
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

A Compositional Approach to Bidirectional
Model Transformation

Zhenjiang Hu, Dongxi Liu, Hong Mei,
Masato Takeichi, Yingfei Xiong and Haiyan Zhao

METR 2006–54 Octorber, 2006

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.i.u-tokyo.ac.jp/mi/mi-e.htm

The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.

A Compositional Approach to Bidirectional Model

Transformation

Zhenjiang Hu1, Dongxi Liu1, Hong Mei2,
Masato Takeichi1, Yingfei Xiong1,2 and Haiyan Zhao2

1Department of Mathematical Informatics
Graduate School of Information Science and Technology

University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656, Japan
{hu,liu,takeichi}@mist.i.u-tokyo.ac.jp

2Institute of Software
School of Electronics Engineering and Computer Science

Peking University, Beijing, 100871, China
{meih,xiongyf04,zhhy}@sei.pku.edu.cn

October 23, 2006

Abstract

Model-driven architecture is a discipline in software engineering
that aims to develop, maintain and evolve software by performing
model transformations. Many attempts have been made on introduc-
ing bidirectionality to model transformation to enable better consis-
tency and traceability between different models. However, the existing
approaches are ad-hoc without clear updating semantics, hardly sup-
port compositional style of transformation, and provide no means for
automatic transformation strategy adaption. In this paper, we pro-
pose a new approach to bidirectional model transformations based on
a well-defined bidirectional tree-transformation language BiXJ, by giv-
ing two novel techniques: representing graphs by trees together with
a transformation expressing shareness, and realizing graph transfor-
mations by composition of tree transformations. Our approach has
two distinguished features: being compositional and supporting auto-
matic adaption of transformation strategy. The experimental results
on a non-trivial case study have convinced the promise of the new
approach.

1 Introduction

Model-driven architecture (MDA) [Fra03] is a discipline in software engi-
neering that relies on models as first class entities and that aims to develop,

maintain and evolve software by performing model transformations. Refine-
ment, abstraction, refactoring, and integration of models are special cases
of model transformations that can be found in many areas of software engi-
neering [CH03].

A model transformation is unidirectional if it maps a source to a target
model but not other way around. A transformation is bidirectional if it
allows two direction mappings in the sense that both the source and target
models can be modified after application of this transformation, and changes
may be propagated in either direction.

Many attempts have been made on introducing bidirectionality into
model transformation [AK02, BM02, CH03, KS03, GGadRH03, Gro04] to
enable better consistency and traceability between different models. Two
typical applications of bidirectionality are summarized as follows [BM02,
CH03, Gro04]:

• Synchronization Heterogeneous Views of Models: Models in software
engineering could be manipulated via several views (Figure 1(a)). A
view is an abstraction of a model that focuses on a certain aspect
like structure or behavior. For example, a feature model can have
refinement view, constraint view and interaction view [ZMZ05]. These
views are not independent; changes on one view may lead to changes
on others. By establishing a bidirectional mapping between each view
and the model, we can achieve consistency among all the views; a
change on a view is reflected to the model and then propagated to
other views.

• Traceability Links in Software Development : Bidirectional transforma-
tions can record links between their source and target models. These
links are useful in analyzing how changing one model would affect other
related models, maintaining consistency of models at different stages,
and mapping the stepwise execution of an implementation back to its
high-level model. As seen in Figure 1(b), if a problem is found in the
final model, it is possible to trace back and find the model from which
the problem origins.

Since models are graphs in general cases, model transformations are
essentially graph transformations, and study on bidirectional model trans-
formations requires study on bidirectional graph transformation. In spite
of the usefulness of bidirectional model transformation, there are several
important issues that have not been well addressed.

First, there lacks formal well-formed conditions on both bidirectional
mappings and clear updating semantics on graph-structured view. Although
many results [BS81, DB82, HMT04, FGM+05] have been devoted to up-
dating semantics for table-structured or tree-structured view, as far as we

2

� � � � �

� � � � 	

� � � �

� � � � �

trans1

trans2

transn � � �

� � � � � 	

� � � � �

� � � � � �

...

 � �
 � �

Figure 1: Two typical applications of bidirectional model transformation:
(a) synchronization of multiple views; (b) traceability links.

are aware, there is no precise definition of updating semantics for graph-
structured view.

Second, most existing MDA tools provide one-step model-to-code trans-
formations, which they use for generating PSMs (Platform Specific Models)
from PIMs (Platform Independent Models). But they are inadequate for
flexible composition of model transformations, where intermediate models
may be produced but not necessary to appear to the users. In fact, for large
abstraction gaps between PIMs and PSMs, it would be easier to exploit some
intermediate models rather than to go straight to the target PSM. Interme-
diate models are also useful for optimization and tuning. Like compositional
approach to software design [KS98], compotional approach to bidirectional
model transformation is of high modularity and supports creation of reusable
and evolutionable software architectures.

Third, the existing approaches assume that a bidirectional transforma-
tion (or transformation strategy) is fixed whenever it is given and the con-
sistency among models is kept only by performing this transformation if one
model is changed. As seen in [HMT04], automatic adaption of transforma-
tion strategy would give high potential for automatic generation of software
through model editing.

In this paper, we show that all these problems can be solved with the
help of the existing well-defined bidirectional tree-transformation languages
[Abi99, HMT04, MHT04, FGM+05] that are designed for supporting view
updating (i.e. reflecting view modifications back to the original database or
XML document) [BS81, DB82, GPZ88, OT94, Abi99]. By well-defined we
mean that the language has clear view updating semantics, good support
for modular programming, and high description power.

We shall distinguish two different types of model transformations. One
is application-independent transformation, and the other is application-

3

specific transformation. In application-independent transformations, trans-
formation strategies are derived from common experiences or domain knowl-
edge and are fixed among all applications. Examples in this type include
those transformations from UML diagrams to code, from entity-relation di-
agrams to database tables and synchronization among UML diagrams. In
application-specific transformations, transformation strategies are derived
by developers after analyzing the applications they are working on, usually
varying from one application to another. For instance, the transformation
from requirement model to software architecture model belongs to this type,
in which transformation strategies are given by system analysts after ana-
lyzing the particular requirement.

Existing CASE (Computer Aided Software Engineering) tools have al-
ready provided supports for many kinds of application-independent trans-
formations, but few of them provide supports for application-specific trans-
formation. As we will see in Section 5, our approach can support these two
types of transformations.

The main contributions of this paper can be summarized as follows.

• In theory, we propose a compositional approach to bidirectional model
transformations based on a well-defined bidirectional tree-transformation
language BiXJ (a Java version of language X [HMT04]), by giving two
novel techniques (Section 4): representing graphs by trees together
with constraints expressing shareness among tree nodes and realizing
graph transformations by composition of tree transformations.

• In practice, we have implemented and tested our approach on the
development of a simple document editor under the ABC approach
[Mei04], a uniform framework supporting software development from
requirement analysis to code generation. From the case study, we
get the following experiences: due to bidirectionality of our approach,
traceability is better supported during the whole lifecycle of software
development; due to the compositional property, evolutional models
can be created more easily by exploiting existing transformations for
old models; due to BiXJ’s support of computing-as-editing paradigm
[HS95, HMT04], automatic adaption of transformation strategies is
allowed; due to BiXJ’s support of view dependency [HMT04], the inner
dependency in a model can be easily maintained.

The organization of this paper is as follows. We start with a scenario to
which our approach will be applied in Section 2. Section 3 introduces lan-
guage BiXJ. Then, based on BiXJ, we construct a compositional framework
for bidirectional model transformation in Section 4, where two techniques
of how to realize bidirectional graph transformation from bidirectional tree
transformation are introduced. To validate our approach, we provide a non-
trivial case study in Section 5. Finally, we explain the related work in Section

4

�����������

	
��

�����������

�
��

�����������

���

�����������

�����

�����������

����

�����������

������

�����������

��

�����������

��

Figure 2: The Feature Model of Simple Editor

�����������	
�����

������

�����������	
�����

�������

�����������	
�����

������

�����������	
�����

��������

��	��

��	��

����	��

�������
����	���

�������
���	���

�������
�����	��� �����������	
�����

�����	����

�����������	
�����

�������

�����������	
�����

�������

�����������	
�����

������
����	��� �������
����

�����	���

�
�
�
�
�
�
�
�
�
�
	�
�
�
��
��
�
�
�
�

�
�
�
�
�
	�
�
��

��
�
��

!
�
�
�
"

�
�
�
�
�
�
�
�
�
�
	�
�
�
��
��
�
�
�
�

�
��
�
#
�
�
�
�

������

������

�����
������

������

������

	
���
��

	
���
��

	�����

$ �
�������
���������

$ ����������
���������

���� ����

�
�
�
�
�
�
�
�
�
�
	�
�
�
��
��
�
�
�
�

�
�
�
�
�
�
�
�

%��	
��

���	
��

&��	���

������

�����

	
���
��

����������	�����������

���� �

���
�
�

&��	���

Figure 3: The Responsibility Diagram of Simple Editor

6, and conclude the paper in Section 7.

2 A Scenario of Our Approach

In this section, we give a scenario to which our approach will be applied.
This scenario is selected from our previous publication [ZMZY05], which
used a simple document editor to illustrate how to do the transformation
from CIM (Computation Independent Model) to PIM in ABC approach
[Mei04]. Software development in ABC approach is divided into several
stages, including: feature-oriented requirement analysis, software architec-
ture modelling, component composition, deployment and maintenance. In
[ZMZY05], we have given the CIM as feature model, and the PIM as the re-
sponsibility model and the conceptual component model of the editor. Here
we advance the development of the editor a little further by giving a detailed
design in UML class diagram. The feature model, responsibility model and
the UML class diagram are given respectively in Figure 2, 3 and 4.

To establish the traceability and automatic consistency maintenance be-

5

Figure 4: The Class Diagram of Simple Editor

tween these models, we want to use bidirectional transformation techniques
to describe the transformations between these models. However, the exist-
ing techniques like [BM02, Gro04, FGM+05] cannot satisfy our development
requirements in the following aspects:

Model Evolution In an application-specific transformation, the target model
is likely to evolve in later stages. For example, in the class diagram
shown in Figure 4, there are three methods to get all the information
related to a selection in the “Document” class, namely, “GetSelStart”,
“GetSelLength” and “GetText”. Later on, the developer may want to
encapsulate the information in a class “Selection” and use one method
“GetSelection” instead. The unsatisfied thing is that the existing tech-
niques is not compositional. Hence, even if the target model evolves
just a little, we have to write a new transformation to generate it,
that is there is no easy way for the existing techniques to generate the
evolutional model by exploiting the transformation for the old target
model.

Adaption of Transformation Strategy In an application-specific trans-
formation, there always exist lots of components in target models intro-
duced in transformations, which generally reflect users’ transformation
strategy. For instance, from feature model to responsibility model, the
resource container “Document” is introduced by developers in trans-

6

X ::= BX | XC | CM
BX ::= <xconst>[element] | <xnewroot>[tag]

| <xmove>[<from>[path0] <to>[path1]]
XC ::= <xseq>[X0 ... Xn] | <xzip>[X0 ... Xn]
CM ::= <xstore>[v] | <xload>[v] | <xfree>[v]
path ::= n0 | path n1

Figure 5: Syntax of BiXJ

formation. If these elements are modified, maybe developers want
to update their transformation strategy, too. However, the existing
techniques cannot provide any help since transformations in them are
assumed fixed.

Inner Dependency in Model There are a lot of duplications in software
models. For example, in Java source code, the same class name may
appear in its class declaration, class constructors and some variable
declarations with that class as their types. These duplications lead to
inner dependencies on each other in that they should always remain
same during model transformations. However, the existing techniques
couldn’t support inner dependency in model.

3 BiXJ: A Bidirectional Transformation Language

Bidirectional model transformation in our work is implemented using BiXJ,
which is a bidirectional transformation language over tree-structured XML
data. BiXJ is a descendant of language X [HMT04] with clear view updating
semantics.

3.1 Syntax of BiXJ

BiXJ syntax is defined in Figure 5, where each transformation construct is
represented as an XML element. Here, only some constructs are presented
for explaining our approach, and others can be referred to in [HMT04].

For brevity, the end tag of an XML element is omitted and its contents
are enclosed by brackets. For example, < const>element< /const> is
represented as <xconst>[element]. Source and target XML data also use
this style. Each element in an XML document can be reached from root by
a unique sequence of integers, as indicated by path. Root element is assigned
path 0 (it can be omitted in programming); an element has path path n if
its parent element has path path and it is the (n+1)th child of its parent.

7

For transformation X, [[X]]F (s) means transforming the source data s
into some target data, i.e., forward transformation; [[X]]B(s, t′) means the
backward transformation taking as input the original source s and the modi-
fied target t′, and returning not only the updated source but also an updated
transformation. With this feature, backward transformation in BiXJ allows
automatic adaption of model transformation strategy.

3.2 Basic Transformations

Intuitively, a basic transformation only performs one step of operation over
the input data. Generally, basic transformations are simple to implement.

xconst: Let X = <xconst>[element].

[[X]]F (s) = element
[[X]]B(s, element ′) = (s,X ′)

where X ′ = <xconst>[element ′]

If this transformation intends to construct new model components,
such as refined or added model components, then after backward exe-
cution, it may also be updated to keep track of the users’ new trans-
formation strategy.

xrename: Let X = <xrename>[tag ′] and s = <tag>[conts].

[[X]]F (s) = <tag ′>[conts]
[[X]]B(s, <tag ′′>[conts ′]) = (<tag>[conts ′], X ′)

where X ′ = <xrename>[tag ′′]

Note that if tag′ is updated in the target model, this modification is
kept in transformation.

xmove: Let X = <xmove>[<from>[path0] <to>[path1]].

[[X]]F (s) = t
[[X]]B(s, t ′) = (s′, X)

where t is just s except that the element at position path0 is moved
to position path1; similarly, s′ is just t′ except that the element at
position path1 is moved to position path0.

8

3.3 Transformation Combinator

Transformation combinators are used to build complex BiXJ programs by
organizing existing transformations together in some way. In this section,
we explain combinators xseq and xzip.

xseq: Let X = <xseq>[X0 ... Xn].

[[X]]F (s) = t
[[X]]B(s, t′) = (s′, <xseq>[X ′

0 ... X ′
n])

where t0 = [[X0]]F (s)
...
t = [[Xn]]F (tn−1)

(s′n−1, X
′
n) = [[Xn]]B(tn−1, t

′)
...

(s′, X ′
0) = [[X0]]B(s, s′0)

In the intermediate states, s′i is the updated source corresponding to ti
(0 ≤ i ≤ n−1). The compositional feature of our approach is embodied
in this construct. With this feature, users can divide a complex model
transformation into a sequence of simpler transformations, X0 to Xn.
And then, after implementing and testing each simpler transformation,
they can simply compose them by xseq.

xzip: Let X = <xzip>[X0 ... Xn], s = <tag>[s0 ... sm] and k = max(n, m).

[[X]]F (s) = <tag>[t0 ... tk]
[[X]]B(s, t′) = (<tag ′>[s′0 ... s′m], X ′)
where t0 = [[X0]]F (s0)

...
tk = [[Xk]]F (sk)

<tag ′>[t′0 ... t′k] = t′

(s′0, X ′
0) = [[X0]]B(s0, t

′
0)

...
(s′k, X

′
k) = [[Xk]]B(sk, t

′
k)

X ′ = <xzip>[X ′
0 ... X ′

n]

The interesting thing about xzip is that n and m is not necessarily
equal. If m > n, then each transformation Xi(n + 1 ≤ i ≤ m) is the
identify transformation xid; if m < n, then each content si(m + 1 ≤
i ≤ n) is a null value. This feature of xzip is useful when constructing
element contents for introducing new model components.

9

3.4 Execution Context Management

In BiXJ, there are three constructs xstore, xload and xfree for managing
a global execution context C, which maps a variable to an XML element
and behaves like a stack. These constructs need to execute several opera-
tions after forward or backward transformations: push(C, [v 7→ s]) pushes
a mapping to the top of C, pop(C, v) removes the least recent mapping of
variable v from C, update(C, [v 7→ t′′]) changes the least recent mapping of
variable v such that it is mapped to value t′′ and merge(t′, C(v)) merges all
modifications on t′ and C(v) into one updated data.

xstore: Let X = <xstore>[v].

[[X]]F (s) = s ; push(C, [v 7→ s])
[[X]]B(s, t′) = (merge(t′, C(v)), X) ; pop(C, v)

xload: Let X = <xload>[v].

[[X]]F (s) = C(v)
[[X]]B(s, t′) = (s,X) ; update(C, [v 7→ t′′])
where t′′ = merge(t′, C(v))

xfree: Let X = <xfree>[v].

[[X]]F (s) = s ; s′ := pop(C, v)
[[X]]B(s, t′) = (t′, X) ; push(C, [v 7→ s′])

3.5 Programming Examples

Some useful transformations need not to be defined from scratch, instead
they can be defined using the existing transformations. Also as an example
of BiXJ programming, we define transformation xdup using the transforma-
tions introduced before.

<xdup>[n] = <xseq>[xlist]
where xlist = <xstore>[v] xlist0 <xfree>[v]

xlist0 = <const>[<virtual>[]] xlist1
xlist1 = <xzip>[xload(v)1 ... xload(v)n]

This transformation returns n copies of the source XML data wrapped
with tag virtual. Note that these n copies are mutual dependent because
they are loaded from the same value. Modifications on one copy will be
propagated to other copies after a backward execution followed by a forward
execution. This feature can be used to simulate bidirectional tree to graph
transformation.

For example, there is a tree model comprising two features: Edit and
Copy, where feature Edit is refined by feature Copy. In XML format, this
tree model is represented as follows:

10

<model>[<refinement>[<feature>["Edit"]
<feature>["Copy"]]]

However, except for refinement relationship between features, the model
should also reflect some constraints between features. And thus, the model
becomes a graph since two feature nodes will be shared by two relation-
ships. By duplicating the shared nodes, we can simulate the graph with the
following tree:

<model>[<refinement>[<feature>["Edit"]
<feature>["Copy"]]

<constraint>[<feature>["Edit"]
<feature>["Copy"]]]

From the above model to the below model, the transformation used is
as follows:

<xseq>[<xzip>[<xdup>[2]] <xrmtag>["virtual"]
<xzip>[<xid>[]

<xrename>["constraint"]]]

Therefore, for example, if Edit in one copy is changed to edit, then after
a backward transformation and a forward transformation, all Edit become
edit since they are actually one node in the graph. In the above code,
xrmtag removes all “virtual” child nodes of the input XML data.

4 A Compositional Framework for Bidirectional
Model Transformations

BiXJ cannot be directly used for model transformation because models are
basically graphs rather than trees. Here, we propose two important tech-
niques to implement bidirectional model transformation with BiXJ: repre-
senting a graph by a tree together with some constraint capturing node and
relation sharing information and realizing model transformation by compo-
sition of tree transformations.

4.1 Representing Graph by Tree with Constraint

To use BiXJ in model transformation, we need to translate a graph into a
tree, however this representation will lose some information in graph, such
as node sharing. To keep these lost information, we can accompany this
tree by some equality constraint on its nodes and relations. As a simple
yet generic example, consider the graph (the upper part of Figure 6), which
consists of three nodes and three edges, and has two kinds of sharing: node
sharing (e.g., the node of class B is shared by two relations R1 and R2) and
relation sharing (e.g., the relation R1 is shared by two edges). This graph

11

can be represented by a labelled tree shown in the lower part of Figure 6
with the following constraint on tree nodes:

Class A: l3 = l8 = l12
Class B: l4 = l9 = l15
Class C: l5 = l13 = l16
Relation R1: l7 = l11

Now the problem is how to represent trees with equality constraints so
that constraints can be easily maintained when some tree nodes are modified.
Since BiXJ is able to simulate tree to graph transformation, our idea is to
build a meta tree to represent all nodes and relations but without node or
relation duplications, and code the constraint in BiXJ. As an example, in
Figure 7, the tree in lower part with its constraint (same as the above one)
is represented by a meta tree and a BiXJ transformation, shown as follows:

<xseq>[
<xapply>[<path>[0 0] <xdup>[3]]
<xapply>[<path>[0 1] <xdup>[3]]
<xapply>[<path>[0 2] <xdup>[3]]
<xapply>[<path>[1 0] <xdup>[2]]
<xapply>[<path>[0] <xrmtag>["virtual"]]
<xapply>[<path>[1] <xrmtag>["virtual"]]
<xmove>[<from>[0 0] <to>[1 0 0]]
<xmove>[<from>[0 0] <to>[1 1 0]]
<xmove>[<from>[0 1] <to>[1 0 1]]
<xmove>[<from>[0 1] <to>[1 2 0]]
<xmove>[<from>[0 2] <to>[1 1 1]]
<xmove>[<from>[0 2] <to>[1 2 1]]

]

In the above code, <xapply>[<path>[path] X] means applying transfor-
mation X to the element at position path in the input XML data. Suppose
that we change the node l3 from A to D in Figure 7. What we want is that
the nodes l8 and l12 should be changed to D because all these three nodes
correspond to one node in the graph in Figure 6. This is achieved by the
following two steps:

1. S1: Propagating the change to the meta tree by the backward trans-
formation of the above BiXJ code, which causes the node with content
A changed to D;

2. S2: Propagating the change of the meta tree back to the tree by the
forward execution of the above BiXJ code, which causes the nodes
labelled l8 and l12 to be D, the same as that of node l3.

That is, the constraint among tree nodes can be automatically preserved by
S1; S2, a composition of two BiXJ transformations.

12

� � � � � �

� � � � � � � � � � � �

R1 R1

R2

� � � � �

� � � � � � � � � � � 	
 � � �

�
 � � � � �

�
 � �
 �

� �

� �

� �

� � � � � �
� �

� � �

� � �

� � �

� �
� � �

� �

� �
� � � � � �

Figure 6: An example of a small graph and its corresponding tree.

In summary, for any graph, we can represent it in our approach by
the following steps: 1)Building a meta tree with all graph nodes in one
subtree and all graph relations in the other subtree; 2)Duplicating each
shared node and relation n times if it is shared n times in graph; 3)Removing
all auxiliary virtual tags; 4)Moving one copy of each shared node to the
relations involving it. For model graphs exported by Rational Software
Architect and feature modelling tool in ABC, which are represented in XML
with id attributes for node references, we have implemented this procedure
to generate the meta tree and the constraint BiXJ code automatically.

4.2 Realizing Bidirectional Graph Transformation

After coding constraint in bidirectional transformation, we are able to deal
with bidirectional transformation between two graphs. Figure 8 depicts how
bidirectional graph transformation TG can be realized by composition of tree
transformations. During transformation, the source graph G1 is represented
by tree t1, and the target graph G2 is represented by tree t2. Tree t1 and
its constraint are captured in meta tree t1′ and transformation T1, which
are what we described in last section. For tree t2, shown in the lower part
of Figure 9, there is no newly added relation shared, but a newly added
node C2 shared. Hence, T12 only needs to reflect the following constraint
by duplicating node C2 (after creating it), and then moving one copy to the

13

� � � � �

� � � � � � � � � � � 	
 � � �

�
 � � � � �

�
 � �
 �

� �

� �

� �

� � � � � �
� �

� � �

� � �

� � �

� �
� � �

� �

� �
� � � � � �

� � � � �

� � � � � � � � � � � 	
 � � �

�
 � � �� �

Bidirectional Transformation in BiXJ

� � 	 � � � � �

Figure 7: Graph = Tree + Transformation.

relation R2 and R3, respectively.

Class C2: l17 = l20 = l24

For the forward transformation of TG, we compose the forward transfor-
mations of T1 and T12, that is [[<xseq>[T1 T12]]]F (t1′). On the other hand,
for the backward transformation, we need to perform backward transforma-
tion of T12 and T1, and then a forward transformation of T1 to get an up-
dated tree t1 with its constraint satisfied, that is [[<xseq>[T1 T12]]]B(t1′, t2′)
followed by [[T1]]F (t1′′), where t2′ represents the modified target graph and
t1′′ is the updated meta tree.

Though we illustrate our approach by an example, this method of achiev-
ing graph transformation by composing tree transformations is also applica-
ble to any other graph transformation.

5 A Case Study

To study its applicability to software engineering, we have applied our ap-
proach to the development of a simple document editor as described in

14

� � � � � �

� � � � � � � � � � � �

R1 R1

R2

� � � � � �

� � � � � � � � � � � � �

R1 R1'

R2

� � � � � � �

R3

TG

� 	

�

� �
 � � � � � � � � � 	

� � � � � � � � 	

 	 �

 	

� �
 � � � � � � � � �

� � � � � � � �

 �

T12

T1

T2

Figure 8: Bidirectional graph-to-graph transformation via bidirectional tree-
to-tree transformations.

Section 2 in ABC approach [Mei04]. In this section, we will present some
implementation details and the result of this case study.

It should be noted that the editor used here is not a workable software,
because it does not contain basic operations like text editing and file opening.
However, since our goal is to evaluate the applicability of our approach rather
than to develop a workable editor, we think this feature set is complete
enough to fulfill our goal.

5.1 Implementation Details

Before writing transformations between models, we first build the models.
In our case, the features and responsibilities are modelled using the feature
modelling tool in ABC approach [Mei04] developed by Institute of Soft-
ware, Peking University. The software architecture were modelled in UML
diagrams using Rational Software Architect of IBM. Besides the transfor-
mations between the given models, we also need to write the transformation
generating Java source code from UML diagrams.

Since BiXJ only works on XML, we have to get the XML representation
of these models. Fortunately, the feature modelling tool uses XML as its
storage file format and Rational Software Architect has the ability to export
and import XML file conforming to the XML Metadata Interchange (XMI)

15

� � � � �

� � � � � � � � � � � 	
 � � �

�
 � � � � � �

�
 � � �
 � �

� � �

� �

� �

� � � � � �
� �

� � �

� � �

� � �

� �
� � �

� �

� �
� � � � � �

T12

� � � � �

� � � � � � � � � � � 	
 � � �

�
 � � � � �

�
 � �
 �

� �

� �

� �

� � � � � �
� �

� � �

� � �

� � �

� �
� � �

� �

� �
� � � � � �

� �

� � � �
� � �

� � �

� � �

� �

� � �

Figure 9: Tree-to-graph transformation.

Specification [Gro05]. Thus we can get the XML representation from these
tools and these XML files can be synchronized with their corresponding
models.

The problem comes with code. The Java source is stored in plain text
format and has no XML representation. To generate Java source code from
UML diagrams, we have designed an XML format for Java source code
and written a simple program to transform from XML code to Java code.
Therefore, the UML diagrams can be transformed to XML code and then
transformed to Java code.

Another problem is related with the model itself since most of these
models have graph structures. To transform these models with BiXJ, we
have to use the techniques in Section 4 to translate graphs into meta trees
together with some constraints. For graphs represented in XML with id
attributes for node references, we have implemented an automatic tool based
on steps presented in Section 4 to do this translation.

Finally, we get the transformation architecture of our case in Figure
10. First, we generate the meta tree (Meta XML) and its constraint (T0)
from the XML file of feature model F-XMLG by our graph-to-tree transla-
tion tool. Applying T0 to Meta XML we get F-XMLT which is isomorphic

16

F
e
a
t
u
r
e

M
o
d
e
l
i
n
g

T
o
o
l

F
e
a
t
u
r
e

M
o
d
e
l

M
e
t
a

X
M
L

F
-
X
M
L
G

F
-
X
M
L
T

C
o
d
e

C
-
X
M
L
T

U
M
L

M
o
d
e
l

U
-
X
M
L
G

U
-
X
M
L
T

R
e
s
p
o
n
s
i
b
i
l
i
t
y

M
o
d
e
l

R
-
X
M
L
G

R
-
X
M
L
T

R
a
t
i
o
n
a
l

S
o
f
t
w
a
r
e

A
r
c
h
i
t
e
c
t
A
p
p
l
i
c
a
t
i
o
n
-
I
n
d
e
p
e
n
d
e
n
t

T
r
a
n
s
f
o
r
m
a
t
i
o
n

A
p
p
l
i
c
a
t
i
o
n
-
S
p
e
c
i
f
i
c

T
r
a
n
s
f
o
r
m
a
t
i
o
n

T
1
T
0
 T
3
T
2

Figure 10: The Architecture of Implementation

with F-XMLG. Then, the F-XMLT is transformed by BiXJ transforma-
tion T1)into R-XMLT which is isomorphic with the responsibility model(R-
XMLG). After that, the R-XMLT is transformed by T2 into U-XMLT which
is isomorphic with the UML Design Model(U-XMLG). The transformations
T1 and T2 are application-specific transformations, which is not supported
by any CASE tool at present. The last transformation T3, from U-XMLT

to XML code representation, is an application-independent transformation,
which has been supported by CASE tools, but probably not in a bidirec-
tional way, just like tools in Rational Software Architect.

5.2 The Results

The result is much inspiring. First, our approach is successful to be applied
during the whole lifecycle of software development; Second, language BiXJ
together with our techniques of representing graph by trees provide powerful
means to do bidirectional model transformation in practical applications.
Third, the unsatisfied aspects in existing techniques described in Section 2
is not in our approach, illustrated as follows:

Model Evolution With the compositional feature of BiXJ, the evolution
of the target model can be described by writing a transformation from
the old target model to the new target model, and then composing it
with the old transformation using construct <xseq>. For example, A
is transformed to B by BiXJ code T1 and B evolves to B′ by BiXJ code
T2. Then we can get a transformation from A to B′ by combining T1

and T2 in the format of <xseq>[T1 T2].

Adaption of Transformation Strategy BiXJ has the ability to update
transformations during backward transforation, which means that the
modification to the target model is not only reflected to the source
model but also to the transformation strategy. Thus the modification
to elements, either newly added or originated from source model, will
be kept during backward transformations.

17

Inner Dependency in Model Inner dependency can be easily realized
using “<xdup>” construct in BiXJ, which automatically maintains the
consistency of duplications during forward and backward transforma-
tions.

In addition, applying bidirectional transformation to our case brings
lots of benefits to maintenance. First, the traceability between models
can be established. For example, if we want to know from which feature
the method “Copy” in code is originated, we can rename this method to,
say, “ marked Copy”. Then we apply backward transformation on mod-
els, and check which feature in the feature model contains the character
“ marked ”. Second, the consistency between models can be automat-
ically maintained. For example, if we rename the feature “Save” in the
feature model to “FileStore” and apply the forward transformation, the
Component-Seed “Save”, which is derived directly from feature “Save”, will
also be renamed to “FileStore”.

6 Related Work

There has been a lot of work devoting to bidirectional model transforma-
tion [AK02, BM02, CH03, KS03, GGadRH03, Gro04]. The most natural
approach is to use relation to describe constraints between the source and
the target models [GLR+02, Gro04]. Relational specifications (e.g. [AK02],
relations in [Gro04], and mapping rules in [KASS03]) can be interpreted
bidirectionally. However, relational specification is usual non-executable.
To have executable transformations, directions must be fixed, as discussed
in [Gro04]. Non-determinism and backtracking of the relational approach
make it difficult to be used with the existing systems. In contrast, we adopt
the functional approach which is both executable and deterministic, and can
be easily used with the existing system, as demonstrated.

Since models are basically graphs, some attempt has been made to add
bidirectionality to graph transformation [Sch94]. The point is that a graph
can be separated into three corresponding subgraphs. Two of these sub-
graphs evolve simultaneously while the third keeps track on correspondences
between the other graphs. So a graph is evolved by applying graph gram-
mar rules. Other approaches based on graph transformation can be found
in [BM02]. These approaches rely on a set of rules and the strategy of rule
application, and they assume that there is just one pair of models in order
to simplify selection and application of rules. The model produced by appli-
cation of a rule cannot be used as an input of another rule. This is similar
to XSLT, in which the data produced by XSLT cannot be processed again.
This means that they are not compositional. In contrast, our approach rep-
resents graphs by a tree and a transformation for its constraint, and our
approach supports composition of transformations.

18

Query/View/Transformation (QVT) approach [Gro04] is worth more
words, because much effort has been devoted to making it a standard where
the feature of bidirectionality is clearly stated. However, there still lack
clear semantics for view-updating, and QVT does not support adaption of
transformation strategies. Comparatively, we built our system based on an
existing bidirectional language, and focus on finding the technique of using
them for model transformations.

Bidirectional updating, though an old problem [BS81, DB82, OT94], has
recently attracted much interests, each took a slightly different approach
according to their target application [MHT04, HMT04, FGM+05]. The
language BiXJ is a java version of bidirectional language of X [HMT04].
Different from other bidirectional languages such as [FGM+05], X has an
important construct allowing duplication of information while keeping the
duplicated information consistency. This plays an important role in formal-
izing graph-to-graph transformation in this paper.

7 Conclusion

In this paper, we propose a new approach to bidirectional model transfor-
mations based on a well-defined bidirectional language BiXJ, where com-
position plays an important role not only in realizing the framework (i.e.,
a graph transformation is described by a composition of two tree trans-
formations), but also in using the framework for evolutional and traceable
software development. The experimental results on a non-trivial case study
have convinced the promise of the new approach.

We highlight one future work. As seen before, it is not straightforward
for programmers to program with BiXJ, so it would be more practical to
design a high-level language (with graph patterns and rules, e.g. XQuery)
that can be compiled to BiXJ. Our ongoing work has shown that XQuery
Core can be translated to BiXJ.

Acknowledgements

This work is partially sponsored by the National Natural Science Founda-
tion of China under Grant No. 60528006; the Natural Science Foundation
of Beijing under Grant No. 4052018; the National Basic Research Pro-
gram (973) of China under Grant No. 2002CB312003; and Comprehensive
Development of e-Society Foundation Software Program of the Ministry of
Education, Culture, Sports, Science and Technology, Japan.

19

References

[Abi99] Serge Abiteboul. On views and XML. In Proceedings of the
18th ACM SIGPLAN-SIGACT symposium on Principles of
Database Systems, pages 1–9. ACM Press, 1999.

[AK02] D. H. Akehurst and S. Kent. A relational approach to defining
transformations in a metamodel. In J.-M. Jezequel, H. Huss-
mann, and S. Cook, editors, UML 2002 - The Unified Mod-
eling Language 5th International Conference, number 2460 in
LNCS, pages 243–258, Dresden, Germany, oct 2002. Springer.

[BM02] Peter Braun and Frank Marschall. Transforming object mod-
els with BOTL. Electronic Notes on Theoretical Computer
Science, 72(3), 2002.

[BS81] F. Bancilhon and N. Spyratos. Updating semantics of re-
lational views. ACM Transactions on Database Systems,
6(4):557–575, 1981.

[CH03] Krzysztof Czarnecki and Simon Helsen. Classification of
model transformation approaches. In OOPSLA 03 Workshop
on Generative Techniques in the Context of Model-Driven Ar-
chitecture, 2003.

[DB82] U. Dayal and P. A. Bernstein. On the correct translation of
update operations on relational views. ACM TODS, 7(3):381–
416, 1982.

[FGM+05] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore,
Benjamin C. Pierce, and Alan Schmitt. Combinators for bi-
directional tree transformations: a linguistic approach to the
view update problem. In ACM SIGPLAN–SIGACT Sympo-
sium on Principles of Programming Languages (POPL), Long
Beach, California, pages 233–246, 2005.

[Fra03] D. S. Frankel. Model Driven Architecture: Applying MDA to
Enterprise Comput ing. John Wiley & Sons, 2003.

[GGadRH03] Tracy Gardner, Catherine Griffin, and Jana Koehler an d
Rainer Hauser. A review of OMG MOF 2.0 Query / Views /
Transformations submissions and recommendations towards
the final standard. In MetaModelling for MDA Workshop,
England, 2003. Springer.

[GLR+02] A. Gerber, M. Lawley, K. Raymond, J. Steel, and A. Wood.
Transformation: The missing link of mda. In Proc. Graph

20

Transformation - First International Conference, LNCS 2505,
pages 90–105, 2002.

[GPZ88] G. Gottlob, P. Paolini, and R. Zicari. Properties and update
semantics of consistent views. ACM Transactions on Database
Systems, 13(4):486–524, 1988.

[Gro04] QVT-Merge Group. Revised submission for MOF 2.0
Query/Views/Transformation RFP (ad/2002-04-10), 2004.

[Gro05] Object Management Group. MOF 2.0/XMI Mapping Specifi-
cation, v2.1. http://www.omg.org/cgi-bin/doc?formal/2005-
09-01, 2005.

[HMT04] Zhenjiang Hu, Shin-Cheng Mu, and Masato Takeichi. A pro-
grammable editor for developing structured documents based
on bidirectional transformations. In Proceedings of ACM SIG-
PLAN 2004 Symposium on Partial Evaluation and Program
Manipulation, pages 178–189. ACM Press, 2004.

[HS95] Masami Hagiya and Tomoki Shiratori. Programming by exam-
ple in computing-as-editing paradigm. In International Con-
ference on View Languages, pages 275–283, 1995.

[KASS03] G. Karsai, A. Agrawal, F. Shi, and J. Sprinkle. On the
use of graph transformation in the formal specification of
model interpreters. Journal of Universal Computer Science,
9(11):1296–1321, 2003.

[KS98] Rudolf K. Keller and Reinhard Schauer. A compositional
approach to software design. In HICSS ’98: Proceedings of
the Thirty-First Annual Hawaii International Conference on
System Sciences-Volume 5, page 386, Washington, DC, USA,
1998. IEEE Computer Society.

[KS03] S. Kent and R. Smith. The bidirectional mapping prob-
lem. Electronic Notes on Theoretical Computer Science, 82(7),
2003.

[Mei04] Hong Mei. ABC: Supporting software architectures in the
whole lifecycle. In Proceedings of the Second International
Conference on Software Engineering and Formal Methods
(SEFM’04), pages 342–143, 2004.

[MHT04] S.C. Mu, Z. Hu, and M. Takeichi. An algebraic approach
to bi-directional updating. In Second ASIAN Symposium on
Programming Languages and Systems(APLAS 2004), pages
2–18, Taipei, Taiwan, 2004. Springer, LNCS 3302.

21

[OT94] Atsushi Ohori and Keishi Tajima. A polymorphic calculus for
views and object sharing. In ACM PODS’94, pages 255–266,
1994.

[Sch94] Andy Schurr. Specification of graph translators with triple
graph gramm ars. In G. Tinhofer, editor, 20th Int. Workshop
on Graph-Theoretic Concepts in Computer Science (WG’94),
LNCS 903, pages 151–163, 1994.

[ZMZ05] Wei Zhang, Hong Mei, and Haiyan Zhao. A feature-oriented
approach to modeling requirements dependencies. Proceedings
of the 2005 13th IEEE International Conference on Require-
ments Engineering (RE’05), pages 273–284, 2005.

[ZMZY05] Wei Zhang, Hong Mei, Haiyan Zhao, and Jie Yang. Trans-
formation from CIM to PIM: A feature-oriented component-
based approach. Lecture Notes in Computer Science,
3713:248–263, 2005.

22

