evaluation of information loss

In this subsection, we only consider one-parameter model for simplicity. We evaluate the

statistical curvature γ(θ) (Efron 1975) defined by

γ(θ) = E[(∂θ∂θ`− Γ(θ)J(θ)−1∂θ` + J(θ))2]/(J(θ)2),

Γ(θ) = E[(∂θ∂θ`)(∂θ`)],

J(θ) = E[(∂θ`)
2],

where ` is the log likelihood function ` = log pθ(x). The quantity γ(θ) represents (asymp-

totically) the information loss when the given data is compressed into the maximum likeli-

hood estimator. The e-flat models satisfy γ(θ) = 0. We compare γ(θ) of g-flat models and

that of m-flat models. Let g0 and g1 be two gradient maps. The g-flat model connecting

the two maps is p[(1− θ)g0 + θg1](x) and the m-flat model is (1− θ)p[g0](x) + θp[g1](x),

where θ ∈ [0, 1].

Example 4 (Normal and 3dimensional interaction distributions). Let us consider ψ0(x) =

12



x>x/2 and

ψ1(x) =
x>x

2
+ 0.2

4∑

λ=1

arctan(e>λ x).

The vectors eλ are defined in Example 1. We evaluate the curvature γ(θ) of the model

connecting two of the three densities by the Monte-Carlo method. The result is shown in

Figure 5. In the case, the g-flat model has less curvature than the m-flat model for all of

θ ∈ [0, 1].

Example 5 (Normal, curtain-type and diode distributions). Let us consider three den-

sities: the standard normal density, the curtain-type density (Example 2) and the diode

density (Example 3). We evaluate the curvature γ(θ) of the model connecting two of the

three densities by the Monte-Carlo method. The result is shown in Figure 6. In each

case, the g-flat model has less curvature than the m-flat model for almost values of θ.

There is an interesting property, in that the curvature of the g-flat model connecting the

normal and diode densities is constant 1. In fact, by direct calculations, we can obtain

J(θ) = 4(1 + 2θ)−2, Γ(θ) = 8(1 + 2θ)−3 and γ(θ) = 1.

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5
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ga
m

m
a

m−flat

g−flat

Figure 5: Statistical curvature of the g-flat and m-flat models connecting the normal and
3-dimensional interaction densities. The sample size is 10000 for each experiment and the
95% confidence interval is based on the bootstrap method.
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Figure 6: Statistical curvature of the g-flat and m-flat models connecting (a) the normal
and curtain-type densities, (b) the normal and diode densities, (c) the curtain-type and
diode densities, respectively. The sample size is 10000 for each experiment and the 95%
confidence interval is based on the bootstrap method.

3.3 Application to real data

We apply the g-flat model to detect three-dimensional interaction of a real data set.

We use the data of decathlon (Miyakawa 1997). The data consist of 10 variables {Xi}10
i=1

(100m, long-jump, shot-put, high-jump, 400m, 110m-hurdle, disc-throw, pole-vault, javelin-

throw and 1500m) by 50 samples (50 athletes). The data are preprocessed before analysis

such that the sample mean and variance of each variable are 0 and 1, respectively. We

consider each marginal density p(Xi, Xj, Xk) (1 ≤ i < j < k ≤ 10), not the joint density

p(X1, . . . , X10), for simplicity. The empirical third cumulant is shown in Figure 7 (a).

The model of three-dimensional interaction as Example 1 is used. The potential function

is

ψ(x) =
1

2
x>Ax + θ

4∑

λ=1

arctan(e>λ x), x = (xi, xj, xk)
>

where {eλ} is defined by (3), and A ∈ Sym+(Rm) and θ ∈ R are unknown parameters.

We calculate Akaike’s information criterion (AIC) of the two submodels θ = 0 and

θ 6= 0 for all the triplets {(i, j, k)}1≤i<j<k≤10 of the ten events. The result is shown in

Figure 7 (b). The triplet having the most significant difference value is (X4, X5, X6) (that

denotes high-jump, 400m and 110m hurdle). The estimated potential is

ψ(x4, x5, x6) =
1

2
x>




1.054 −0.094 0.137
−0.094 1.138 −0.307
0.137 −0.307 1.148


 x + 0.186

4∑

λ=1

arctan(e>λ x).
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Although the empirical third cumulant 0.204 of (X4, X5, X6) is not so large, we find that

two empirical conditional correlations are quite different: Cor[X5, X6|X4 > 0] = 0.688 and

Cor[X5, X6|X4 < 0] = −0.049. The scatter plots shown in Figure 7 (b)–(d) also support

the result. The consequence is that if an athlete is a good high-jumper, the scores of

400m and 110m hurdle are positively correlated, otherwise the two scores have almost no

correlation. Remark that this result is never detected when only the normal distribution

is used.

Of course there are naive non-parametric methods that detects the three-dimensional

interaction by using some test statistics, e.g. the empirical third cumulant. However, if

these naive methods are used, the predictive inference like the plug-in prediction pθ̂(·),
where θ̂ is the MLE, is not available.

4 Symmetric distributions

We discuss the gradient representation of symmetric distributions. In particular stationary

and periodic time series is characterized by its gradient representation.

4.1 Invariance under orthogonal transformations

We first note that some transformation of the random variable is directly reflected in the

transformation of the potential functions. Denote the orthogonal group on Rm by O(Rm).

Lemma 9. Let U ∈ O(Rm), a > 0 and c ∈ Rm. Denote the potential of the density

p(x) by ψ(x). Then the potential of the density p(Ux), p(ax)an and p(x− c) is given by

ψ(Ux), a−1ψ(ax) and ψ(x− c), respectively.

Proof. Let g = ∇ψ and G = ∇∇>ψ. Then

log p[g](Ux) = −1

2
g(Ux)>g(Ux) + log det(G(Ux)).

Let ψ̃(x) := ψ(Ux). Then ∇ψ̃(x) = U>g(Ux) and ∇∇>ψ̃(x) = U>G(Ux)U . Hence

log p[∇ψ̃](x) = −1

2
g(Ux)>g(Ux) + log det(G(Ux)).

Thus ψ̃ is the potential function of p(Ux). The other statements are similarly proved.

Remark 10. Generalization of Lemma 9 to all the affine transformations or more general

transformations is difficult. If g is the identity map and T is an invertible linear map, then
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Figure 7: Detection of three-dimensional interaction on the decathlon data. (a) The
empirical third cumulant for each triplet. The horizontal axis represents the 120 triplets
arranged as (1, 2, 3), (1, 2, 4), . . . , (7, 8, 9). (b) Difference between AIC of the model θ 6= 0
and θ = 0. The point under the horizontal line implies that the model θ 6= 0 is selected.
The horizontal axis represents the 120 triplets. The 86th triplet (4, 5, 6) has the most
significant value. (b) Scatter plot of X5 (horizontal) v.s. X6 (vertical). The correlation is
0.465. (c) Scatter plot of X5 v.s. X6 conditioned by X4 > 0 (the correlation is 0.688). (d)
Scatter plot of X5 v.s. X6 conditioned by X4 < 0 (the correlation is −0.049).
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to find the potential function ψ corresponding to φ(Tx) det(T ) is equivalent to determine

the polar factorization T = UA, where U is an orthogonal matrix and A is a positive

definite matrix, because φ(Tx) det(T ) = φ(Ax) det(A). If g is not affine, the explicit form

of ψ is not available. Brenier (1991) investigated the existence and uniqueness theorem

(Theorem 1) from the view point of generalization of the polar factorization.

The following theorem is immediately derived from Lemma 9.

Theorem 11. Let H be any subgroup of O(Rm). Denote the potential of the density

p(x) by ψ(x). Then p(x) is H-invariant if and only if ψ(x) is H-invariant.

Example 6 (Spherically symmetric distributions). Consider a probability density func-

tion written as p(x) = π(|x|), where |x| denotes the Euclidean norm of x and π is a

function on R≥0. From Theorem 11 the potential function is written as ψ(x) = f(|x|)
with some function f on R≥0. The gradient ∇ψ = (f ′(|x|)/|x|)x is called a radial trans-

formation (Rachev & Rüschendorf 1998, Example 3.2.16). We prove that ψ is convex if

and only if f ′(r) > 0 and f ′′(r) > 0 for all r > 0. In fact, the Hessian matrix of ψ is given

by

∇∇>ψ(x) =
f ′(r)

r
(I − ee>) + f ′′(r)ee>,

where r = |x|, e = x/|x| and I is the identity matrix. The eigenvalues of ∇∇>ψ(x) are

f ′(r)/r and f ′′(r). Thus the Hessian matrix is positive definite if and only if f ′(r) > 0

and f ′′(r) > 0.

We can generalize this result. Let us partition x into (xA, xB) and consider a prob-

ability density function written as p(x) = π(|xA|, |xB|). The potential corresponding to

the density p(x) is written as ψ(x) = f(|xA|, |xB|). The function ψ is convex if and only

if f(rA, rB) is a two-dimensional convex function and ∂f/∂rA > 0 and ∂f/∂rB > 0.

Example 7 (Exchangeable distributions). If a distribution is invariant under the symmet-

ric group that consists of all permutations, then the distribution is called an exchangeable

distribution. A distribution is exchangeable if and only if its potential function is invari-

ant under the symmetric group. The density with 3-dimensional interaction discussed in

Example 1 is an example of exchangeable densities.

4.2 Stationary and periodic time series

A random vector X = (X0, · · · , Xn−1) is called stationary and periodic if its distribution

is invariant under the translation group τ s : (Xt) 7→ (Xt−s), where t− s is considered as

17



t− s modulo n. Let ψ be the potential function that determines the density of X. Then

the distribution of X is stationary and periodic if and only if ψ is invariant under the

translation group. Let ψ be written as

ψ(x) =
n−1∑
s=0

f(τ sx), (4)

where f is a convex function. This ψ is translation invariant since ψ(τx) = ψ(x).

Example 8. Let n = 4. Put f(x0, x1, x2, x3) = (x2
0 + x2

1)/2 + ((x0 − x1)
2/2)I{x0>x1} like

Example 3 and let ψ be given by (4). Samples drawn from the marginal densities p(x0, x1)

and p(x0, x2) are drawn in Figure 8 (a) and (b). The potential is not invariant under in-

version of time. In fact ψ(0, 1, 2, 3) = 11.5 and ψ(3, 2, 1, 0) = 8.5. The Kullback-Leibler

(KL) divergence
∫

p(x) log(p(x)/p(ρ(x)))dx, where ρ denotes inversion of time, is esti-

mated to [0.88, 0.95] (95% interval). For comparison
∫

p(x) log(p(x)/φ(x))dx is estimated

to [2.57, 2.64] (95% interval). Note that any stationary and periodic Gaussian density

is invariant under inversion of time. An electric circuit attaining this transformation is

obtained by connecting the circuit of Example 3 as shown in Figure 8 (c). This example

is clearly generalized to the case of arbitrary n ≥ 3.
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Figure 8: A stationary and periodic distribution (n = 4). (a) Samples drawn from
p(X0, X1), (b) Samples drawn from p(X0, X2) (c) An electric circuit satisfying I = ∇ψ(V ).

A natural extension is to characterize the stationary process X = (Xt | t ∈ Z), where

Z stands for the set of all integers. The process X is called stationary if any finite-

dimensional marginal distribution of X is translation invariant. However the gradient

representation for the infinite-dimensional data needs further investigation and it is not

discussed here.
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5 Asymptotic analysis

We derive asymptotic expansion of the probability density functions and their cumulants

under the limit where a positive parameter ε governing the potential ψε converges to zero.

In Subsection 5.1 we derive an asymptotic expression for general potential functions. In

Subsection 5.2 the result is simplified for a restricted form of potential functions.

5.1 Expansion of cumulant generating functions

Denote the cumulant generating function of a probability density p(x) by κ[p](η) :=

log
∫

p(x)eη>xdx. We first give a lemma on perturbed densities.

Lemma 12. Let pε(x) = p0(x) + εr(x) be a density function. Then κ[pε](η)is expanded

as

κ[pε](η) = κ[p0](η) + ε

∫
r(x)eη>x−κ[p0](η)dη + O(ε2)

as ε → 0.

Proof. From the definition of κ[pε](η) we have

κ[pε](η) = log

[∫
p0(x)eη>xdx

]
+ ε

∫
r(x)eη>xdx∫
p0(x)eη>xdx

+ O(ε2)

and the result follows.

We consider the perturbed potential

ψε(x) = ψ0(x) + ετ(x),

where ψ0 is a convex function on Rm and τ is a function on Rm. To assure the convexity

of ψε we suppose that the eigenvalues of ∇∇>ψ0 are bounded away from 0 and those of

∇∇>τ are bounded. We will consider more specific ψ0(x) and τ(x) in the next subsection.

Lemma 13. Let ψε(x) = ψ0(x) + ετ(x). Then the density function is expanded as

pε(x) := p[∇ψε](x) = p0(x) + ε∇>(p0(x)v(x)) + O(ε2)

as ε → 0, where v(x) = (∇∇>ψ0(x))−1∇τ(x).
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Proof. The gradient ∇ψε(x) = ∇ψ0(x) + ε∇τ(x) is asymptotically rewritten as follows:

∇ψε(x) = ∇ψ0(x + εv(x)) + O(ε2).

This map is the composition of the map x 7→ x + εv(x) and ∇ψ0. Therefore

pε(x) = p0(x + εv(x)) det(I + ε∇v(x)>) + O(ε2)

= p0(x) + ε(∇>p0(x))v(x) + εp0(x)∇>v(x) + O(ε2)

= p0(x) + ε∇>(p0(x)v(x)) + O(ε2)

and the desired formula is proved.

Remark 14. Note that
∫ ∇>(p0(x)v(x))dx = 0 by the integration-by-parts formula. This

is directly deduced from measure-preserving property
∫

pε(x)dx =
∫

p0(x)dx.

By applying Lemma 12 we obtain the following theorem.

Theorem 15. Let ψε(x) = ψ0(x) + ετ(x) and v(x) = (∇∇>ψ0(x))−1∇τ(x). Then the

cumulant generating function of pε is expanded as

κ[pε](η) = κ[p0](η)− ε

∫
p0(x)(η>v(x))eη>x−κ[p0](η)dx + O(ε2).

Proof. From Lemma 12 and Lemma 13 we have

κ[pε](η) = κ[p0](η) + ε

∫
∇>{p0(x)v(x)}eη>x−κ[p0](η)dx

= κ[p0](η)− ε

∫
p0(x)η>v(x)eη>x−κ[p0](η)dx,

where we used the integration-by-parts formula.

Corollary 16. Let ψ0(x) = x>Ax/2. Then

κ[pε](η) =
1

2
η>A−2η − ε

∫
(η>A−1∇τ(x))φ(x|A−2η,A−2)dx,

where φ(x|µ, Σ) is the normal density with the mean µ and covariance Σ.

Proof. By noting p0(x) = φ(x|0, A−2) we obtain p0(x)eη>x−κ[p0](η) = φ(x|A−2η,A−2).
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5.2 Basic perturbation around the identity map

As a special case of the perturbed potential we consider the following function

ψε(x) =
x>x

2
+ ε

∑

λ∈Λ

fλ(e
>
λ x)

where Λ is a finite set, {fλ} is a set of functions on R and {eλ = (eλ,i)} is a set of vectors

in Rm. We call this form the basic perturbation. From Corollary 16 we have

κ[pε](η) =
1

2
η>η − ε

∑

λ

(η>eλ)

∫
f

(1)
λ (e>λ x)φ(x|η, I)dx

=
1

2
η>η − ε

∑

λ

(η>eλ)

∫
f

(1)
λ (e>λ x + e>λ η)φ(x|0, I)dx

=
1

2
η>η − ε

∞∑

k=1

1

(k − 1)!

∑

λ

(η>eλ)
k

∫
f

(k)
λ (e>λ x)φ(x|0, I)dx

up to O(ε). The k-th cumulant is κi1···ik [pε] = κi1···ik [p0](η) + εTi1···ik + O(ε2), where

Ti1···ik = −k
∑

λ

F
(k)
λ eλ,i1 · · · eλ,ik (5)

and F
(k)
λ =

∫
f

(k)
λ (e>λ x)φ(x|0, I)dx. The basic perturbation has sufficient flexibility. In

fact, for given finite number of coefficients Ti1···ik , there exists a set of fλ and eλ such that

(5) holds. This fact will be proved in Appendix.

For example let fλ(z) = αλ arctan(z) and the set of eλ be given in Table 2. Put

H
(k)
c = E[(arctan)(k)(cZ)] for c > 0. From the formula (5) we have

Ti = 0, Tij = 0, Tijk = −3
∑

λ

αλH
(3)
|eλ|eλ,ieλ,jeλ,k.

Conversely αλ is written in terms of Tijk as

αλ = − βλ

24H
(3)
|eλ|

,

where the list of βλ and H
(3)
|eλ| is given in Table 2. The quantities H

(k)
c have a tractable

form as follows. Denote the upper probability of χ2-distribution (degree of freedom is 1)

by Px =
∫∞

x
e−u/2/

√
2πu du. Then

H(1)
c = e1/(2c2)

√
π

2c2
P1/c2 , H(2)

c = 0, H(3)
c = c−4(1− (1 + c2)H(1)

c ).
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In fact,

H(1)
c = E

[
1

1 + c2Z2

]
=

1

2

∫ ∞

0

E[e−t(1+c2Z2)/2]dt =
1

2

∫ ∞

0

e−t/2

√
1 + c2t

dt = e1/(2c2)

√
π

2c2
P1/c2 .

The expression of H
(3)
c follows from the integration-by-parts formula

H(3)
c =

∫
(arctan)(3)(cz)φ(z)dz = c−2

∫
(arctan)(1)(cz)(z2 − 1)φ(z)dz

= c−4

∫
(1− (1 + c2)(arctan)(1)(cz))φ(z)dz = c−4(1− (1 + c2)H(1)

c ).

It is easily derived that H
(k)
c = 0 for any even k.

In Example 1 we used {eλ}22
λ=19 of Table 2. Since |eλ| =

√
3 and eλ,1eλ,2eλ,3 = 1, we

obtain the straight line κ123 = −3ε× 4H
(3)√

3
= 1.237ε in Figure 2 (d).

Table 2: The list of eλ, βλ and H
(3)
|eλ|.

λ eλ,1 eλ,2 eλ,3 βλ |eλ| H
(3)
|eλ|

1 3 0 0 T111 3 −.0279
2 0 3 0 T222

3 0 0 3 T333

4 −1 0 0 3T111 + 6T122 + 6T133 1 −.3114
5 0 −1 0 6T112 + 3T222 + 6T233

6 0 0 −1 6T113 + 6T223 + 3T333

7 2 1 0 3T112

√
5 −.0573

8 −2 1 0 3T112

9 2 0 1 3T113

10 −2 0 1 3T113

11 1 2 0 3T122

12 1 −2 0 3T122

13 1 0 2 3T133

14 1 0 −2 3T133

15 0 2 1 3T223

16 0 −2 1 3T223

17 0 1 2 3T233

18 0 1 −2 3T233

19 1 1 1 6T123

√
3 −.1031

20 −1 1 −1 6T123

21 −1 −1 1 6T123

22 1 −1 −1 6T123
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6 Discussion

We defined the gradient representation of the probability densities and constructed the

g-flat model by using it. The g-flat has many good properties including the concavity of

the log-likelihood. A g-flat model was applied to detect the three-dimensional interaction

of the decathlon data. From the theoretical viewpoint we discussed a class of symmetric

potentials and studied asymptotic expansion with respect to small perturbation.

We have not stated about regression models. A generalization of g-flat models to this

direction is available by adding the explanation variables in the potential function. More

generally, graphical modeling corresponding to directed acyclic graphs will be described

in terms of the gradient representation. These important generalizations are left on the

future work.

A Flexibility of basic perturbations

We prove flexibility of the basic perturbations described in Subsection 5.2. Let C∞
b (R) be

the set of infinitely differentiable functions with the bounded derivatives. For vectors v

and w, the tensors (viwi) and (vi1 · · · vik) are denoted by v⊗w and v⊗k. The tensor Ti1···ik
in Eq. (5) is written as (Ti1···ik) = −k

∑
λ F

(k)
λ (eλ)

⊗k. The direct sum of linear spaces V

and W is denoted by V ⊕W .

Lemma 17. Fix a positive integer K. Let Sk be the set of all symmetric tensors of order

k. Then for any element (w(1), . . . , w(K)) ∈ S1 ⊕ · · · ⊕ SK there exists a finite set {eλ} of

vectors and a finite subset {fλ} of C∞
b (R) such that

∑

λ

(
F

(1)
λ e⊗1

λ , . . . , F
(K)
λ e⊗k

λ

)
= (w(1), . . . , w(K)),

where F
(k)
λ = E[f

(k)
λ (Z)] and Z ∈ N(0, 1).

Proof. Let [K] = {1, . . . , K}. It is sufficient to prove the following two properties.

(i) For any c = (c1, . . . , cK) ∈ RK there exists a function f ∈ C∞
b such that F (k) = ck

for all k ∈ [K].

(ii) There exists a set {eλ}λ∈Λ of vectors such that the space S1 ⊕ · · · ⊕ SK is spanned

by {(e⊗1
λ , . . . , e⊗K

λ )}λ∈Λ.
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We first prove (i) by using a topological technique. We assume that the norm |c|
of the vector c is less than 1 without loss of generality. For each a ∈ RK let fa(z) :=
∑K

k=1 akhk(z)/k!, where hk(z) = (−1)kφ(k)(z)/φ(z) is the Hermite polynomial. We have

E[f
(k)
a (Z)] = E[fa(Z)hk(Z)] = ak for all k ∈ [K]. The function fa is not in C∞

b (R). Let

η(z) be a function in C∞
b (R) such that η(z) = 1 if |z| ≤ 1 and 0 if |z| ≥ 2. Define the

function fa,t ∈ C∞
b (R) by fa,t(z) := (t ∧ 1)Kη(z/t)fa(z) for t ∈ (0,∞). By Lebesgue’s

dominated convergence theorem we can prove that the function (t, a) 7→ E[f
(k)
a,t (Z)] is

continuous and

E[f
(k)
a,t (Z)] →

{
0 as t → 0,
ak as t →∞.

Let Ut := {(E[f
(k)
t,a (Z)])K

k=1 | |a| = 1}. Then U∞ is the unit sphere and U0 is the origin.

Since Ut varies continuously from t = ∞ to 0, there exists some t ≥ 0 such that c ∈ Ut.

This implies that there exists a function f := ft,a such that F (k) = ck.

We next prove (ii). We construct the set {eλ} explicitly. Define the index set Λ by

Λ =
{
(k, τ, i) | k ∈ [K], τ = (τ1, . . . , τk) ∈ {−1, 1}k, i = (i1, . . . , ik) ∈ [m]k

}
.

Let ui be the i-th column vector of the m×m identity matrix. Then we define eλ by

e(k,τ,i) :=
k∑

j=1

τjuij , (k, τ, i) ∈ Λ.

For example e(3,(1,−1,1),(1,2,3)) = u1 − u2 + u3 and e(3,(1,1,−1),(1,1,2)) = 2u1 − u2. For each

k ∈ [K] and i ∈ [m]k, we define an element w(k,i) ∈ S1 ⊕ · · · ⊕ SK by

w(k,i) = (w1
(k,i), . . . , w

K
(k,i)) =

∑

τ∈{−1,1}k

τ1 · · · τk

(
e⊗1
(k,τ,i), . . . , e

⊗K
(k,τ,i)

)
.

It is sufficient to prove that {w(k,i)} spans S1 ⊕ · · · ⊕ SK . We can prove that

wl
(k,i) =

{
0 if l < k,
2k

∑
σ∈S(k) uσ(i1) ⊗ · · · ⊗ uσ(ik) if l = k,

where S(k) is the set of all permutations. Note that the set {∑σ uσ(i1)⊗· · ·⊗uσ(ik)}i∈[m]k

spans Sk. By induction from k = K to k = 1, we can prove that the space {0} ⊕
· · · ⊕ {0} ⊕ Sk ⊕ · · · ⊕ SK is spanned by {w(l,i)}l≥k,i∈[m]l . Thus {w(k,i)}k∈[K],i∈[m]k spans

S1 ⊕ · · · ⊕ SK .
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