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Abstract

A problem of controlling multi-agent systems with intermittent in-
formation exchange between the agents is considered. Through energy-
based analysis, we first derive stability conditions given a communica-
tion network structure and a sampling period. Furthermore, we relate
the network topology and control performance in terms of the system’s
aggregate energy dissipation rate.

1 Introduction

There has been a great deal of interest in controlling large-scale dynamical
systems composed of multiple mobile agents. The framework of multi-agent
systems has variety of applications such as air traffic control [1], intelligent
highways [2], multiple robots carrying out cooperative tasks [3], coordinated
control of satellites for Earth observation [4], RoboCup Soccer [5], to cite but
a few examples and references. One of the key issues in those systems is the
requirement of decentralized control architecture [6] so that each agent can
determine its own control signals without necessarily monitoring the states
of the overall agents. In this sense it is important to construct a proper
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communication network of information exchange between the agents such
that the aggregate system fulfills prescribed tasks with good performance.

In 1987, Reynolds published a remarkable paper that deals with the col-
lective movement of objects mimicking a flock of birds in the area of com-
puter animation [7]. His algorithm was predicated on the three rudimentary
principles, that is, separation, alignment, and cohesion of the agents, for
expressing the emergent behavior without any leader-follower distinctions.
In [8], Vicsek et al. considered biologically inspired cooperative formation of
self-driven particles in the discrete-time setting and their simulation study
investigated the problem of alignment of the particles’ heading directions.
Reference [9] further provided theoretical characterization of [8] using graph
theory and the notion of nearest neighbor rules.

Among all the papers concerning formation control of multi-agent sys-
tems, the most recent and closely related works to this paper are [10, 11]
in which controllers are the emulation of injecting nonlinear springs and
dampers between the agents. To ensure stability they considered the to-
tal energy with the potential function associated with the virtual nonlinear
spring as a Lyapunov function and employ the Krasovskii-LaSalle invariance
principle to guarantee asymptotic stability.

Following their control strategy in [10, 11], in this paper we consider a
formation control problem of mobile multiple agents with sampled informa-
tion; that is, each agent can communicate with other agents not continually
but periodically. In particular, we focus our attention on the relationship
between the sampling period, structure of the communication network, and
the control performance. First, we discretize the equations of motion of the
point-mass agents and introduce an energy-like function that is averaged
over the sampling period. This function allows us to easily determine the
feedback gains given a sampling period and a network connection topology.
Then we examine the closed-loop system performance correlated with the
energy dissipation rate.

The notation used in this paper is fairly standard. Specifically, R denotes
the set of real numbers, R

n denotes the set of n × 1 real column vectors,
and N0 denotes the set of nonnegative integers. Furthermore, we write (·)T

for transpose, A(i,j) for the (i, j)th (block) element of the matrix A, 0n for
the n-dimensional square zero matrix, 1n for the ones vector of dimension
n, mspec(A) for the spectrum of the matrix A, and |Ni| for the cardinal
number of the set Ni.

2 Motivation and Problem Settings

2.1 Continuous-Time Setting [10, 11]

In this section we introduce a formation control problem of multi-agent sys-
tems. Specifically, each agent is assumed to be a normalized point mass
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and is subject to the force input. For simplicity of exposition, we assume
that the agents are collision-free and allowed to move in a one-dimensional
space. The extension to multi-dimensional systems is straightforward. Fur-
thermore, we assume that the communication network is connected so that
there is no information-isolated agents and the network topology is invari-
ant over time. The control objective is to regulate each agent’s position
and velocity such that all the agents asymptotically travel with zero relative
positions and common velocities.

To this end, consider the dynamics of n agents given by

q̇(t) = p(t), q(0) = q0, t ≥ 0,

ṗ(t) = u(t), p(0) = p0, (1)

where q , [q1, . . . , qn]T, p , [p1, . . . , pn]T, u , [u1, . . . , un]T, qi ∈ R, pi ∈ R,
and ui ∈ R are the position, the velocity, and the force input, respectively,
of the ith agent.

In the preceding work [10, 11], the authors considered an energy-based
controller that emulates forces due to springs and dampers in the continuous-
time setting. In particular, their control law has the form of

ui(t) = −
∑

j∈Ni

(qi(t) − qj(t)) −
∑

j∈Ni

(pi(t) − pj(t)), i = 1, . . . , n, (2)

or, equivalently,
u(t) = −Lq(t) − Lp(t), (3)

where the first term on the right-hand side is induced as a gradient of the
potential function φ(q) = 1

2qTLq associated with the virtual spring with the
stiffness coefficient matrix L, the second term plays a role of the damper
with the damping coefficient matrix L, and Ni represents the index set of
the agents that the agent i is connected with. This symmetric, nonnegative-
definite matrix L, called Laplacian in the field of graph theory, is determined
from the structure of the communication network and has a simple zero
eigenvalue since we assume that the network topology is connected (see
Appendix A for details). Stability of the multi-agent system was guaranteed
using the virtual energy (Lyapunov-like) function V (q, p) given by

V (q, p) =
1

2
(pTp + qTLq), (4)

and the Krasovskii-LaSalle invariance principle.

2.2 Sampled-Data Setting

In this paper, we consider a more practical case than the continuous-time
setting presented above. In particular, we assume that each controller can
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simultaneously receive the information of relative positions and relative ve-
locities of the agents prescribed by Ni with time interval T . This synchro-
nized intermittent information exchange naturally leads us to a formulation
of sampled-data control.

For applying control, we employ zero-order hold so that the control input
between the sampling instants is given by

ui(t) = ui[k], kT ≤ t < (k + 1)T, k ∈ N0, i = 1, . . . , n, (5)

where ui[k] denotes the input signal of the ith agent computed at the kth
sampling instant t = kT . In this case, discretizing the equations of motion
(1) with sampling period T , we obtain

qi[k + 1] = qi[k] + Tpi[k] + 1
2T 2ui[k], qi[0] = qi0, k ∈ N0,

pi[k + 1] = pi[k] + Tui[k], pi[0] = pi0,

i = 1, . . . , n, (6)

where qi[k] (resp., pi[k]) represents the position (resp., velocity) of the ith
agent at the kth sampling instant.

As one can surmise, the control input (5) with

u[k] = −kqLq[k] − kpLp[k], (7)

where kq, kp are positive constants, can stabilize the multi-agent system in
the case where the sampling period T is sufficiently small. Conversely, the
input signal (7) with kq = kp = 1, which is inspired from (3), may destabi-
lize the closed-loop system for a large sampling period. However, it is not
obvious how small T should be to stabilize the system when the Laplacian
matrix L and the positive constants kq, kp are given. In the following sec-
tions, we consider kq, kp as free parameters (or part of feedback gains) and
derive sufficient conditions to answer this question. In addition, we further
examine the relationship between the information exchange characteristics
and control performance.

3 Single Agent Case

As a preliminary analysis of the multi-agent system, in this section we con-
sider the problem of stabilizing a single agent (i.e., n = 1) to the origin with
sampled information. Specifically, with sampling period T and the sampled-
data control law (7), the closed-loop system trajectory of (1), (5) is given
by

q(t) = q[k] + p[k]t + 1
2u[k]t2,

p(t) = p[k] + u[k]t,
kT ≤ t < (k + 1)T, k ∈ N0, (8)
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and hence at the sampling instants it follows that
[

q[k + 1]
p[k + 1]

]

=

[

1 − 1
2kqT

2 T − 1
2kpT

2

−kqT 1 − kpT

] [

q[k]
p[k]

]

, k ∈ N0. (9)

3.1 Stability Analysis

Note that unlike the continuous-time case, the ‘total energy’ of the agents
given by

V1(q[k], p[k]) =
1

2
(p2[k] + kqq

2[k]), (10)

cannot be an appropriate positive-definite (Lyapunov) function to examine
stability in the sampled-data case. To see this, consider the time difference
of V1(q, p) between (k+1)th and kth sampling instants. Then it follows that
the energy difference along the closed-loop system trajectories is given by

V1(q[k + 1], p[k + 1]) − V1(q[k], p[k]) = −

[

q[k]
p[k]

]T

Λd

[

q[k]
p[k]

]

, (11)

where the entries of the matrix Λd ∈ R
2×2 are obtained as

Λd(1,1) = −1
8k3

qT
4,

Λd(1,2) = Λd(2,1) = −1
4kqkpT

2 + 1
4k2

qT
3 − 1

8kqkpT
4,

Λd(2,2) = kpT − 1
2 (k2

p + kq)T
2 + 1

2kqkpT
3 − 1

8kqk
2
pT

4.

Now, since the (1, 1)-element of Λd is always negative for all kq > 0 and
T > 0, Λd cannot be positive definite and hence the energy-like function
V1(q, p) given by (10) is not an appropriate Lyapunov function.

Instead, we consider the averaged energy function between the sampling
instants given by

V2(q[k], p[k]) =
1

2T

∫ T

0
(p2(t) + kqq

2(t)) dt, (12)

where q(t) and p(t) are given by (8). In this case, with the control signal
(7), the averaged energy function (12) is written as

V2(q[k], p[k]) =

[

q[k]
p[k]

]T

Θ

[

q[k]
p[k]

]

, (13)

where the entries of the matrix Θ ∈ R
2×2 are given by

Θ(1,1) = kq + 1
20k3

qT
4,

Θ(1,2) = Θ(2,1)

= 1
6kqkpT

2 − 1
8k2

qT
3 + 1

20k2
qkpT

4,

Θ(2,2) = 1 − kpT + 1
3(k2

p + kq)T
2 − 1

4kqkpT
3 + 1

20kqk
2
pT

4.
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Now, it follows that the energy difference at the sampling instants along the
closed-loop system trajectories is given by

V2(q[k + 1], p[k + 1]) − V2(q[k], p[k]) = −

[

q[k]
p[k]

]T

Λs

[

q[k]
p[k]

]

, (14)

where the entries of the matrix Λs ∈ R
2×2 are expressed as

Λs(1,1) = 4
3k2

qkpT
3 − 1

6k2
q(5kq + 2k2

p)T
4 + 11

60k3
qkpT

5 − 1
40k3

q (2k
2
p − 7kq)T

6

− 1
20k4

qkpT
7 − 1

80k5
qT

8,

Λs(1,2) = Λs(2,1)

= −3
2kqkpT

2 + 1
6kq(5kq + 9k2

p)T
3 − 1

24kqkp(17kq + 8k2
p)T

4

− 1
240k2

q (57kq − 44k2
p)T 5 − 1

40k2
qkp(2k

2
p − 9kq)T

6

− 1
40k3

q(2k
2
p − kq)T

7 − 1
80k4

qkpT
8,

Λs(2,2) = 2kpT − (kq + 3k2
p)T

2 + 1
3kp(5k

2
p + 4kq)T

3

− 1
12 (4k4

p − 3k2
q + 7kqk

2
p)T

4 − 1
120kqkp(57kq − 22k2

p)T 5

− 1
40kq(2k

4
p − 11kqk

2
p + 2k2

q )T
6 − 1

20k2
qkp(k

2
p − kq)T

7

− 1
80k3

qk
2
pT

8.

If the sampling period T is sufficiently small, then the matrix Λs is approx-
imated as

Λs ≃ Λ̃s ,

[

4
3k2

qkpT
3 −3

2kqkpT
2

−3
2kqkpT

2 2kpT

]

. (15)

In fact, since the eigenvalues of Λ̃s are computed as

1

2







(

4

3
k2

qkpT
3 + 2kpT

)

±

√

(

4

3
k2

qkpT 3 + 2kpT

)2

−
5

3
k2

qk
2
pT

4







,

which turn out to be both positive, it follows that Λ̃s is positive definite
and hence the closed-loop system given by (1), (5) can be shown to be
asymptotically stable using the avaraged energy function (12) as a Lyapunov
function. Finally, it is important to note that with the sufficiently small
sampling period T , time difference of the averaged energy function is strictly
negative so that, unlike the continuous-time case, it is not necessary to
employ the Krasovskii-LaSalle invariance principle.

Illustrative Example. Consider the single-agent system (1) and the con-
trol input (5), (7) with zero-order hold. Note that with kq = 1, kp = 1, and
T = 1, Λs in (14) is positive definite and hence the closed-loop system is
asymptotically stable. Figure 1 shows the energy-like function V1(q(t), p(t))
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Figure 1: History of the virtual energy function (V1) and the averaged energy
function (V2)

versus time (dashed line) for the case where q(0) = 5 and p(0) = −3. It can
be seen that V1(q[k], p[k]) is not a decreasing function of time kT , k = N0,
(solid line) while the averaged energy function V2(q[k], p[k]) is indeed de-
creasing at each sampling instant (dashed-dot line).

3.2 Relationship Between the Sampling Period and the Feed-
back Gains

As seen in Section 3.1, it follows that the single-agent system can be stabi-
lized around the equilibrium point with sufficiently small sampling period
T depending on the feedback gains kq and kp. In other words, for a fixed
sampling period T , it is required to select appropriate feedback gains in or-
der to stabilize the single-agent system. In this section, we derive sufficient
conditions that kq, kp ought to satisfy for stabilization of the closed-loop
single-agent system.

Let k̂q , kqT
2 and k̂p , kpT . Then the matrix Λs in (14) can be

rewritten as

Λs =

[

1
T

0
0 1

]

Φ

[

1
T

0
0 1

]

, (16)

where the entries of the matrix Φ ∈ R
2×2 are given by

Φ(1,1) = −1
3 k̂2

q k̂p(k̂p − 4) − 1
60 k̂3

q (50 − 11k̂p + 3k̂2
p) −

1
40 k̂4

q (2k̂p − 7) − 1
80 k̂5

q ,

Φ(1,2) = Φ(2,1)

= −1
6 k̂qk̂p(9 − 9k̂p + 2k̂2

p) −
1

120 k̂2
q (−100 + 85k̂p − 22k̂2

p + 6k̂3
p)

− 1
240 k̂3

q(57 − 54k̂p + 12k̂2
p) −

1
80 k̂4

q (−2 + k̂p),
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k̂q

k̂
p

Figure 2: Stabilizing region of k̂q, k̂p. This region is nonconvex and does not
depend on T .

Φ(2,2) = 2k̂p − 3k̂2
p + 5

3 k̂3
p − 1

3 k̂4
p − 1

60 k̂q(60 − 80k̂p + 35k̂2
p − 11k̂3

p + 3k̂4
p)

− 1
120 k̂2

q(−30 + 57k̂p − 33k̂2
p + 6k̂3

p) −
1
80 k̂3

q (4 − 4k̂p + k̂2
p).

Note that the sampling period T does not explicitly appear in the expression
of Φ. Figure 2 indicates the nonconvex region of k̂q and k̂p that makes Φ
(and hence Λs) positive definite and thus the closed-loop system given by
(1), (5) be asymptotically stable irrespective of T .

In summary, if the sampling period T is given, then the stabilizing feed-
back gains can be determined as

kq =
k̂q

T 2
, kp =

k̂p

T
, (17)

through the constants k̂q, k̂p that lie in the shaded region in Figure 2. Since
the shaded region is bounded, it follows that if the sampling period is large,
then the feedback gains need to be small to ensure stability. Finally, we note
that the necessary and sufficient region of k̂q, k̂p is shown in Figure 2, which
is directly derived from the condition that all the eigenvalues of the system
matrix in (9) lie in the unit disk. Nonetheless, we emphasize that the use of
Lyapunov-like analysis facilitates stability and performance analysis as we
see in the following sections.

4 Stability Analysis for Multi-Agent Case

The discussion in the preceding section for the single-agent case indicates
that the averaged energy function is likely to be a viable Lyapunov function
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candidate for the multi-agent case as well. In this section, we employ a
similar function to (12) to derive stabilizing region of kq, kp for constructing
the control signal (7).

First, discretizing (1) with sampling period T and using the control in-
put (5) with the control signal (7), it follows that the closed-loop system
trajectory has the same expression as (8) and that the states q(t) and p(t)
at the sampling instants are given by

[

q[k + 1]
p[k + 1]

]

=

[

In − 1
2kqLT 2 TIn − 1

2kpLT 2

−kqLT In − kpLT

]

[

q[k]
p[k]

]

, k ∈ N0. (18)

Now, consider the averaged energy-like function

V2(q[k], p[k]) =
1

2T

∫ T

0
{pT(t)p(t) + kqq

T(t)Lq(t)}dt, (19)

where q(t) and p(t) are given by (8). As in Section 3.1, it follows that
the energy difference at the sampling instants along the closed-loop system
trajectories is given by

V2(q[k + 1], p[k + 1]) − V2(q[k], p[k]) = −

[

q[k]
p[k]

]T

Λ̂s(L)

[

q[k]
p[k]

]

, (20)

where

Λ̂s(L) =

[

1
T

In 0
0 In

]

Φ̂(L)

[

1
T

In 0
0 In

]

, (21)

and the block entries of the matrix Φ̂(L) ∈ R
2n×2n are given by

Φ̂(1,1)(L) = −1
6 k̂2

q(5k̂q − 8k̂p)L
3 − 1

120 k̂2
q(−21k̂2

q − 22k̂q k̂p + 40k̂2
p)L4

− 1
80 k̂3

q (k̂
2
q + 4k̂qk̂p + 4k̂2

p)L
5,

Φ̂(1,2)(L) = Φ̂(2,1)(L)

= −1
6 k̂q(−5k̂q + 9k̂p)L

2 − 1
240 k̂q(57k̂

2
q + 170k̂q k̂p − 360k̂2

p)L3

− 1
120 k̂q(−3k̂3

q − 27k̂2
q k̂p − 22k̂q k̂

2
p + 40k̂3

p)L
4

− 1
80 k̂2

q k̂p(k̂
2
q + 4k̂q k̂p + 4k̂2

p)L
5,

Φ̂(2,2)(L) = −(k̂q − 2k̂p)L − 1
12 (−3k̂2

q − 16k̂q k̂p + 36k̂2
p)L2

− 1
120 (6k̂3

q + 57k̂2
q k̂p + 70k̂q k̂

2
p − 200k̂3

p)L3

− 1
120 k̂p(−6k̂3

q − 33k̂2
q k̂p − 22k̂q k̂

2
p + 40k̂3

p)L
4

− 1
80 k̂q k̂

2
p(k̂

2
q + 4k̂q k̂p + 4k̂2

p)L
5. (22)

In order to examine the sign definiteness of Φ̂(L), we present the following
lemma to recall the Frobenius’ (spectral mapping) theorem [12]. For the
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statement of the following results, let 0 = λ1 < λ2 ≤ · · · ≤ λn be the
eigenvalues of the Laplacian L.

Frobenius’ Spectral Mapping Theorem [12]. Consider a matrix
A ∈ R

n×n and a polynomial m(s) of s. Let λ ∈ mspec(A) and v ∈ R
n

be the corresponding eigenvector. Then m(λ) ∈ mspec(m(A)) and v is the
corresponding eigenvector of m(A).

Lemma 4.1 Let L ∈ R
n×n be a Laplacian matrix and let mij(s), i, j = 1, 2,

be polynomials of s. Furthermore, let λk ∈ mspec(L), k = 1, . . . , n. Then
the 2n eigenvalues of the matrix

M(L) ,

[

m11(L) m12(L)
m21(L) m22(L)

]

∈ R
2n×2n, (23)

are identical to the roots of n second-order algebraic equations of z given by

z2 − (m11(λk) + m22(λk))z + m11(λk)m22(λk) − m12(λk)m21(λk) = 0,

k = 1, . . . , n. (24)

Proof. Since L is diagonalizable, it follows from the Jordan decom-
position and the spectral mapping theorem that there exists a nonsingular
matrix Q ∈ R

n×n composed of the eigenvectors of L such that

L = Q−1







λ1

. . .

λn






Q. (25)

Furthermore, letting R , block-diag[Q,Q], it follows that

M(L) = R−1

[

m11(λ) m12(λ)
m21(λ) m22(λ)

]

R, (26)

where mij(λ) , diag[mij(λ1), . . . ,mij(λn)] ∈ R
n×n, i, j = 1, 2. Now, since

the eigenvalues of M(L) are the same as those of

[

m11(λ) m12(λ)
m21(λ) m22(λ)

]

com-

posed of diagonal matrices, it follows that the eigenvalues of M(L) are the
roots of (24). �

It follows from the fact that Φ̂(λ1) = Φ̂(0) = 02 and Lemma 4.1 that the
necessary and sufficient conditions for Φ̂(L) to be nonnegative definite are

Φ̂11(λi) + Φ̂22(λi) > 0, Φ̂11(λi)Φ̂22(λi) − Φ̂2
12(λi) > 0, (27)

for all i = 2, . . . , n. Following the similar argument as in the case of single
agent (Section 3), define k̃q , λik̂q and k̃p , λik̂p so that Φ̂(λi) is given

by (17) with k̂q, k̂p replaced by k̃q, k̃p, respectively. This implies that the

transformed gains k̃q (= λik̂q) and k̃p (= λik̂p) ought to lie in the nonconvex
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k̂q

k̂
p

λ = 1.5858

λ = 3

λ = 4.4142

λ = 5

Figure 3: Stabilizing region of k̂q, k̂p in the case where L has eigenvalues
λ = 1.5858, 3, 4.4142, 5. Each curve is homothetic to the one in Figure 2
with ratio 1/λ with respect to the origin.

set indicated in Figure 2 for all i = 2, . . . , n, and hence k̂q, k̂p should be
contained in the shaded region in Figure 3. (Each curve is homothetic to
the one in Figure 2 with ratio 1/λ with respect to the origin.) One of
the simple ways to determine a stabilizing gain is to consider the region
specified in Figure 4. Note that the straight line that goes from the origin
is the line tangent to the concave curve at the origin. In fact, the slope
of the line is numerically computed to be 0.7633. Furthermore, the largest
eigenvalue λn of L characterizes the size of the region in Figure 3. Now,
since k̃q = λnk̂q = λnkqT

2 and k̃q = λnk̂q = λnkqT
2, take any point in the

shaded region in Figure 4 to obtain the stabilizing gains

kq =
k̃q

λnT 2
, kp =

k̃p

λnT
, (28)

using the largest eigenvalue of L.
At the end of the section of stability analysis, we summarize the results

discussed above in the following theorem.

Theorem 4.1 Consider the multi-agent system given by (1), where the
sampling period T and the Laplacian matrix L associated with the communi-
cation network are predetermined. Suppose that the feedback gains kq, kp are
given by (28), where k̃q, k̃p are selected from the region indicated in Figure 4.
Then the control law (5), (7) guarantees that the the closed-loop multi-agent
system (1) satisfies

lim
t→∞

|qi(t) − qj(t)| = 0, lim
t→∞

|pi(t) − pj(t)| = 0, (29)

11
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p

slope = 0.7633

Figure 4: Simplified stabilizing region of k̃q, k̃p

for all i, j = 1, . . . , n.

Proof. The proof is similar to the discussion in Section 3. Specifically,
with the control signal (7) and the feedback gains obtained in (28), we saw
that the time difference of the averaged energy-like function V2(q[k], p[k])
given by (13) along the closed-loop system trajectories satisfies

V2(q[k +1], p[k +1])−V2(q[k], p[k]) = −

[

q[k]
p[k]

]T

Λ̂s(L)

[

q[k]
p[k]

]

≤ 0, (30)

and hence the vector [qT[k], pT[k]]T converges to the null space of Λ̂s(L),
which is given by [rq1

T
n , rp1

T
n ]T, where rp, rq ∈ R. Hence, it follows that all

the agents asymptotically move with the same velocities and zero relative
positions. �

It follows from Theorem 4.1 that u[k] → 0 as k → ∞ and hence p[k+1]−
p[k] → 0 as k → ∞. Furthermore, note that V2(q[k], p[k]) is a decreasing
function of k and hence p[k] is bounded. Now, since p[k] is a bounded
Cauchy sequence, it follows that there exists a constant pss ∈ R such that
p(t) → pss1n as t → ∞. Finally, Λ̃s(L) has two semisimple eigenvalues, one
of which corresponds to the rigid-body mode of the system.

5 Performance Analysis for Multi-Agent Case

As discussed in Appendix A, eigenvalues of Laplacian matrices tend to be-
come larger as there are more connections between agents. To evaluate
performance with respect to the communication rate T and the network
structure L, we ‘normalize’ the control input such that the control input is

12



given by (7) with ith input signal divided by the number of agents that the
ith agent can communicate with; that is, we consider the control input given
by

ui[k] = −
kq

|Ni|

∑

j∈Ni

(qi[k] − qj[k]) −
kp

|Ni|

∑

j∈Ni

(pi[k] − pj [k]), i = 1, . . . , n,

(31)
or, equivalently,

u[k] = −kqM̂
−1Lq[k] − kqM̂

−1Lp[k], (32)

where M̂ , diag[|N1|, . . . , |Nn|].
In fact, when the feedback gains kq, kp are chosen properly, the closed-

loop system under this setup remains stable, which can be shown by con-
sidering the modified energy-like function

V3(q[k], p[k]) =
1

2T

∫ T

0
{pT(t)M̂p(t) + kqq

T(t)Lq(t)}dt, (33)

and by following the similar argument as in Section 4. Specifically, time
difference of the energy-like function along the closed-loop trajectories is
given by

V3(q[k + 1], p[k + 1]) − V3(q[k], p[k]) = −

[

q[k]
p[k]

]T

Λ̃s(L)

[

q[k]
p[k]

]

, (34)

where

Λ̃s(L) =

[

1
T
M̂

1

2 0

0 M̂
1

2

]

Φ̃(L̃)

[

1
T

M̂
1

2 0

0 M̂
1

2

]

, (35)

M̂
1

2 , diag[|N1|
1

2 , . . . , |Nn|
1

2 ], L̃ , M− 1

2 LM− 1

2 and the block entries of
the matrix Φ̃(L̃) ∈ R

2n×2n are given by the same expression of Φ̂(L) as in
(22) with L replaced by L̃. The matrix L̃ is referred to as the normalized
Laplacian matrix [13].

Thus, similarly to Theorem 4.1, the control law (7) with the feedback
gains given by (28) with λn replaced by the largest eigenvalue λ̃n of L̃, it
follows that the closed-loop system (1), (5), (32) satisfies (29). Note that we
assume the communication network is connected, and hence M̂ ≥ In, which
leads to λ̃n ≤ λn.

Finally, we evaluate the closed-loop system performance by an eigenvalue
of Λ̃s(L). In particular, we focus on the smallest, nonzero eigenvalue λ∗ of
Λ̃s(L), since it characterizes the lowest convergence rate of the system. This
eigenvalue is particularly called the algebraic connectivity. Figure 5 shows
λ∗ of the complete graph, the path graph and Graph A, which we define
as a path graph with extra connections with second next agents added, in
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λ
∗

n

Figure 5: Smallest, nonzero eigenvalue λ∗ of Λ̃s(L) of the complete graph, the
path graph, and Graph A defined in Appendix A in the case of k̃q = k̃p = 1.5
and T = 0.1.

the case where k̃q and k̃p are kept constant (see Figure 6 in Appendix A for
graphical representation of the complete and the path graphs and Graph A).
While λ∗ of the path graph and Graph A decrease as the number of agents
increases, λ∗ of the complete graph increases. This implies that the more
information is available, the faster the convergence rate is.

6 Conclusion

In this paper we considered a sample-data control framework for formation
control of multi-agent systems. Our zero-order hold controller resembles
that of [10, 11], in which the control law was inspired by the energy dis-
sipation of mass-spring-damper systems. Based on a stability analysis for
the single-agent case, we derived explicit stability conditions in terms of the
sampling period and the topology of the communication network using an
averaged energy-like function. Finally, we provided a relationship between
the network structure and control performance. Future research includes
introducing system noise so that how accuracy of the available information
affects the system performance.
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Figure 6: Path graph (left), complete graph (center), and Graph A (right)
in the case of 4-agent systems

Appendix

A Properties of the Laplacian Matrix

In describing the structure of information exchange between the agents,
graph theory plays a crucial role and provides useful insights that lead to
stability analyses [14]. Specifically, in this appendix we focus on the defini-
tion of Laplacian matrix and some of its important properties necessary for
this paper.

Suppose that the agent i and the agent j (6= i) out of n agents have a
common communication channel (i.e., if i ∈ Nj , then j ∈ Ni) so that the
agents i and j know each other’s relative position and/or velocity. This
communication network can be characterized via the Laplacian matrix L
defined by

L(i,j) =







−1, i ∈ Nj,
|Ni|, j = i,
0, otherwise,

i, j = 1, . . . , n. (36)

Thus, the Laplacian matrix is a symmetric matrix. Furthermore, the Lapla-
cian matrix has the following properties [15]: (i) The eigenvalues of L are
all (real and) nonnegative. (ii) If L is irreducible (i.e., the undirected graph
associated with L is complete), then L has only one simple zero eigenvalue
and the corresponding eigenvector is given by 1n.

Finally, we define two special types of graphs that are considered in
Section 5. Specifically, Figure 6 shows the complete graph, the path graph,
and Graph A in the case of 4-agent systems.
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