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Abstract

This paper deals with a single allocation problem in hub-and-spoke
networks. We present a simple deterministic 3-approximation algo-
rithm and randomized 2-approximation algorithm based on a linear
relaxation problem and a randomized rounding procedure. We handle
the case where the number of hubs is three, which is known to be
NP-hard, and present a (5/4)-approximation algorithm.

The single allocation problem includes a special class of the metric
labeling problem, defined by introducing an assumption that both ob-
jects and labels are embedded in a common metric space. Under this
assumption, we can apply our algorithms to the metric labeling prob-
lem without loosing theoretical approximation ratios. As a byproduct,
we also obtain a (4/3)-approximation algorithm for an ordinary metric
labeling problem with three labels.

Keywords: hub location, metric labeling, approximation algo-
rithm, dependent rounding
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1 Introduction

In this paper, we consider a single allocation problem in hub-and-spoke net-
works. Given a set of hub nodes and a set of non-hub nodes, the problem
allocates each non-hub node to exactly one of hub nodes so that a total
transportation cost is minimized where required amount of flow and a trans-
portation cost per unit flow are given for each pair of nodes. In hub-and-spoke
networks, it is assumed that flows between any pair of nodes are sent via hub
nodes.

First, we describe a simple 3-approximation algorithm. Next, we propose
a 2-approximation algorithm based on a linear programming relaxation and
a randomized rounding procedure. Lastly, we handle the case where the
number of hubs is three, which is known to be NP-hard, and present a (5/4)-
approximation algorithm.

By substituting objects and labels for non-hubs and hubs, respectively,
the single allocation problem becomes a special class of the metric labeling
problem, which is investigated by Kleinberg and Tardos in [10], defined by
introducing an assumption that both objects and labels are embedded in a
common metric space. Under this assumption, we can apply our algorithms
to the metric labeling problem without loosing theoretical approximation
ratios. As a byproduct, we also obtain a (4/3)-approximation algorithm for
an ordinary metric labeling problem with three labels.

The hub-and-spoke structure is based on the situation where some nodes,
called non-hub nodes, can interact only via a set of completely intercon-
nected nodes, called hub nodes. The structure arises in the airline industry,
telecommunications and postal delivery systems. In 1987, O’Kelly [13] con-
sidered a hub location problem, which chooses hub nodes from given nodes
and allocates remained nodes to exactly one of hub nodes so that a total
transportation cost is minimized. After his work, a wide variety of stud-
ies have been done on this topic (e.g., [4, 6]). Due to the hardness of the
problem, most of the researches centered on the development of heuristics
to solve this problem. Many of those heuristics are surveyed by Bryan and
O’Kelly [4]. Exact algorithms are found, for example, in [9, 11, 12].

The single allocation problem is a subproblem of the hub location problem
obtained by fixing hub locations. In many practical situations, the hub loca-
tions are fixed for some time interval because of costs of moving equipment
on hubs. In this case, the decision of optimally allocating non-hub nodes to
one of given hub nodes is important for efficient operation of the network.
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The single allocation problem is first considered by Sohn and Park [17].
They showed the polynomial time solvability of the problem when the number
of hub nodes is equal to two. When the number of hub nodes is greater than
or equal to three, this problem is proved to be NP-hard [18]. To the best of
our knowledge, polynomial time approximation algorithms for the problem
have not been studied in the literature.

As we will see in a later section, the single allocation problem is a special
class of metric labeling problem. The metric labeling problem was introduced
by Kleinberg and Tardos in [10], which has connections to Markov random
field and classification problems that arise in computer vision and related ar-
eas. They proposed a 2-approximation algorithm for the uniform metric case,
which is defined by assuming that all distances between labels (hubs) are the
same. For general case, they proposed an O(log h log log h)-approximation
algorithm where h is the number of labels (hubs). Chuzhoy and Naor [8]
showed that there is no polynomial time approximation algorithm with a
constant ratio for the problem unless P=NP. Thus, our results give a practi-
cally important class of the metric labeling problem, which has polynomial
time approximation algorithms with constant approximation ratios.

This paper is organized as follows: Section 2 formulates the problem as a
quadratic 0-1 integer programming problem and derives an LP relaxation of
the problem through a mixed integer linear programming reformulation. We
also present a simple 3-approximation algorithm. In Section 3, we propose a
2-approximation algorithm. Section 4 deals with the case where the number
of hubs is equal to three and proposes a (5/4)-approximation algorithm for
the single allocation problem and a (4/3)-approximation algorithm for an
ordinary metric labeling problem with three labels. The last section states
conclusions.

2 Problem formulations

In this section, we show a formulation of the single allocation problem. Let H
and N be sets of hub nodes with |H| = h and non-hub nodes with |N | = n,

respectively. We define Ñ2 def.
= {(p, q) ∈ N2 | p 6= q}. For any pair of

nodes (p, q) ∈ Ñ2 ∪ (N × H) ∪ (H × N), a given non-negative amount of
flow from p to q is denoted by wpq(≥ 0). For any pair of nodes (i, j) ∈
(H × H) ∪ (H × N) ∪ (N × H), a given non-negative transportation cost
per unit flow is denoted by cij(≥ 0). Throughout this paper, we assume the
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following.

Assumption 1. A given cost cij satisfies
(i) cii = 0 for any i ∈ H,
(ii) triangle inequalities among hubs, i.e., cij ≤ cik+ckj for any (i, j, k) ∈ H3,
(iii) symmetry, i.e., cij = cji (∀(i, j) ∈ (H ×H) ∪ (H ×N) ∪ (N ×H)).

In some sections, we also assume the following.

Assumption 2. A given cost cij satisfies cij ≤ cpi +cpj (∀(p, i, j) ∈ N×H2).

This assumption stems from an ordinary triangle inequality and the fact that
there is an economy of scale with respect to the transportation among hubs
in practical situations.

We introduce variables xpi ∈ {0, 1} (∀(p, i) ∈ N ×H) where xpi = 1 when
non-hub node p is connected to hub node i and xpi = 0 otherwise. Then the
single allocation problem is formulated as follows:

QIP : min.
∑

(p,q)∈fN2

wpq

(∑
i∈H

cpixpi +
∑
i∈H

∑
j∈H

cijxpixqj +
∑
j∈H

cjqxqj

)

+
∑

(p,j)∈N×H

wpj

∑
i∈H

(cpi + cij)xpi +
∑

(i,q)∈H×N

wiq

∑
j∈H

(cij + cjq)xqj

s. t.
∑

i∈H xpi = 1 (∀p ∈ N),

xpi ∈ {0, 1} (∀(p, i) ∈ N ×H).

Note that we omit the transportation cost between hub nodes in the objective
function because it is a constant term.

Here we briefly mention a relation between the single allocation problem
and the metric labeling problem. Roughly speaking, by replacing hub nodes
and non-hub nodes with labels and objects, respectively, the problem QIP
becomes the metric labeling, which was first considered by Kleinberg and
Tardos in [10]. The problem is called “metric labeling” since distances among
labels (hub nodes) satisfy the axioms of metric spaces, which correspond
to Assumption 1. When objects and labels are embedded in a common
metric space, we can assume Assumption 2. Thus, under Assumption 1,
QIP is essentially equivalent to the metric labeling problem and by adding
Assumption 2, QIP includes a special class of the metric labeling problem
defined by introducing the assumption that objects and labels are embedded
in a common metric space.
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An immediate relaxation problem of QIP is obtained by substituting non-
negativity of variables for integrality. It is easy to show that the obtained
continuous optimization problem has a 0-1 valued optimal solution (This is
discussed for a similar quadratic 0-1 programming problem in [16]). Thus,
the difficulty of QIP stems from quadratic terms of the objective function.
Adams and Sherali [1] proposed a tight linearization for general zero-one
quadratic programming problems. By simply applying their technique, we
can transform QIP to the following mixed integer programming (MIP) prob-
lem:

MIP : min.
∑

(p,q)∈fN2

wpq

(∑
i∈H

cpixpi +
∑
i∈H

∑
j∈H

cijypiqj +
∑
j∈H

cjqxqj

)

+
∑

(p,j)∈N×H

wpj

∑
i∈H

(cpi + cij)xpi +
∑

(i,q)∈H×N

wiq

∑
j∈H

(cij + cjq)xqj

s. t.
∑

i∈H xpi = 1 (∀p ∈ N),
∑

j∈H ypiqj = xpi (∀(p, q) ∈ Ñ2, ∀i ∈ H),
∑

i∈H ypiqj = xqj (∀(p, q) ∈ Ñ2, ∀j ∈ H),

xpi ∈ {0, 1} (∀(p, i) ∈ N ×H),

ypiqj ≥ 0 (∀(p, q) ∈ Ñ2, ∀(i, j) ∈ H2).

The formulation MIP can be obtained by replacing xpixqj with a new vari-
able ypiqj, multiplying

∑
i∈H xpi = 1 by xqj to derive

∑
i∈H ypiqj = xqj

(
∑

j∈H ypiqj = xpi is derived in the same manner). Throughout this pa-

per, the objective function of MIP is denoted by ŵ>x + w̃>y for simplicity.
We remark that these QIP and MIP formulations are also studied under the
name of the quadratic semi-assignment problem (for details, see a polyhedral
study [14] and references therein).

We consider the linear programming relaxation of MIP, called LPR, ob-
tained by substituting non-negativity constraints xpi ≥ 0 for 0-1 constraints
xpi ∈ {0, 1}. In [15], two of authors performed computational experiments
with widely used data set called CAB data [13]. Their results indicate the
tightness of LPR. In succeeding sections, we propose rounding procedures
and bound the objective value produced by applying them to an optimal
solution of LPR.
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We close this section by presenting a simple 3-approximation algorithm,
called “Nearest Neighbor Algorithm,” that only connects each non-hub
node to the nearest hub node.

Theorem 1. Under Assumptions 1 and 2, Nearest Neighbor Algorithm

yields a 3-approximation algorithm.

Proof. We consider a pair of non-hub nodes (p, q) ∈ Ñ2. Let i′ and j′ be the
nearest hub nodes from the non-hub nodes p and q, respectively. Suppose
that p and q are connected to i∗ and j∗ in an optimal allocation, respectively.
It is clear that cpi′ ≤ cpi∗ and cqj′ ≤ cqj∗ hold. From Assumptions 1 and 2, a

transportation cost per unit associated with (p, q) ∈ Ñ2 is bounded by

cpi′ + ci′j′ + cqj′ ≤ cpi′ + (ci′i∗ + ci∗j∗ + cj∗j′) + cqj′

≤ cpi′ + (ci′p + cpi∗) + ci∗j∗ + (cj∗q + cqj′) + cqj′

≤ 3cpi∗ + ci∗j∗ + 3cqj∗ ≤ 3(cpi∗ + ci∗j∗ + cqj∗).

This property also holds even if i′ = j′ or i∗ = j∗, since ci′i′ = ci∗i∗ = 0. For
any pair in (N ∪H)∪ (H ∪N), a transportation cost per unit is bounded in
a similar way. Thus we have a desired result.

A solution obtained by Nearest Neighbor Algorithm only depends on
the transportation cost per unit and thus robust with respect to changes
and/or uncertainties in flow values (wpq).

3 2-approximation algorithm

We propose a 2-approximation algorithm for the single allocation problem.
Our algorithm, called “Independent Rounding Algorithm,” independently
connects each non-hub node p ∈ N to a hub node i ∈ H with probability
x∗pi where (x∗, y∗) is an optimal solution of LPR. In the rest of this sec-
tion, we show that our algorithm gives a 2-approximation algorithm under
Assumptions 1 and 2.

First, we present a key lemma of this section. Recall that the objective
function of MIP is denoted by ŵ>x + w̃>y.

Lemma 1. Let (x, y) and (x0, y0) be feasible solutions of LPR with x = x0.
Under Assumptions 1 and 2, the inequality w̃>y0 ≤ ŵ>x + w̃>y holds.
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The above lemma, which we will prove later, directly implies a main result
of this section.

Theorem 2. Under Assumptions 1 and 2, Independent Rounding Algorithm

gives a 2-approximation algorithm.

Proof. We denote an optimal solution of LPR by (x∗, y∗) and X be a vector
of random variables (indexed by N ×H) obtained by applying Independent

Rounding Algorithm to (x∗, y∗). The objective function value with respect
to X is ŵ>X + w̃>Y where Ypiqj = XpiXqj. Since Xpi and Xqj are indepen-
dent if p 6= q, the equality E[Ypiqj] = E[Xpi]E[Xqj] = x∗pix

∗
qj holds. Thus the

expectation of the objective value with respect to X is

E[ŵ>X + w̃>Y ] = ŵ>x∗ + w̃>y0

where y′piqj = x∗pix
∗
qj. It is clear that the pair (x˜, y′) is feasible to LPR and

thus Lemma 1 directly implies that

ŵ>x∗ + w̃>y0 ≤ ŵ>x∗ + (ŵ>x∗ + w̃>y∗) ≤ 2(ŵ>x∗ + w̃>y∗).

Since ŵ>x∗ + w̃>y∗ gives a lower bound of the optimal value of QIP, we
obtained a desired result.

In the rest of this section, we prove Lemma 1. First, we describe a
property obtained from Assumptions 1 and 2. We denote the set of hub

nodes by H = {1, 2, . . . , h}. For any pair of non-hub nodes (p, q) ∈ Ñ2, we
introduce a complete directed bipartite graph Gpq = (Vp, Vq, E1 ∪ E2) where

Vp
def.
= {p1, . . . , ph}, Vq

def.
= {q1, . . . , qh}, E1

def.
= Vp × Vq, and E2

def.
= Vq × Vp.

For each arc (pi, qj) ∈ E1 and (qj, pi) ∈ E2, we associate an arc cost cij and
cji, respectively. For each vertex pi ∈ Vp and qj ∈ Vq, we associate a vertex
cost cpi and cqj, respectively. Given an arc subset E ′ ⊆ E1 ∪E2 and a vertex
subset V ′ ⊆ Vp ∪ Vq, we denote the sum of costs of arcs in E ′ and vertices
in V ′ by cE(E ′) and cV (V ′), respectively. For any elementary dicycle C in
Gpq, ∂C denotes a set of vertices covered by C. We denote a set of arcs in a
dicycle C by C, if there is no ambiguity.

Lemma 2. Under Assumptions 1 and 2, every elementary dicycle C in Gpq

satisfies that
cE(C ∩ E1) ≤ cV (∂C) + cE(C ∩ E2).
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Proof. Since C is an elementary dicycle, we can express C by a sequence of
vertices (pi1 , qj1 , pi2 , qj2 , . . . , pik , qjk

) where 2k denotes the length of C. In the
following, we identify (pi0 , qj0) with (pik , qjk

), and (pik+1
, qjk+1

) with (pi1 , qj1).
From Assumption 1, the cost ci`j`

of arc (pi` , qj`
) ∈ C ∩ E1 satisfies that

ci`j`
≤ ci`i`+1

+ ci`+1j`
= ci`i`+1

+ cj`i`+1
,

ci`j`
≤ ci`j`−1

+ cj`−1j`
= cj`−1i` + cj`−1j`

.

Assumption 2 implies that

ci`i`+1
≤ cpi` + cpi`+1

and cj`−1j`
≤ cqj`−1

+ cqj`
.

The above inequalities yield that

cE(C ∩ E1) =
∑k

`=1 ci`j`
≤ (1/2)

∑k
`=1(ci`i`+1

+ cj`i`+1
+ cj`−1i` + cj`−1j`

)

≤ (1/2)
∑k

`=1(cpi` + cpi`+1
+ cj`i`+1

+ cj`−1i` + cqj`−1
+ cqj`

)

= (1/2)
∑k

`=1(cpi` + cpi`+1
+ cqj`−1

+ cqj`
) + (1/2)

∑k
`=1(cj`i`+1

+ cj`−1i`)

=
∑k

`=1(cpi` + cqj`
) +

∑k
`=1 cj`i`+1

= cV (∂C) + cE(C ∩ E2).

Given a feasible solution (x, y) of LPR and a pair of non-hub nodes

(p, q) ∈ Ñ2, x|pq denotes a subvector of x consists of elements {xpi | i ∈
H}∪{xqj | j ∈ H}. A subvector of y consists of elements {ypiqj | (i, j) ∈ H2}
is denoted by y|pq. When (x, y) is feasible to LPR, the pair x|pq and y|pq

satisfies that

∑
j∈H ypiqj = xpi (i ∈ H) and

∑
i∈H ypiqj = xqj (j ∈ H).

We denote the above equality system by Mpqy|pq = x|pq.
Now we give a proof of Lemma 1.

Proof of Lemma 1. The outline of the proof is as follows. For any (p, q) ∈ Ñ2,
we introduce a flow f : E1 ∪ E2 → R, on the digraph Gpq, defined by

f(e)
def.
=

{
y′piqj (e = (pi, qj) ∈ E1),
ypiqj (e = (qj, pi) ∈ E2).

First, we show that flow f is a circulation flow on Gpq. Next, we decompose f
into cycles. Lastly, we apply Lemma 2 to each cycle and show the inequality.

We show that f is a circulation flow. Since both (x, y) and (x0, y0) are
feasible to LPR, the equalities Mpqy|pq = x|pq = x0|pq = Mpqy0|pq hold and
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thus flow f satisfies the conservation law for each vertex in Gpq. It implies
that f is a non-negative circulation flow on Gpq.

A well-known “flow decomposition theorem” says that a circulation flow
is represented by a non-negative combination of cycle flows (see, e.g., [2]).
Let Cpq be a set of all elementary dicycles in Gpq. A cycle flow with respect
to dicycle C ∈ Cpq is defined by introducing a unit flow for each arc in C.
Let λ be a vector of non-negative coefficients indexed by Cpq which represents
flow f by a non-negative combination of cycle flows. We denote an element
of λ indexed by a dicycle C by λC .

For any cycle C ∈ Cpq, we denote characteristic vectors of C ∩ E1 and
C ∩ E2 by ψC and χC , respectively, i.e.,

ψC
piqj =

{
1 ((pi, qj) ∈ C ∩ E1),
0 ((pi, qj) ∈ E1 \ C),

and χC
piqj =

{
1 ((qj, pi) ∈ C ∩ E2),
0 ((qj, pi) ∈ E2 \ C).

Similarly, we define the characteristic vector χ∂C of ∂(C) by

χ∂C
v =

{
1 (v ∈ ∂C),
0 (v ∈ (Vp ∪ Vq) \ ∂C).

Every cycle C ∈ Cpq satisfies the equality MpqχC = χ∂C , since C ∩ E2 is a
matching.

We express a transportation cost per unit associated with (p, q) as follows

∑
i∈H

cpixpi +
∑
i∈H

∑
j∈H

cijypiqj +
∑
j∈H

cjqxqj = ĉpq
>
x|pq + c̃pq

>
y|pq

by introducing appropriate vectors ĉpq and c̃pq. The above definitions yield
that

w̃>y0 =
∑

(p,q)∈fN2

wpq

∑
i∈H

∑
j∈H

cijy
′
piqj =

∑

(p,q)∈fN2

wpqc̃pq
>
y0|pq

=
∑

(p,q)∈fN2

wpqc̃pq
>

( ∑
C∈Cpq

λCψC

)
=

∑

(p,q)∈fN2

wpq

∑
C∈Cpq

λC

(
c̃pq

>
ψC

)

=
∑

(p,q)∈fN2

wpq

∑
C∈Cpq

λC cE(C ∩ E1).
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Lemma 2 implies that

w̃>y0 ≤
∑

(p,q)∈fN2

wpq

∑
C∈Cpq

λC (cE(C ∩ E2) + cV (∂C))

=
∑

(p,q)∈fN2

wpq

∑
C∈Cpq

λC(c̃pq
>
χC + ĉpq

>
χ∂C)

=
∑

(p,q)∈fN2

wpq

(
c̃pq

>
( ∑

C∈Cpq

λCχC

)
+ ĉpq

>
( ∑

C∈Cpq

λCMpqχC

))

=
∑

(p,q)∈fN2

wpq

(
c̃pq

>
y|pq + ĉpq

>
Mpq

( ∑
C∈Cpq

λCχC

))

=
∑

(p,q)∈fN2

wpq

(
c̃pq

>
y|pq

)
+

∑

(p,q)∈fN2

wpq

(
ĉpq

>
Mpqy|pq

)

= w̃>y +
∑

(p,q)∈fN2

wpq

(
ĉpq

>
x|pq

)

≤ w̃>y +
∑

(p,q)∈fN2

wpq

(
ĉpq

>
x|pq

)
+

∑

(p,j)∈N×H

wpj

∑
i∈H

(cpi + cij)xpi

+
∑

(i,q)∈H×N

wiq

∑
j∈H

(cij + cjq)xqj = w̃>y + ŵ>x.

4 Approximation algorithms for three hubs

In this section, we introduce a new rounding technique. Let Π be a set of all
the total orders of hubs, i.e., {π(1), π(2), . . . , π(h)} = H (∀π ∈ Π). For any
π ∈ Π, we define a procedure “Dependent Rounding π” as follows. Given a
feasible solution (x, y) of LPR, we generate a random variable U following
a uniform distribution defined on [0, 1). For each non-hub node p ∈ N , we
connect p to a hub π(i) where i ∈ {1, 2, . . . , h} is the minimum index satis-
fying U < xpπ(1) + · · ·+ xpπ(i). A vector of random variables Xπ, indexed by
N×H, denotes a solution obtained by Dependent Rounding π. Randomized
rounding method with such a dependency among 0-1 variables was named
“dependent rounding” by Bertsimas, Teo, and Vohra in [3]. They also devised
(approximation) algorithms for several combinatorial optimization problems.
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In the following, we discuss the probability Pr[Xπ
piX

π
qj = 1]. If (x, y) is

feasible to LPR, y satisfies that for any pair (p, q) ∈ Ñ2, the subvector y|pq

is feasible to the following Hitchcock transportation problem

HTPpq(x) : min.
∑

i∈H

∑
j∈H cij ỹpiqj

s. t.
∑

j∈H ỹpiqj = xpi (∀i ∈ H),∑
i∈H ỹpiqj = xqj (∀j ∈ H),

ỹpiqj ≥ 0 (∀(i, j) ∈ H2),

where {ỹpiqj | (i, j) ∈ H2} is a set of variables. Given a feasible solution
(x, y) of LPR and a total order π ∈ Π, we define (x, yπ) be a solution
obtained by applying a classical “North-West Corner Rule” with respect to π

to transportation problems HTPpq(x) (for each (p, q) ∈ Ñ2). More precisely,
yπ is the unique vector satisfying the equalities

i′∑
i=1

j′∑
j=1

yπ
pπ(i)qπ(j) = min

{
i′∑

i=1

xpπ(i) ,

j′∑
j=1

xqπ(j)

}(
∀(p, q) ∈ Ñ2,
∀(i′, j′) ∈ {1, 2, . . . , h}2

)
.

Lemma 3. Let (x, y) be a feasible solution of LPR and π ∈ Π a total or-
der of H. A vector of random variables Xπ obtained by applying proce-
dure Dependent Rounding π to (x, y) satisfies that Pr[Xπ

piX
π
qj = 1] = yπ

piqj

(∀(p, q) ∈ Ñ2,∀(i, j) ∈ H2) where (x, yπ) is North-West Corner Rule solu-
tion with respect to π.

Proof. We denote Pr[Xπ
piX

π
qj = 1] by y′piqj for simplicity. Then the vector y′

satisfies that for any pairs (p, q) ∈ Ñ2 and (i′, j′) ∈ H2,

∑i′
i=1

∑j′
j=1 y′pπ(i)qπ(j) = Pr

[[∑i′
i=1 Xpπ(i) = 1

]
∧

[∑j′
j=1 Xqπ(j) = 1

]]

= Pr
[[

U <
∑i′

i=1 xpπ(i)

]
∧

[
U <

∑j′
j=1 xqπ(j)

]]

= Pr
[
U < min

{∑i′
i=1 xpπ(i),

∑j′
j=1 xqπ(j)

}]

= min
{∑i′

i=1 xpπ(i),
∑j′

j=1 xqπ(j)

}
.

From the above, (x, y′) is North-West Corner Rule solution with respect to π
and the uniqueness of North-West Corner Rule solution implies y′ = yπ.

Chekuri et al. [7] also discussed procedure Dependent Rounding π in the
context of the metric labeling problem. They dealt with a line metric case
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and pointed out a relation to Monge property. In the above lemma, we
explicitly showed a relation between procedure Dependent Rounding π and
North-West Corner Rule solution, which is independent of Monge property.

Now we consider the case where the number of hubs is equal to three,
i.e., h = 3. We propose a “Dependent Rounding Algorithm” which executes
Dependent Rounding π for every π ∈ Π to an optimal solution (x∗, y∗) of
LPR and outputs a best solution. For discussing an approximation ratio of
Dependent Rounding Algorithm, we introduce an artificial rounding proce-
dure described below. In the rest of this section, we denote H = {1, 2, 3}
and a = c12, b = c23, and c = c31 for simplicity. Next, we introduce three
non-negative parameters (θ1, θ2, θ3) defined by

θ1
def.
= b(b + c− a)(a + b− c)/K,

θ2
def.
= c(c + a− b)(b + c− a)/K,

θ3
def.
= a(a + b− c)(c + a− b)/K,

K
def.
= b(b + c− a)(a + b− c) + c(c + a− b)(b + c− a) + a(a + b− c)(c + a− b).

Assumption 1 (ii) implies that K ≥ 0. We can assume that K > 0, since
K = 0 implies that a = b = c = 0 which gives a trivial case. Obviously, θ1 +
θ2 + θ3 = 1 holds. We also denote three total orders (2, 1, 3), (3, 2, 1), (1, 3, 2)
of H by π1, π2, π3, respectively. An artificial rounding procedure “Dependent
Rounding θ” executes one of three procedures Dependent Rounding π1, π2,
or π3 with probability θ1, θ2, or θ3, respectively. First we show the following.

Lemma 4. Let (x, y) be a feasible solution of LPR. Under Assumption 1, a
vector of random variables Xθ obtained by applying Dependent Rounding θ
to (x, y) satisfies that

E[Xθ
pi] = xpi (∀(p, i) ∈ N ×H),

E
[∑

i∈H

∑
j∈H cijX

θ
piX

θ
qj

]
≤ (4/3)

∑
i∈H

∑
j∈H cijypiqj (∀(p, q) ∈ Ñ2).

Proof. We discuss the second inequalities because the first equalities are triv-
ial. It is well-known that North-West Corner Rule solution is optimal to a
Hitchcock transportation problem if a given cost matrix has Monge Property
(e.g., see a survey [5]). For any total order π ∈ Π, a matrix defined by




cπ(1)π(1)(= 0) cπ(1)π(2) cπ(1)π(2) + cπ(2)π(3)

cπ(2)π(1) cπ(2)π(2)(= 0) cπ(2)π(3)

cπ(3)π(2) + cπ(2)+π(1) cπ(3)π(2) cπ(3)π(3)(= 0)




13



has Monge property. Hence, North-West Corner Rule solution (x, yπ) satis-
fies that subvector yπ|pq of yπ is optimal to a Hitchcock transportation prob-
lem obtained from HTPpq(x) by substituting cπ(1)π(2) + cπ(2)π(3) for cπ(1)π(3).

We express
∑

i∈H

∑
j∈H cijypiqj = c̃pq

>
y|pq by introducing an appropriate

vector c̃pq. We define a modified cost vector c̃pq
π which is obtained from c̃pq

by substituting cπ(1)π(2) + cπ(2)π(3) for cπ(1)π(3). The optimality of North-West

Corner Rule solution implies that c̃pq
π

>
y|pq ≥ c̃pq

π

>
yπ|pq. Triangle inequali-

ties and symmetry (Assumption 1 (ii)(iii)) imply that c̃pq
π

>
yπ|pq ≥ c̃pq

>
yπ|pq.

From the above, we have that for any π ∈ Π,

c̃pq
π

>
y|pq ≥ c̃pq

π

>
yπ|pq ≥ c̃pq

>
yπ|pq =

∑
i∈H

∑
j∈H

cijy
π
piqj

=
∑
i∈H

∑
j∈H

cijPr[Xπ
piX

π
qj = 1] = E

[∑
i∈H

∑
j∈H

cijX
π
piX

π
qj

]
,

where Xπ is a vector of random variables obtained by applying Dependent

Rounding π to (x, y).
From Assumption 1 (i) and the above, we obtain the following;

E
[∑

i∈H

∑
j∈H cijX

θ
piX

θ
qj

]
= E

[∑
i∈H

∑
j∈H cij

∑3
`=1 θ`X

π`

pi Xπ`

qj

]

= E

[
θ1

∑
i∈H

∑
j∈H

cijX
π1

pi Xπ1

qj + θ2

∑
i∈H

∑
j∈H

cijX
π2

pi Xπ2

qj + θ3

∑
i∈H

∑
j∈H

cijX
π3

pi Xπ3

qj

]

≤ θ1c̃
pq
π1

>
y|pq + θ2c̃

pq
π2

>
y|pq + θ3c̃

pq
π3

>
y|pq

= θ1( c12r+(c21 + c13)s+ c31t)
+θ2( c12r+ c23s+(c32 + c21)t)
+θ3((c13 + c32)r+ c23s+ c31t)

where r
def.
= (yp1q2 + yp2q1), s

def.
= (yp2q3 + yp3q2), t

def.
= (yp1q3 + yp3q1). Then
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θ1 + θ2 + θ3 = 1 implies that

θ1c̃
pq
π1

>
y|pq + θ2c̃

pq
π2

>
y|pq + θ3c̃

pq
π3

>
y|pq

= θ1( ar+(a + c)s+ ct)
+θ2( ar+ bs+(b + a)t)
+θ3((c + b)r+ bs+ ct)

= (ar + bs + ct) + θ3(b + c− a)r + θ1(a + c− b)s + θ2(a + b− c)t

= (ar + bs + ct)(1 + (a + b− c)(c + a− b)(b + c− a)/K)

=
∑

i∈H

∑
j∈H cijypiqj(1 + (a + b− c)(c + a− b)(b + c− a)/K).

Lastly, we show that

(a + b− c)(c + a− b)(b + c− a)/K ≤ 1/3.

If either b + c− a = 0, a + c− b = 0, or a + b− c = 0 holds, then the above
inequality is trivial. Thus we need to consider the problem

min

{
K

(a + b− c)(c + a− b)(b + c− a)

∣∣∣∣
a + b > c, c + a > b,
b + c > a, (a, b, c) ≥ 0

}

in order to bound the left-hand-side of the above inequality for every possible
a, b, c (≥ 0) satisfying triangle inequalities (Assumption 1 (ii)). Because of
the equality

K

(a + b− c)(c + a− b)(b + c− a)
=

c

a + b− c
+

b

c + a− b
+

a

b + c− a
,

we can assume a+b+c = 1 without loss of generality. Therefore the function

c

a + b− c
+

b

c + a− b
+

a

b + c− a
=

c

1− 2c
+

b

1− 2b
+

a

1− 2a

is a convex function of variables a, b, and c. From the symmetry of variables,
the minimum is attained at a = b = c = 1/3 and thus

c

1− 2c
+

b

1− 2b
+

a

1− 2a
≥ 3.

From the above, we obtain a desired result.

Theorem 3. Under Assumption 1, Dependent Rounding Algorithm yields
a (4/3)-approximation algorithm.
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Proof. Let (x∗, y∗) be an optimal solution of LPR and X be a solution
obtained by Dependent Rounding Algorithm. Then the expectation of the
objective value with respect to X satisfies that

E
[
ŵ>X +

∑
(p,q)∈fN2 wpq

∑
i∈H

∑
j∈H cijXpiXqj

]

≤ E
[
ŵ>Xθ +

∑
(p,q)∈fN2 wpq

∑
i∈H

∑
j∈H cijX

θ
piX

θ
qj

]

where Xθ is a vector of random variables obtained by applying Dependent

Rounding θ to (x∗, y∗). Lemma 4 implies that

E
[
ŵ>Xθ +

∑
(p,q)∈fN2 wpq

∑
i∈H

∑
j∈H cijX

θ
piX

θ
qj

]

≤ ŵ>x∗ +
∑

(p,q)∈fN2 wpq(4/3)
∑

i∈H

∑
j∈H cijy

∗
piqj

= ŵ>x∗ + (4/3)w̃>y∗ ≤ (4/3)(ŵ>x∗ + w̃>y∗).

The optimality of (x∗, y∗) to LPR implies a desired result.

In the above proof, we do not need Assumption 2. Consequently, our
(4/3)-approximation algorithm is also applicable to the metric labeling prob-
lem with three labels maintaining theoretical approximation ratio, whereas
our 2-approximation algorithm presented in the previous section is not.

Lastly, we propose a (5/4)-approximation algorithm.

Theorem 4. Under Assumptions 1, 2 and that the number of hubs is equal to
three, a better of two solutions given by Independent Rounding Algorithm

and Dependent Rounding Algorithm satisfies that the expectation of the
corresponding objective value is less than or equal to (5/4) times the opti-
mal value of the original problem QIP.

Proof. Let (x∗, y∗) be an optimal solution of LPR. Let Z1 and Z2 denote
the objective function value obtained by Independent Rounding Algorithm

and Dependent Rounding Algorithm, respectively. The proof of Theorem 2
shows that E[Z1] ≤ 2ŵ>x∗ + w̃>y∗. The proof of Theorem 3 implies that
E[Z2] ≤ ŵ>x∗ + (4/3)w̃>y∗. Combining the above results, we obtain that

E[min{Z1, Z2}] ≤ (1/4)E[Z1] + (3/4)E[Z2] ≤ (5/4)(ŵ>x∗ + w̃>y∗).
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5 Conclusion

We proposed a formulation of the single allocation problem in hub-and-spoke
networks and presented a simple 3-approximation algorithm and randomized
approximation algorithms based on LP relaxation and randomized round-
ing techniques. Our algorithms can be derandomized using the method of
conditional probabilities.

We remark that it is nontrivial to extend our algorithms in Section 4 from
h = 3 to the general case, because the analysis depends on a modification of
a given cost matrix to convex combination of Monge matrices (Lemma 4).

Obtaining approximation algorithms for the hub location problem is a
challenging open problem.
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