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Abstract

In this paper, a stabilization problem of quantum spin systems in gen-
eral dimension under continuous measurement is considered and it is shown
that the global stabilization at an eigenstate by continuous inputs is possible.
Quantum states of spin systems under continuous measurement by mutual in-
terference with laser beams can be continuously estimated by quantum filter-
ing and with its information, the intension of magnetic field, which is applied
to atoms, can be controlled. Because of the structural symmetry of the non-
linear dynamics, this stabilization problem by continuous feedback has been
considered to be hard and recently a switching rule was introduced which at-
tains the global stability. Our proposing control rule is the sum of two terms:
a term which attracts the quantum states to targets and the other term which
draw apart from the other equilibrium points. The proof is done by the strict
analysis on the sample paths of solutions of a stochastic differential equa-
tion. We also show numerical examples to demonstrate the efficiency of the
proposing control rule.

1 Introduction

Quantum information technologies such as quantum computing or code, have been
expected to attain technological breakthroughs and investigated recently in the
broad fields of physics, information theory and other science and technologies[12].
Enhancement of quantum theory in many phases is necessary for their realizations
and in particular, quantum control theory, which attains the realization and reser-
vation of quantum bits, is indispensable.

∗This paper is the technical report version of the conference paper [16]
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Feedforward control of quantum systems has been investigated in 1980’s at
first. In general terms, however, feedforward control is not robust in noisy realistic
systems with unmodeled dynamics and it is not effective for quantum control.

Such situation drastically changed with quantum control systems under “con-
tinuous measurement.” Belavkin [2] and others [20] showed that the time evolution
of estimated quantum states under continuous measurement can be described by a
classical stochastic differential equation in the early 1990’s. After that, research on
feedback control by using estimated quantum states has been actively investigated
[19, 4, 21] and its effectiveness has been also demonstrated by real experiments
[6]. Feedback control is robust for noise or unmodeled dynamics and it is more
realistic.

A recent notable result [17] is on feedback control of single spin 1/2 systems by
using a continuous control rule. This result is important for showing a possibility
of feedback control, however it is also limited with respect to its applications from
the point of the generalization of the dimension.

This limitation has been solved recently by Mirrahimi & van Handel [11]. They
proposed a switching control for a group of atoms to globally stabilize the angular
moments at any eigenstate. The switching control operates a control input around
a targe state, which attracts the quantum states to the targets, and switches to an-
other constant control input when the quantum states are near the other equilibrium
points of the former control input in order to draw away from them. The proof is
done by the strict analysis on the sample paths of the quantum state. This is the first
result to show the global stability for quantum spin systems in general dimensions.

With this result, our interest naturally moves to a question on the global sta-
bilizability of the quantum system by continuous feedback. This problem is im-
portant from the viewpoint of realizability of apparatus or pure physics and math-
ematics. This problem has been open in this area and it is the main subject of this
paper. The related work on an almost global stability was reported in [1] and global
stability except for some special points was shown to be possible. The difficulty of
showing the strict global stability is caused by the symmetry of the quantum dy-
namics. A stochastic version of Lyapunov method is a standard approach to show
the stability, however, in this case, trivial control inputs cause plural equilibrium
points and it is hard to find globally effective Lyapunov functions. The proposing
continuous control rule in this paper is a sum of two terms: a control signal which
attracts the quantum states to a target state and another signal which draws away
from the other equilibrium point. This control scheme was considered in [9] and
its effectiveness was demonstrated by numerical examples. This paper proves that
the global stability at an eigenstate is possible forN -dimensional quantum spin
systems.

This paper is organized as follows. In section 2, we introduce the problem
setting and the previous result by Mirrahimi & van Handel [11]. In section 3 we
give the main result of this paper and its proof. In the proof, we use several lemmas
and propositions. The method for the proof is similar to that of the switching
control by Mirrahimi & van Handel [11]. In section 4, we show some examples in
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order to demonstrate the efficiency of our proposing control rule and in section 5,
we conclude this paper.

2 Formulation

In this section, at first we introduce several notations on quantum mechanics. Then,
we show quantum dynamics dealt with in this paper and define its stabilization
problem. We also introduce the previous result [11] which uses a switching control
for the stabilization problem. We employ the approach of the proof for showing
the proof of our proposing control scheme.

In this paper, we deal with quantum stateρ, an operator on a Hilbert spaceCN ,
which belongs to the set:

S = {ρ ∈ CN×N : ρ = ρ∗, tr (ρ) = 1, ρ ≥ 0} (1)

whereρ∗ denotes Hermitian conjugation ofρ.
In quantum mechanics, anobservableis regarded as an operator on the Hilbert

space which is associated with an observed physical quantity. For the finite dimen-
sional systems, an observable is an Hermite matrix. When an observableC has
different eigenvaluesλi, we observe one of the eigenvalues as the physical quantity
by usingorthogonal measurementsuch as Stern-Gerlach’s experiment. The real-
ization is completely random and its expectation is given bytr (Cρ). Moreover, the
probability of an observationλi is given bytr (ρPi) wherePi is the corresponding
orthogonal projection.

When the orthogonal measurement is operated, the quantum state jumps to the
corresponding eigenstate. Because of this phenomenon, feedback control of quan-
tum mechanics can be considered difficult in the case of orthogonal measurement.
Another type of measurement is calledcontinuous measurement. Fig. 1 is a sketch
of its typical realization [17, 18, 11] and it is dealt with in this paper.

photo detector

laser

u estimator
controller

y
magnetic
field

magnetic field
generator

Fig.1: Quantum spin system under continuous measurement
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A group of atoms is held in a cavity. When the number of atoms isn, the di-
mension of the quantum state on the angular moment isN = 2J +1 whereJ is the
absolute value of the moment. The mutual interaction between the laser beam and
the atoms is observed by a photo detector where the intensity of the interference
laser beam has the information on the angular moment of the atoms. The observa-
tion of this indirect information causes an effect on the quantum state of the atoms.
This process can be regarded as a continuous operation of a generalized observa-
tion called positive operator valued measurement (POVM) and the probability of
an observationk, wherek is the index corresponding to the observed intensity of
the laser beam, can be given by

tr (ρΩ(k)∗Ω(k)), (2)

whereΩ(k) is an appropriate operator.
Magnetic field is also applied to the group of the atoms and its intension is con-

trolled. By using the above probability with the history of the indirectly observed
information, the conditional expectation of the observation can be calculated [2].
This is calledquantum filteringand the time evolution of the estimated quantum
state becomes a quantum version of a classical Kushner-Stratonovich equation
[2, 3, 17].

When we observe the angular moment onz-axis and apply the magnetic field
alongy-axis, the corresponding nonlinear Itô stochastic differential equation is:

dρt =− iut[Fy, ρt]dt− 1
2
[Fz, [Fz, ρt]]dt

+
√

η(Fzρt + ρtFz − 2tr (Fzρt)ρt)dWt, (3)

dy =2
√

ηtr (Fzρ)dt + dWt (4)

where

ρt : a quantum state at timet,

dWt : an infinitesimal Wiener increment satisfying

E[(dWt)2] = dt, E[dWt] = 0,

ut : control input(ut ∈ R),
yt : output(yt ∈ R),
η : the detector efficiency(0 < η ≤ 1).

Fy: the angular momentum along the axisy of the form [10]

Fy =
1
2i




0 −c1

c1 0 −c2

... ... ...
c2J−1 0 −c2J

c2J 0




,

cm =
√

(2J + 1−m)m. (5)
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Fz: the angular momentum along the axisz of the form [10]

Fz =




J
J − 1

...
−J + 1

−J




. (6)

This is called SME (stochastic master equation) and it has been mainly inves-
tigated in the research field of quantum control. It should be noted that the solution
of (3) is continuous in time [13] ifut is continuous. We also define some notations:

ψi := [0 · · · 0 1︸︷︷︸
i−th

0 · · · 0]∗, (7)

ρψi := ψiψ
∗
i , (8)

V I
ρf

(ρ) := 1− tr (ρρf), (9)

V II
ρf

(ρ) := 1− (tr (ρρf))2, (10)

whereρf ∈ S is an eigenstate. The control objective is to globally converge the
quantum stateρt to some desired stateρf by controlling the intensityut of the
magnetic field which is decided byρt or its record. Note that0 ≤ V •

ρf
(ρ) ≤ 1, and

V •
ρf

(ρ) = 0 iff ρ = ρf . Moreover define

Sε
ρf

:=
{
ρ |V I

ρf
(ρ) = ε

}
, (11)

S<ε
ρf

:=
{
ρ |V I

ρf
(ρ) < ε

}
, (12)

S>ε
ρf

:=
{
ρ |V I

ρf
(ρ) > ε

}
. (13)

We define the stochastic stability of (3) as follows.

Definition 2.1 [8] Let ρe be an equilibrium point of(3), i.e. dρt|ρt=ρe = 0. Then

1. the equilibriumρe is said to be stable in probability if

∀ε > 0 lim
ρ0→ρe

Pr
(

sup
0<t<∞

‖ρt − ρe‖ ≥ ε

)
= 0. (14)

where‖ · ‖ is an arbitrary norm of a matrix inCN×N .

2. The equilibriumρe is globally stable if it is stable in probability and addi-
tionally

∀ρ0 ∈ S Pr
(

lim
t→∞ ρt = ρe

)
= 1. (15)

For showing the stochastic stabilities, a stochastic version of the Lyapunov
theorem is available. At first define a nonnegative real-valued continuous function
V (·) onS. Also defineρz

t := ρt such thatρ0 = z, a level setQε such thatQε :=
{ρ ∈ S : V (ρ) < ε}, τε := inf{t : ρz

t /∈ Qε} andρ̃z
t = ρz

t∧τε
, t ∧ τε = min(t, τε),

Lε: infinitesimal operator,Lε: restriction ofL on ρ̃t. Then, we get the following
propositions.
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Proposition 2.1 [8] Let LεV ≤ 0 in Qε. Then, the followings hold:

1. limt→∞ V (ρ̃z
t ) exists a.s., soV (ρz

t ) converges for a.e. path remaining inQε.

2. Pr–limt→∞ LεV (ρ̃z
t ) = 0, soLεV (ρz

t ) → 0 in probability ast → ∞ for
almost all paths which never leaveQε.

3. For z ∈ Qε andα ≤ ε we have the uniform estimate

Pr( sup
0≤t<∞

V (ρz
t ) ≥ α) = Pr( sup

0≤t<∞
V (ρ̃z

t ) ≥ α)

≤ V (z)
α

. (16)

4. If V (z̃) = 0 andV (ρ) 6= 0 for ρ 6= z̃, thenz̃ (z̃ ∈ Qε) is stable in probability.

Definition 2.2 An invariant setC is defined as a set with the property that if sys-
tem’s initial state is inC then its whole path (forward and backward) lies inC.

Proposition 2.2 [11] Assume the followings:

1. Qε is bounded and thatLεV (ρ) ≤ 0 within Qε.

2. For any bounded scalar continuous functiong(ρ) and a fixedt, E[g(ρz
t )] is

continuous onz = ρ0.

3. For any positive real numberκ andz ∈ Qε, Pr(‖ρ− z‖ > κ) → 0, t → 0.

LetR be the set of all points withinQε whereLεV (ρ) = 0, and letM be the largest
invariant set inR. Then, every solutionρt in Qε tends toM ast →∞

Here we consider the control problem:

Problem 2.1 For the controlled spin system (3), find a globally stabilizing con-
troller ut on an eigenstateρf = ρψ1 .

This is not a trivial problem from the following reasons: 1) (3) is a nonlinear
stochastic system, 2) there exist plural locally stable equilibrium points whenu = 0
because of the nonlinearity, 3) because of a kind of symmetry of the dynamics,
many of locally stabilizing control scheme on one of above equilibrium points also
preserve the other equilibrium points.

Mirrahimi & van Handel found a globally stabilizing control scheme on any
target eigenstates by introducing a switching rule in order to solve above difficulties[11].

Proposition 2.3 [11] Consider the system(3) evolving in the setS and letγ > 0,
ρf = ρψi and

u1(ρt) := −tr (i[Fy, ρt]ρf). (17)

Moreover, consider the following control scheme:
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1. ut = u1(ρt) if V I
ρf

(ρt) ≤ 1− γ;

2. ut = 1 if V I
ρf

(ρt) ≥ 1− γ/2;

3. If ρt ∈ B = {ρ : 1 − γ < V I
ρf

(ρt) < 1 − γ/2}, thenut = u1(ρt) if ρt last
enteredB through the boundaryV I

ρf
(ρ) = 1− γ, andut = 1 otherwise.

Then∃γ > 0 s.t.ut globally stabilizes(3) aroundρf andE[ρt] → ρf ast →∞.

Feedback stabilization of spin systems under continuous measurement was in-
troduced in [17] for a special case of single spin 1/2 systems, however it is restricted
for such special case. The above result is a generalization of the dimension of the
spin systems and any eigenstates are possible to be the target.

The proof of Proposition 2.3 is composed of three parts and its approach is
common for the proof of the main result of this paper, therefore, we refer it briefly:

1) ρf is stable in probability.

2) almost all sample paths which never leave the domainS<1−γ/2
ρf converge to

ρf .

3) for almost all sample paths there exists a finite timeT and after it, they never
leaveS<1−γ

ρf .

Unfortunately the scheme in Proposition 2.3 is a switching control and it should
be avoided from the view point of practical use. Moreover, the essential question
whether the quantum spin systems can be globally stabilized by continuous feed-
back is interesting itself from the view point of physics or mathematics and it is
one of main research subjects in this field.

3 Main Result

The stabilizability of (3) by a continuous feedback was demonstrated with numer-
ical examples by Matsumoto [9]. This paper proves the global stabilizability at an
eigenstateρf = ρψ1 . We get the following theorem:

Theorem 3.1 Consider the system(3) evolving in the setS. Let ρf = ρψ1 and
η > 0. Then,

ut = αu1(ρt) + βV I
ρf

(ρt)
α, β > 0 (18)

globally stabilizes(3) aroundρf andE[ρt] → ρf ast →∞ when

β2

8αη
< 1. (19)
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Remark 3.1 This is the first result to show the global stabilizability of general
finite dimensional quantum systems at an eigenstate (in this case,ρf = ρψ1) by
continuous feedback for the type of the master equation (3). Note thatα andβ
are design parameters and we can always find them satisfying the condition (19) if
η > 0.

We prove Theorem 3.1 in the followings. The procedure of the proof is similar
to that of Proposition 2.3 and it is composed of the following three parts:

Step 1) ρf = ρψ1 is stable in probability.

Step 2) there exists0 < γ < 1 and almost all sample paths which never leave the
domainS<1−γ

ρf converge toρf .

Step 3) for almost all sample paths there exists a finite timeT and after it, they
never leaveS<1−γ

ρf .

Step 1)
In order to show the statement of the Step 1), we should find some Lyapunov

function which satisfies the conditions of Proposition 2.1 aroundρf . We get a key
lemma for it.

Lemma 3.1 With the control input (18),

L1−γoV
II
ρf

≤ 0 (20)

is satisfied in the subsetS<1−γo
ρf where

γo =
β2

8αη
< 1. (21)

Moreover,L1−γoV
II
ρf

(ρ) = 0 in ρ ∈ S<1−γo
ρf iff ρ = ρf .

Proof By the direct calculation ofLV II
ρf

, we get the following:

LV II
ρf

= −2tr (ρtρf) ut tr (−i[Fy, ρt]ρf)

− 4η(J − tr (Fzρt))2(tr (ρtρf))2

= −2tr (ρtρf)(αu1 + βV I
ρf

)u1

− 4η(J − tr (Fzρt))2(tr (ρtρf))2

= −2tr (ρtρf)
{
(αu1 + βV I

ρf
)u1

+ 2ηJ2(tr ((I − Jz)ρt))2tr (ρtρf)
}

, (22)

where

Jz :=




1 O
J−1

J
...

−J+1
J

O −1




. (23)
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The factortr (ρtρf) outside the curly brackets is always nonnegative, therefore, the
factor of the curly brackets should be nonnegative forLV II

ρf
to be nonpositive. The

factor of the brackets is

(
αu1 + βV I

ρf

)
u1 + 2ηJ2(tr ((I − Jz)ρ))2tr (ρρf)

= α

(
u1 +

β

α

V I
ρf

2

)2

+ tr (ρρf)2ηJ2(tr ((I − Jz)ρ))2

− β2

α

(V I
ρf

)2

4
. (24)

The first term is always nonnegative, therefore, when the sum of the second and
the third terms is always nonnegative in some subset ofρ, then, we can derive
LV II

ρf
≤ 0 in the subset.

In order to show that the sum of the second and third terms of (24) is nonnega-
tive, here we consider an equivalence classS1−γ

ρf of ρ defined by (11) and find the
worst case which minimize the second term inS1−γ

ρf . Note thatV I
ρf

(ρ) = 1− γ for

ρ ∈ S1−γ
ρf . With regard of the form (23) ofJz andρf = ρψ1 = diag[1 0 · · · 0], the

worstρ in S1−γ
ρf is:

ρ =




ρ11 O
1− ρ11

0
...

O 0




, (25)

whereρ11 = γ and then we get:

(24) ≥ α

(
u1 +

β

α

V I
ρf

2

)2

+ tr (ρρf)2ηJ2

{
1−

(
ρ11 +

J − 1
J

(1− ρ11)
)}2

− β2

α

(V I
ρf

)2

4
. (26)
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The second and the third terms can be reformed as

tr (ρρf)2ηJ2

{
1−

(
ρ11 +

J − 1
J

(1− ρ11)
)}2

− β2

α

(V I
ρf

)2

4

= tr (ρρf)2ηJ2

(
1
J
− 1

J
ρ11

)2

− β2

α

(V I
ρf

)2

4

= 2ηρ11(1− ρ11)2 − β2

4α
(1− ρ11)2

= 2η(1− ρ11)2
(

ρ11 − β2

8αη

)
. (27)

Therefore, when

β2

8αη
< 1 (28)

is satisfied, we can set

γ0 :=
β2

8αη
(29)

and for the case:

γ0 < ρ11 ≤ 1, (30)

we concludeLV II
ρf
≤ 0. This means with the setting

γ = γ0, S<1−γ
ρf

= S<1−γ0
ρf

, (31)

L1−γoV
II
ρf
≤ 0 for anyρ ∈ S<1−γ0

ρf .
The latter half statement of the lemma can be also shown by direct calculation.

¤
With Lemma 3.1 and Proposition 2.1,ρ = ρf is stable in probability and in the

subsetS<1−γ0
ρf aroundρf , the statements in Proposition 2.1 are concluded.

Step 2)
From Lemma 3.1, the master equation (3) with the control input (18) satisfies

the conditions in Proposition 2.2, therefore, the sample paths which never leave
the subsetS<1−γ0

ρf converge toρf in probability. Moreover,V II
ρf

converges almost
surely from Proposition 2.1. With this and Lebesgue’s dominated convergence, we
can show that almost all paths converge toρf by employing the similar discussion
in [11]:

Lemma 3.2 ρt converges toρf as t → ∞ for almost all paths that never exit the
setS<1−γ0

ρf .
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We omit the proof here.
Step 3)

We next show the behavior of the paths when they leaveS<1−γ0
ρf or the initial

state is outside it. We get the following key lemma:

Lemma 3.3 The solutionρt of (3) whereρ(0) ∈ S>1−γ0
ρf satisfies

sup
ρ0∈S>1−γ0

ρf

E[min t : ρt /∈ S>1−γ0
ρf

] < ∞. (32)

At first introduce propositions which are used for the proof of Lemma 3.3.

Proposition 3.1 [15, 7] Consider a Stratonovich’s stochastic differential equa-
tion:

dϕt = f0(ϕt, t)dt +
n∑

l=1

fl(ϕt, t) ◦ dW l(t). (33)

Assume that the coefficientsfl(x, t), l = 0, 1, 2, . . . , n are of the classCk+1,δ
b for

somek ≥ 2 andδ > 0 (see Appendix for the definition ofCk+1,δ
b ). Letϕt be the

Brownian flow determined by (33). Then the support ofϕ(t) = ϕt as theCk−1-
flow is equal to the closure{ϕt : ξ ∈ Ξ} of

dϕt

dt
= f0(ϕt, t) +

n∑

l=1

fl(ϕt, t)ξl(t) (34)

in the spaceWk−1, whereΞ is the set of all deterministic piecewise smooth function
andWk = C([0, T ] : Ck).

Proposition 3.2 [5] Consider diffusion processxt ∈ E starting fromx whereE
is the domain ofxt. Let Γ be a subset ofE and τx(Γ) be the first exit time ofxt

fromΓ. Then for allT ≥ 0, x ∈ E,

E[τx(Γ)] ≤ T

1− supx∈E Pr{τx(Γ) > T} . (35)

Proof of Lemma 3.3 At first, we claim that the support ofV I
ρf

(ρt) contains[0, γ]
whenV I

ρf
(ρ0) = γ by using Proposition 3.1.

The Stratonovich form of (3) is given as [14]

dρt = DFz(ρt)dt

− 1
2
η (−2EFz(ρt)HFz(ρt) +KFz(ρt)) dt

+ utGFy(ρt)dt +
√

ηHFz(ρt) ◦ dW (36)
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where

DFz(ρ) = −1
2
[Fz, [Fz, ρ]]

EFz(ρ) = 2tr (Fzρ)
HFz(ρ) = Fzρ + ρFz − 2tr (Fzρ)ρ
KFz(ρ) = F 2

z ρ + 2FzρF ∗
z + ρ(F ∗

z )2

− tr (F 2
z ρ + 2FzρF ∗

z + ρ(F ∗
z )2)ρ

GFy(ρ) = −i[Fy, ρ] (37)

and the corresponding deterministic differential equation is

d

dt
ρt = DFz(ρt)

− 1
2
η (−2EFz(ρt)HFz(ρt) +KFz(ρt))

+ uGFy(ρt) +
√

ηHFz(ρt)ξ (38)

whereξ is an associated input. With this solution, we get

d

dt
V I

ρf
(ρ)

= −tr
(

dρ

dt
ρf

)

= −tr
({

−1
2
η(−2EFz(ρ)HFz(ρ) +KFz(ρ))

+ uGFy(ρ) +
√

ηHFz(ρ)ξ
}

ρf

)
. (39)

The term which includesξ in (39) is

tr (HFz(ρ)ξρf)
= tr ((Fzρ + ρFz − 2tr (Fzρ))ρf)ξ
= 2 {tr (ρFzρf)− tr (Fzρ)tr (ρρf)} ξ

= 2 {Jρ11 − (Jρ11 + (J − 1)ρ22 + · · ·
+(−J)ρNN )ρ11} ξ

= 2ρ11 {J − (Jρ11 + (J − 1)ρ22 + · · ·
+(−J)ρNN )} ξ. (40)

The case (40) = 0 is whenρ11 = 0 or ρ11 = 1 (in this caseρ = ρf andρ22 = ρ33 =
· · · = ρNN = 0).

When ρ11 = 0, V I
ρf

(ρ) = 1 and u = 1, and from [11], it is known that
{ρ |V I

ρf
(ρ) = 1} is not an invariant set withut ≡ 1. On the other hand, when

ρ11 = 1, ρ = ρf andV I
ρf

(ρ) = 0, and it is the target point. In the other case
0 < ρ11 = tr (ρρf) < 1, (40) except forξ is nonzero.

12



From above and Proposition 3.1, the assertion that the support ofV I
ρf

(ρt) con-
tains[0, γ] whenV I

ρf
(ρ0) = γ is proved. Therefore, we can getmint∈[0,T ] E[V I

ρf
] <

1− γ0 and finally with Proposition 3.2, we can conclude the statement [11].¤

By using Lemma 3.3 and employing the similar discussion of [11], we can
derive the following lemma.

Lemma 3.4 For almost every sample path ofρt there exists a timeT < ∞ after
which the path never exits the setS<1−γ0

ρf .

We omit the proof.
Proof of Theorem 3.1By unifying the results of Step 1)∼ 3), we can conclude the
convergence of the solution to the target point. The convergence of the expectation
can be also derived by dominated convergence. ¤

4 Numerical Example

We demonstrate the efficiency of the proposing continuous feedback by using nu-
merical simulations. Here we consider single spin 1/2 systems whereN = 2. The
initial and the target states are

ρ0 =
[
0 0
0 1

]
, ρf =

[
1 0
0 0

]

respectively. We simulate the solutionρt with Case 1)η = 0.9, α = 1, β = 1 and
Case 2)η = 0.1, α = 1, β = 1, 10 times respectively. The former case satisfies
the condition (19), on the other hand, the latter does not satisfy it. Fig. 2 and Fig. 3
show the average of the transitions ofV I

ρf
, which indicates the gap between the

targetρf andρt, with the above two cases respectively.
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Fig.2: Average of transitions ofV I
ρf

with η = 0.9, α = 1, β = 1
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Fig.3: Average of transitions ofV I
ρf

with η = 0.1, α = 1, β = 1

From the simulations, we can confirm the efficiency of our proposing con-
tinuous feedback. Note that (19) is a sufficient condition for the global stability,
therefore, even if it is not satisfied, the system may be stable. However, we can see
the significance of the condition (19) from these simulations.

5 Conclusion

In this paper, we considered control problem ofN -dimensional quantum spin sys-
tems and showed that continuous feedback is possible to stochastically globally
stabilize the systems. The control scheme is composed of two distinctive terms
and the stability is proved by following the sample paths of the stochastic master
equation strictly.

Acknowledgement:We thank K. Matsumoto for useful discussions. This research
is supported by the Ministry of Education, Culture, Sports, Science and Technol-
ogy, Japan, under Grant No. 17656137.

A Appendix

The notationCm,δ
b is the set{f ∈ Ck+1, Dαf (|α| = m) : δ-Hölder continuous,

‖f‖m+δ < ∞ } and

‖f‖m+δ := ‖f‖m +
∑

|α|=m

sup
Dαf(x)−Dαf(y)

|x− y|δ . (41)
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