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The Buneman Index via Polyhedral Split Decomposition

Shungo KOICHI∗

November, 2006

Abstract

The Buneman index and Bandelt and Dress’ isolation index are two well-known tools for
constructing a phylogenetic tree from dissimilarity data. A recent paper of Hirai (2006) provides a
geometric interpretation of the isolation index by deriving Bandelt and Dress’ split decomposition
of metrics as a special case of the polyhedral split decomposition of polyhedral convex functions in
the following way. A finite metric is regarded as a discrete function on a certain type of vector
configuration and extended to a polyhedral convex function, which is called its convex extension.
Then, the isolation index appears in the polyhedral split decomposition of the convex extension.
This paper shows that the same approach works for the Buneman index by taking a different
type of vector configuration, namely, Buneman’s result is also understood as a polyhedral split
decomposition.

By polyhedral split decomposition, a polyhedral convex function can be uniquely represented
as a sum of split functions and a residue. Roughly, a split-decomposable function is a discrete
function such that the residue of its convex extension is a linear function, and a split fan is a
simplicial fan consisting of split-decomposable functions. In the case of the Buneman index, the
split-decomposable functions coincide with tree metrics, and the split fan is essentially identical
with the space of phylogenetic trees. A geometric property of a split-decomposable function and a
vector configuration as its domain is revealed in the paper of Hirai. We newly give a combinatorial
characterization for the split-decomposable functions on some type of vector configuration by using
the matroid associated with the vector configuration. The combinatorial characterization implies
pairwise compatibility of splits arising from a tree metric.

Keywords: metric, the Buneman index, polyhedral split decomposition, the space of phylogenetic
trees, vector configuration, hyperplane arrangement, semimodular lattice.

1 Introduction

The problem of reconstructing a tree, called a phylogenetic tree, from dissimilarity (or distance) data
on biological sequences, e.g., DNA or amino acid sequences is the most fundamental and important
issue in phylogeny. By using various alignment methods for biological sequences, we can measure
dissimilarities between them. In phylogeny, Buneman’s method [8] and Bandelt and Dress’ method
[1] are well known as tree reconstruction methods. The two methods utilize the Buneman index and
isolation index, respectively, in order to obtain clues to reconstruct a phylogenetic tree. Since the two
indices are very similar to each other, they are often compared. The aim of this paper is to reveal
the relation between the two methods, especially the two indices.

In order to review the two methods briefly, we classify dissimilarity maps, metrics, and tree
metrics. Let X be a set of objects, e.g., sequences or taxa. A nonnegative dissimilarity map is
defined as a function d : X × X → R such that d(i, i) = 0 for all i ∈ X and d(i, j) = d(j, i) ≥ 0
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for all i, j ∈ X. A metric is a nonnegative dissimilarity map satisfying the triangle inequality, i.e.,
d(i, j) ≤ d(i, k)+d(k, j) for all i, j, k ∈ X. A tree metric is the path metric of a tree with nonnegative
edge weights.

The clues to reconstruct trees are brought as a set of splits. A split of X is a partition of X into
two non-empty sets. For a metric d : X × X → R and a split {A,B}, A, B ⊆ X, the Buneman index
is defined by

bd
{A,B} =

1
2

min
u,v∈A,x,y∈B

{
min

{
d(u, x) + d(v, y),
d(u, y) + d(v, x)

}
− d(u, v) − d(x, y)

}
,

and the isolation index is defined by

id{A,B} =
1
2

min
u,v∈A,x,y∈B



max





d(u, x) + d(v, y),
d(u, y) + d(v, x),
d(u, v) + d(x, y)



 − d(u, v) − d(x, y)



.

By computing the Buneman indices or isolation indices for splits of X, we obtain the set of splits:

Σb(d) = {σ | σ : a split of X, bd
σ > 0}

or

Σi(d) = {σ | σ : a split of X, idσ > 0}.

Many methods to reconstruct a tree or graph from such a set of splits are known [12, 13, 19, 20].
Those methods are based on Splits Equivalence theorem to be described in Section 2. In addition,
Bandelt and Dress obtain a decomposition of a metric with the isolation index. The split metric
ξ{A,B} : X × X → {0, 1} associated with a split {A,B} of X is defined by

ξ{A,B}(i, j) =

{
0 if i, j ∈ A or i, j ∈ B,

1 otherwise,

for all i, j ∈ X. By Bandelt and Dress’ split decomposition of a metric, a metric d can be decomposed
as follows:

d =
∑

σ∈Σi(d)

idσξσ + d′, (1.1)

where d′ is a metric with id
′

σ′ = 0 for any split σ′. We call d′ the split-prime residue of d.
In order to extend the results of Bandelt and Dress, Hirai [16, 17] introduces the polyhedral split

decomposition of polyhedral convex functions, which is summarized as follows. A function of which
the epigraph is a convex polyhedron is called a polyhedral convex function. A polyhedral convex
function f on Rn can be decomposed as

f(x) =
∑

(a,r)∈Rn×R

cf
a,r|〈a, x〉 − r| + f ′(x) (x ∈ Rn),

where cf
a,r is the nonnegative number defined by sup{t ≥ 0 | f(x) − t|〈a, x〉 − r| is convex in x}

and f ′ is a polyhedral convex function such that cf ′
a,r ∈ {0, +∞} for any (a, r) ∈ Rn × R. A function

|〈a, x〉−r| of x is called a split function. Hirai derives Bandelt and Dress’ isolation index geometrically
by polyhedral split decomposition.
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We briefly explain Hirai’s results in [16, 17]. A function is said to be discrete if it is defined
on a finite set of points/vectors in Rn. Let X = {1, 2, . . . , n}. For A ⊆ X, we denote by χA the
characteristic vector of A defined by χA(i) = 1 if i ∈ A and χA(i) = 0 if i /∈ A. In particular, we
write χi instead of χ{i} for each i ∈ X.

A nonnegative dissimilarity map d can be regarded as a discrete function d on the point set
Λ = {χi +χj | i, j ∈ X} by the correspondence: d(χi +χj) ← d(i, j). By using a technique in discrete
convex analysis [23], we obtain the convex extension of the discrete function −d on Λ as follows:

(−d)(x) = sup
p∈Rn

{
〈p, x〉 | p(i) + p(j) ≤ −d(χi + χj) (i, j ∈ X)

}
(x ∈ Rn). (1.2)

This (−d) is a polyhedral convex function. Thus, by convex extension, we can interpret a dissimilarity
map as a geometric object. In the case that d is a metric, split functions appearing in the polyhedral
split decomposition of (−d) is restricted to those such that (a, r) = (χA − χB, 0) for some split
{A, B} of X. This type of split function can be regarded as a split metric. Moreover, in this case,
cf
a,r corresponds to the isolation index, namely, the polyhedral split decomposition of (−d) results in

Bandelt and Dress’ split decomposition of a metric as shown by (1.1).
In this paper, we derive the Buneman index in the same manner as Hirai, i.e., by polyhedral

split decomposition. The only difference between the derivations of the two indices is a discrete
function we compose. Our approach is summarized as follows. A metric d : X × X → R can be
regarded as a discrete function d on the point set Ω = {χi − χj | i, j ∈ X} by the correspondence:
d(χi − χj) = d(χj − χi) ← d(i, j). The convex extension of d on Ω is as follows:

d(x) = sup
p∈Rn

{
〈p, x〉 | p(i) − p(j) ≤ d(χi − χj) (i, j ∈ X)

}
(x ∈ Rn). (1.3)

This d is also a polyhedral convex function. Hence, the polyhedral split decomposition can be applied
to d with some additional modification of Hirai’s decomposition. As a result, split metrics also appear
as split functions in the decomposition of d and cf

a,r corresponds to the Buneman index. Therefore, we
conclude that Buneman’s method can be understood as a polyhedral split decomposition of metrics.

We here refer to the dual representation of a polyhedral split decomposition. From (1.2) and
(1.3), we realize each of (−d) and d is the support function of some polyhedron. For the support
function of a polyhedron P , the dual operation of the polyhedral split decomposition is to extract line
segments from P . As a result, P is decomposed as the Minkowski sum of a zonotope Z, which is the
Minkowski sum of line segments, and some polyhedron P ′; see [17, §2.3]. If P has a vertex, Z can be
uniquely defined and it is called the maximum zonotopic summand of P . This kind of decomposition
of polyhedra is originally due to Bolker [6]. Bandelt and Dress’ approach is actually based on a
similar perspective, that is, they propose the coherent decomposition of the polyhedron supported by
(−d). Hirai’s polyhedral split decomposition can be considered as an extension of Bolker’s result to
unbounded polyhedra in this context.

In Section 8, we introduce two interesting notions “split-decomposability” and “split fan” sug-
gested by Hirai. A discrete function g : K → R is split-decomposable if its convex extension g can
be decomposed as a sum of split functions and a linear function. The set of all split-decomposable
functions on K can be regarded as a simplicial fan of RK . The fan is called the split fan of K. Because
each split function corresponds to a hyperplane in Rn, a split-decomposable function makes a hyper-
plane arrangement. The hyperplane arrangement depends on the vector configuration as the domain
of the function. A geometric property of such a hyperplane arrangement and a vector configuration is
studied in [16, 17]. In Section 10, we consider a vector configuration Ξ such that Ξ contains the origin
0 and the vector in the opposite direction from the origin for each vector in Ξ \ {0}. By exploring
the geometric lattice of the hyperplane arrangement obtained from a split-decomposable function
on Ξ and the matroid associated with Ξ, we obtain a combinatorial characterization for the split
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fan of Ξ. The combinatorial characterization claims that the split fan depends only on the matroid
associated with Ξ. In the case of Ω, the split fan SF(Ω) coincides with a well-known complex: the
space of phylogenetic trees T. Our result designates that SF(Ω) is isomorphic to the direct product
of a simplex and T. We discuss this result in Remark 9.11.

The present paper is organized as follows. Section 2 introduces notions; X-trees and X-splits for
precise arguments about trees and tree metrics. In Section 3, we review dissimilarity maps, metrics,
and tree metrics to classify dissimilarity data. Sections 4 and 5 briefly introduce Buneman’s method
and Bandelt and Dress’ method, respectively. From Section 6 to Section 8, we introduce the polyhedral
split decomposition of polyhedral convex functions and its extension for discrete functions. Section
6 contains preliminaries about polyhedral convex functions. In Section 7, we discuss the polyhedral
split decomposition for more general type of polyhedral convex functions than in Hirai [16, 17]. In
Section 8, we obtain the split decomposition of discrete functions from the results in Section 7. In
Section 9, the split decomposition is applied to a metric which is regarded as a discrete function on
Ω, and the Buneman index is derived geometrically. In Section 10, we rephrase some results on the
split decomposition of discrete functions in terms of combinatorics, which is developed on matroids
that arise from vector configurations and hyperplane arrangements.

2 X-trees and X-splits

In this section, we introduce X-trees to state precisely the most fundamental theorem about trees;
Splits Equivalence theorem, on which Buneman’s method and Bandelt and Dress’ methods are based
to reconstruct a tree.

A tree T = (V, E) is a connected graph with no cycles. A vertex of T of degree one is called a
leaf.

Definition 2.1 (X-tree). An X-tree T is an ordered pair (T ; φ) of a tree T with vertex set V and
a map φ : X → V such that v ∈ φ(X) = {φ(x)|x ∈ X} holds for each v ∈ V of degree at most two.

Two X-trees T1 = (T1; φ1) and T2 = (T2; φ2), where T1 = (V1, E1) and T2 = (V2, E2), are
isomorphic if there exists a bijection ψ : V1 → V2 which induces a bijection between E1 and E2, and
satisfies φ2 = ψ ◦ φ1, in which case ψ is unique. We write T1

∼= T2 if T1 is isomorphic to T2.

Definition 2.2 (X-split). An X-split is a partition of X into two non-empty sets, i.e., an X-split
is a pair {A, B} of A and B such that ∅ 6= A ⊆ X, ∅ 6= B ⊆ X, A ∩ B = ∅ and A ∪ B = X.

Let T = (T ;φ) be an X-tree, and let e be an edge of T . Then, T\e = (V, E \ {e}) consists
of two connected components. If V1 and V2 denote the vertex sets of these two components. then
{φ−1(V1), φ−1(V2)} is an X-split. This X-split corresponds to e in T . We denote by Σ(T ) the
collection of X-splits that correspond to the edges of T .

Definition 2.3 (compatible). A pair of X-splits {A,B} and {C,D} are compatible if at least one
of the sets A ∩ C, A ∩ D, B ∩ C and B ∩ D is the empty set.

It is easy to verify that any two X-splits arising from a tree are compatible. The justification for
Definition 2.3 is the following central theorem due to Buneman [8].

Theorem 2.4 (Splits Equivalence theorem). Let Σ be a collection of X-splits. Then, there is
an X-tree T such that Σ = Σ(T ) if and only if the X-splits in Σ are pairwise compatible. Moreover,
if such an X-tree exists, then T is unique up to isomorphism.

Both Buneman’s and Bandelt and Dress’ methods are based on Splits Equivalence theorem. They
calculate the Buneman index and the isolation index, respectively, in order to mine X-splits from a
nonnegative dissimilarity map or metric. Several methods which construct a tree, graph or network
from such X-splits are known [12, 13, 19, 20].
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3 Dissimilarity maps, metrics and tree metrics

We distinguish a dissimilarity map, metric, and tree metric to clarify the applicable scopes of methods
to be described in Sections 4 and 5.

Definition 3.1 (dissimilarity map). A function d : X × X → R is said to be a dissimilarity map
on X, if it satisfies the following two conditions.

(1) d(i, i) = 0 for all i ∈ X, and

(2) d(i, j) = d(j, i) for all i, j ∈ X.

Definition 3.2 (metric). A function d : X × X → R is said to be a metric on X, if it satisfies the
following three conditions.

(1) d(i, i) = 0 for all i ∈ X,

(2) d(i, j) = d(j, i) ≥ 0 for all i, j ∈ X, and

(3) d(i, j) ≤ d(i, k) + d(k, j) for all i, j, k ∈ X.

The inequality in (3) is called the triangle inequality.

Let T = (V,E) be a tree and suppose that w : E → R is a map that assigns real-valued weights
to the edges of T . This edge-weighting of T induces the following map from V × V into R. For all
u, v ∈ V , let P (T ;u, v) denote the unique path in T from u to v. We define the map d(T ;w) : V ×V → R
by setting, for all u, v ∈ V ,

d(T ;w)(u, v) =

{∑
e∈P (T ;u,v) w(e) if u 6= v,

0 otherwise.

If T = (T ; φ) is an X-tree, we define the map d(T ;w) : X × X → R by setting d(T ;w)(x, y) =
d(T ;w)(φ(x), φ(y)) for all x, y ∈ X.

Definition 3.3 (tree metric). A function d : X ×X → R is said to be a tree metric on X, if there
exist an X-tree T = (T ; φ) and a positive real-valued weighting w : E(T ) → R++ such that, for all
x, y ∈ X,

d(x, y) = d(T ;w)(x, y)

= d(T ;w)(φ(x), φ(y)).

We say that (T ; w) is a tree metric representation of d.

We introduce some fundamental theorems about tree metrics.

Theorem 3.4 (cf. [26, Theorem 7.1.8]). Let d be a tree metric on X. Then, there is a unique
tree representation of d up to isomorphism.

Based on Theorem 3.4, many methods attempt to reconstruct the unique tree representation from
a tree metric and succeed in the reconstruction. The next well-known theorem is due independently
to Zaretskii [30], Simões-Pereira [27], and Buneman [8, 9]. The theorem connects the various results
on tree metrics in several areas, e.g., T-theory [14], discrete convex analysis [23] and tropical geometry
[25, 28].
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Theorem 3.5 (Tree Metric theorem). Let d be a nonnegative dissimilarity map on X. Then, d
is a tree metric on X if and only if d satisfies the four-point condition:

d(i, j) + d(k, l) ≤ max{d(i, k) + d(j, l), d(i, l) + d(j, k)}

for every four (not necessarily distinct) elements i, j, k, l ∈ X.

Split metrics in Definition 3.6 are the most fundamental metrics. Split metrics are also known as
cut metrics.

Definition 3.6 (split metric). The split metric ξ{A,B} : X ×X → {0, 1} associated with an X-split
{A, B} is defined as

ξ{A,B}(i, j) =

{
0 if i, j ∈ A or i, j ∈ B,

1 otherwise,

for all i, j ∈ X.

A tree metric can be represented as a sum of split metrics. It is easy to prove the next theorem.

Theorem 3.7. Let d be a tree metric on X, and let (T ; w) be the tree representation of d. Then d
can be represented as

d =
∑

σ∈Σ(T )

w(eσ)ξσ,

where eσ is the edge of T corresponding to σ ∈ Σ(T ).

4 Buneman’s method

We briefly introduce Buneman’s method [8], which utilizes the Buneman index.

Definition 4.1 (Buneman index). Let d : X ×X → R+ be a nonnegative dissimilarity map on X.
For an X-split {A, B}, the Buneman index is defined as follows:

bd
{A,B} =

1
2

min
u,v∈A,x,y∈B

{
min

{
d(u, x) + d(v, y),
d(u, y) + d(v, x)

}
− d(u, v) − d(x, y)

}
.

The Buneman index has important property as in Lemmas 4.2 and 4.3.

Lemma 4.2 (Buneman [8]). Let d : X×X → R+ be a nonnegative dissimilarity map on X, and let
{A, B} and {C, D} be X-splits. If bd

{A,B} > 0 and bd
{C,D} > 0, then {A,B} and {C, D} are compatible.

Lemma 4.3. Let d = d(T ;w) be a tree metric on X and let σ be an X-split. Then, bd
σ > 0 if and only

if σ is an X-split induced by T , in which case bd
σ = w(e) for the edge e of T corresponding to σ.

For a nonnegative dissimilarity map d : X × X → R+, let

Σb(d) = {σ | σ : an X-split, bd
σ > 0}.

By Lemma 4.2, Σb(d) is pairwise compatible, and therefore, by Splits Equivalence theorem, there
exists a unique X-tree Td whose associated set of X-splits is Σb(d). Let w : E(Td) → R++ be the
map defined by setting w(e) = bd

σe
for all e ∈ E(Td), where σe is the X-split of Td induced by e. Let

dB denote the tree metric d(Td;w). Then the following theorem holds.
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Theorem 4.4 (Buneman [8]). Let d : X × X → R+ be a nonnegative dissimilarity map. Then

(1) dB(x, y) ≤ d(x, y) for all x, y ∈ X, and

(2) dB(x, y) = d(x, y) for all x, y ∈ X if and only if d satisfies the four point condition, i.e., d is a
tree metric.

Corollary 4.5. Let d be a tree metric on X. Then d can be decomposed as

d =
∑

σ∈Σb(d)

bd
σ ξσ.

Furthermore, Σb(d) is pairwise compatible．

5 Bandelt and Dress’ method

We briefly introduce Bandelt and Dress’ method [1], which utilizes the isolation index.

Definition 5.1 (isolation index). Let d : X × X → R+ be a nonnegative dissimilarity map on X.
For an X-split {A, B}, the isolation index is defined as follows:

id{A,B} =
1
2

min
u,v∈A,x,y∈B



max





d(u, x) + d(v, y),
d(u, y) + d(v, x),
d(u, v) + d(x, y)



 − d(u, v) − d(x, y)



.

For a nonnegative dissimilarity map d : X × X → R+, let

Σi(d) = {σ | σ : an X-split, idσ > 0}.

In contrast to Buneman’s method, the collection of X-splits Σi(d) is not pairwise compatible.
Instead, Σi(d) is necessarily weakly compatible, that is, for any three X-splits {A1, B1}, {A2, B2} and
{A3, B3} in Σi(d), there exist no four points a0, a1, a2, a3 ∈ X with {a0, a1, a2, a3} ∩Ai = {a0, ai} for
i = 1, 2, 3.

The next lemma holds for the isolation index, analogously to Lemma 4.3 for the Buneman index.

Lemma 5.2. Let d = d(T ;w) be a tree metric on X and let σ be an X-split. Then, idσ > 0 if and only
if σ is an X-split induced by T , in which case idσ = w(e) for the edge e of T corresponding to σ.

Bandelt and Dress provide a decomposition of metrics with split metrics.

Theorem 5.3 (Bandelt and Dress [1]). Let d : X × X → R be a metric on X. Then d can be
decomposed as

d =
∑

σ∈Σi(d)

idσξσ + d′,

where d′ is a metric with id
′

σ′ = 0 for any X-split σ′. We call d′ the split-prime residue of d.

Since pairwise compatibility implies weak compatibility, the following theorem is obtained.

Theorem 5.4 (Bandelt and Dress [1]). Let d be a tree metric on X. Then d can be decomposed
as

d =
∑

σ∈Σi(d)

idσ ξσ.

Furthermore, Σi(d) is pairwise compatible．

Since, in general, Σi(d) is not pairwise compatible, it is impossible to represent d with a tree. For
those cases, several methods to construct a network, called a phylogenetic network, from Σi(d) are
proposed [12, 13, 19, 20].
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6 Polyhedral convex functions

This section is a preliminary to describe the polyhedral split decomposition of polyhedral convex func-
tions in Section 7. Most of notations follow Hirai [16, §2], and proofs of the lemmas and propositions
in this section can be found there.

Let Rn be the n dimensional Euclidean space with the standard inner product 〈·, ·〉. For x, y ∈ Rn,
let [x, y] denote the closed line segment between x and y. We refer to an (n − 1) dimensional affine
subspace of Rn as a hyperplane. In particular, for (a, r) ∈ Rn×R, we define a hyperplane Ha,r = {x ∈
Rn | 〈a, x〉 = r}, closed half spaces H−

a,r = {x ∈ Rn | 〈a, x〉 ≤ r} and H+
a,r = {x ∈ Rn | 〈a, x〉 ≥ r}, and

open half spaces H−−
a,r = {x ∈ Rn | 〈a, x〉 < r} and H++

a,r = {x ∈ Rn | 〈a, x〉 > r}. A set P ⊆ Rn is
said to be a polyhedron if P can be represented as an intersection of finitely many closed half spaces.
For a set S ⊆ Rn, we denote by convS, coneS, aff S, and linS the convex hull, the conical hull, the
affine hull, and the linear hull of S, respectively, i.e.,

convS =
{∑

t∈T

λtt | T ⊆ S : a finite set, λ ∈ RT
+,

∑

t∈T

λt = 1
}

,

coneS =
{∑

t∈T

λtt | T ⊆ S : a finite set, λ ∈ RT
+

}
,

aff S =
{∑

t∈T

λtt | T ⊆ S : a finite set, λ ∈ RT ,
∑

t∈T

λt = 1
}

,

linS =
{∑

t∈T

λtt | T ⊆ S : a finite set, λ ∈ RT
}

.

For a set S ⊆ Rn, let riS denote the relative interior of S and let intS denote the interior of S.
For a function f : Rn → R ∪ {+∞}, we define domf = {x ∈ Rn | f(x) < +∞}, which is the

effective domain of f , and epif = {(x, β) ∈ Rn × R | β ≥ f(x)}, which is the epigraph of f . The
subdifferential of a function f at point x ∈ domf is defined to be the set

∂f(x) = {p ∈ Rn | f(y) − f(x) ≥ 〈p, y − x〉 (∀y ∈ Rn)}.

The directional derivative of f at point x ∈ domf in a direction d ∈ Rn is defined by

f ′(x; d) = lim
t↘0

f(x + td) − f(x)
t

.

The indicator function of a set S ⊆ Rn is the function δS : Rn → R ∪ {+∞} defined by

δS(x) =

{
0 if x ∈ S,

+∞ if x /∈ S.

The conjugate of a function f : Rn → R∪{+∞} with domf 6= ∅ is the function f• : Rn → R∪{+∞}
defined by

f•(p) = sup
x∈Rn

{〈p, x〉 − f(x)} (p ∈ Rn). (6.1)

For a function f and a vector p ∈ Rn, f [−p] denotes the function defined by

f [−p](x) = f(x) − 〈p, x〉 (x ∈ Rn). (6.2)

A convex function f is said to be polyhedral if its epigraph epif is a polyhedron. A polyhedral
convex function f is represented as

f(x) = max
i∈I

{
〈pi, x〉 − qi

}
+

∑

j∈J

δH−
aj,bj

(x) (x ∈ Rn), (6.3)
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where {(pi, qi) | i ∈ I} and {(aj , bj) | j ∈ J} are finite subsets of Rn × R. The conjugate function f•

of a polyhedral function f is also polyhedral and f•• = f holds. A function f is said to be positively
homogeneous if f(λx) = λf(x) holds for λ ≥ 0 and x ∈ Rn. If f is positively homogeneous, then
f• = δ∂f(0) holds and hence f = (δ∂f(0))• is the support function of a polyhedron ∂f(0). We give
some fundamental properties of polyhedral convex functions in the following lemmas.

Lemma 6.1. The subdifferential of a polyhedral convex function f in (6.3) is given by

∂f(x) = conv{pi | i ∈ I, f(x) = 〈pi, x〉 − qi} + cone{aj | j ∈ J, x ∈ Haj ,bj
} (x ∈ domf).

Lemma 6.2. For a polyhedral convex function f , the directional derivative f ′(x; d) at point x ∈ domf
in direction d ∈ Rn satisfies

f ′(x; d) = sup{〈p, d〉 | p ∈ ∂f(x)}.

Lemma 6.3. Let f, g be polyhedral convex functions. For x ∈ domf ∩ domg and α, β ≥ 0, we have

∂(αf + βg)(x) = α∂f(x) + β∂g(x).

A polyhedral complex C is a finite collection of polyhedra such that

(1) if P ∈ C, all the faces of P are also in C, and

(2) the nonempty intersection P ∩ Q of two polyhedra P, Q ∈ C is a face of P and Q.

The dimension of C, denoted by dim C, is the largest dimension of a polyhedron in C. The underlying
set of C is the set |C| =

⋃
P∈C P . A polyhedral subdivision of a polyhedron P is a polyhedral complex

C with |C| = P . A polyhedral subdivision is pure if its inclusionwise maximal elements are of the
same dimension.

For a polyhedral convex function f , lower faces of epif are bijectively projected on domf , and
determine a polyhedral subdivision of domf , which is denoted by T (f). A polyhedral subdivision
constructed in this way is said to be regular.

Lemma 6.4. For a polyhedral convex function f , the polyhedral subdivision T (f) is given by

T (f) = {F ⊆ Rn | F = argminf [−p] for some p ∈ Rn}.

The polyhedral subdivisions T (f) and T (f•) are closely related. For F ∈ T (f) and a point
x ∈ riF , we define F • as

F • = ∂f(x).

By the definition of ∂f(x), we have F • ∈ T (f•). In fact, this map is well-defined and establishes a
one-to-one correspondence between T (f) and T (f•).

Proposition 6.5. For a polyhedral convex function f and F, G ∈ T (f), we have the followings (1) –
(4).

(1) F • is determined independently of the choice of x ∈ riF .

(2) F •• = F .

(3) (aff F − {x})⊥ = aff F • − {p} (x ∈ F, p ∈ F •).
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(4) F ⊆ G ⇔ F • ⊇ G•.

For two polyhedral subdivisions C1 and C2, the common refinement C1 ∧C2 is defined by C1 ∧C2 =
{F ∩ G | F ∈ C1, G ∈ C2, F ∩ G 6= ∅}. Note that C1 ∧ C2 is a polyhedral subdivision of |C1| ∩ |C2|. In
particular, for a finite set of hyperplanes H, we define the polyhedral subdivision A(H) of Rn as

A(H) =
∧

H∈H
{H, H+,H−}.

Namely, A(H) is the partition of Rn by hyperplanes in H.

Lemma 6.6. For two polyhedral convex functions f, g with domf ∩ domg 6= ∅, we have

T (f + g) = T (f) ∧ T (g).

7 Polyhedral split decomposition

We derive the polyhedral split decomposition of a polyhedral convex function f , mostly following the
paper of Hirai [16] except for the assumption that the effective domain of f is fully dimensional. The
reason why we exclude the assumption is that we attempt, in Section 9, to apply the polyhedral split
decomposition to a polyhedral convex function whose effective domain is not fully dimensional.

Definition 7.1 (split function). For a hyperplane H = Ha,b with ‖a‖ = 1, the split function
lH : Rn → R associated with H is defined by

lH(x) = |〈a, x〉 − b|/2 (x ∈ Rn).

By Lemma 6.1, the polyhedral subdivision induced by a split function is given as follows.

Proposition 7.2. Let lH be the split function associated with a hyperplane H = Ha,b with ‖a‖ = 1.
The subdifferential of lH is given by

∂lH =





{a/2} if x ∈ H++,

[−a/2, a/2] if x ∈ H,

{−a/2} if x ∈ H−−,

and polyhedral subdivisions T (lH) and T (l•H) are given by

T (lH) = {H,H+,H−},
T (l•H) = {{a/2}, {−a/2}, [−a/2, a/2]}.

For two polyhedral convex functions f, g : Rn → R, where domg = Rn, we define the quotient
[f : g] of f by g as

[f : g] = sup{t ∈ R+ | f − tg is convex}.

For a hyperplane H, we define the nonnegative number cH(f) as

cH(f) = [f : lH ].

Lemma 7.3. Let f : Rn → R ∪ {+∞} and g, h : Rn → R be polyhedral convex functions.
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(1) [f − sg : g] = [f : g] − s (0 ≤ s ≤ [f : g]).

(2) [f + sg : g] ≥ s (s ∈ R+).

(3) [f − sg : h] ≤ [f : h] (0 ≤ s ≤ [f : g]).

(4) [a1f [p1] : a2g[p2]] = (a1/a2)[f : g] (a1, a2 ∈ R++, p1, p2 ∈ Rn).

We observe the following facts, where H,H1 and H2 are hyperplanes:

(1) cH(f) = +∞ if and only if domf ⊆ H+ or domf ⊆ H−.

(2) If 0 < cH(f) < +∞, then {F ∈ T (f) | F ⊆ H} is a polyhedral subdivision of H ∩ domf .

(3) Suppose that H1 ∩ intdomf 6= ∅ and H2 ∩ intdomf 6= ∅. Then, H1 = H2 if and only if
H1 ∩ domf = H2 ∩ domf .

By the above observations and the polyhedrality of f , if dimdomf = n, the set of hyperplanes

H(f) = {H | 0 < cH(f) < +∞}

is finite. The basic idea for the polyhedral split decomposition is to subtract split functions associated
with hyperplanes in H(f) from a given polyhedral convex function successively. This idea is based on
the following proposition [17, Lemma 2.5], which leads us to Polyhedral Split Decomposition theorem.

Proposition 7.4. Let f : Rn → R ∪ {+∞} be a polyhedral convex function with dim domf = n.
Then, for H,H ′ ∈ H(f) and t ∈ [0, cH(f)], we have

cH′(f − tlH) =

{
cH(f) − t if H ′ = H,

cH′(f) otherwise.

One of the important results in Hirai [16, 17] is the following theorem.

Theorem 7.5 (Polyhedral Split Decomposition theorem [17, Theorem 2.2]). Let f : Rn →
R ∪ {+∞} be a polyhedral convex function with dimdomf = n. Then f can be decomposed as

f =
∑

H∈H(f)

cH(f)lH + f ′,

where f ′ : Rn → R∪{+∞} is a polyhedral convex function with cH′(f ′) ∈ {0,+∞} for any hyperplane
H ′. Furthermore this representation is unique.

If the effective domain of a polyhedral convex function f is not fully dimensional, Proposition 7.4
and thus Polyhedral Split Decomposition theorem cannot be applied to f because H(f) may be a
infinite set of hyperplanes. This fact follows from the next proposition [16, Proposition 2.20].

Proposition 7.6. A hyperplane H belongs to H(f) if and only if H satisfies the following conditions
(1) and (2).

(1) H++ ∩ domf 6= ∅ and H−− ∩ domf 6= ∅.

(2) {F ∈ T (f) | F ⊆ H} is a polyhedral subdivision of H ∩ domf .
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Although H(f) may be infinite, we notice from Proposition 7.6 that H(f) is determined by T (f)
rather than f . Moreover, the next proposition holds for any polyhedral convex function. Compare
this with Proposition 7.4.

Proposition 7.7. Let f : Rn → R∪ {+∞} be a polyhedral convex function. Then, for H, H ′ ∈ H(f)
and t ∈ [0, cH(f)], we have

H = H ′ ⇒ cH′(f − tlH) = cH′(f) − t,

H ∩ domf 6= H ′ ∩ domf ⇒ cH′(f − tlH) = cH′(f).

Our idea for the polyhedral split decomposition of f is basically the same as Hirai. Our additional
idea is to restrict H(f) to a set of hyperplanes such that there are no hyperplanes having the same
intersection with domf in the set. Technically speaking, we define the equivalence relation ∼ by
letting H ∼ H ′ if H ∩ domf = H ′ ∩ domf . Since a collection of representatives from the equivalence
classes has the desirable property, we decompose f by using the representatives. In general, we can
select representatives of H(f)/∼ arbitrarily. However, in the case that f is a metric as in Section 9,
we choose representatives having an interesting property to be described in Remark 9.10. We denote
the chosen representatives of H(f)/∼ by H¦(f). The representatives H¦(f) is finite because T (f)
is finite. Since H 6= H ′ implies H ∩ domf 6= H ′ ∩ domf for H,H ′ ∈ H¦(f), we can decompose f
uniquely with the hyperplanes in H¦(f) by Proposition 7.7. The main result in this section is the
following.

Theorem 7.8. Let f : Rn → R ∪ {+∞} be a polyhedral convex function. Then f can be decomposed
as

f =
∑

H∈H¦(f)

cH(f)lH + f ′, (7.1)

where f ′ : Rn → R∪{+∞} is a polyhedral convex function with cH′(f ′) ∈ {0,+∞} for any hyperplane
H ′. Furthermore this representation is unique.

The rest of this section is devoted to proving Propositions 7.6 and 7.7, In particular, we prove
Proposition 7.6 without the assumption on the full dimensionality of effective domains. The quotient
cH(f) of f by lH is written explicitly as in the next proposition [16, Proposition 2.18], [17, Lemma
2.7].

Proposition 7.9. Let f : Rn → R∪{+∞} be a polyhedral convex function, and let H be a hyperplane
in Rn. Then we have

cH(f) =
1
2

inf





f(x) − f(w)
lH(x)

+
f(y) − f(w)

lH(y)

∣∣∣∣∣
x ∈ domf ∩ H++,
y ∈ domf ∩ H−−,
{w} = [x, y] ∩ H



. (7.2)

Proposition 7.6 is proved by using the explicit expression (7.2). Proposition 7.6 and Lemma 7.10
characterize the relation between the hyperplanes H(f) and subdivision T (f).

The proof of Proposition 7.6. The only-if part is easily observed. Indeed, if there exists F ∈ T (f)
such that both F ∩ H++ and F ∩ H−− are nonempty, then f − tlH is not convex on F for any
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t > 0. We show the if part. Let nH be the unit normal vector of H. Obviously, cH(f) < +∞. For
x ∈ H++ ∩ domf, y ∈ H−− ∩ domf , and {w} = [x, y] ∩ H, we have

f(x) − f(w)
2lH(x)

+
f(y) − f(w)

2lH(y)
=

f(w + ‖x − w‖d) − f(w)
〈nH , d〉‖x − w‖

+
f(w − ‖y − w‖d) − f(w)

〈nH , d〉‖y − w‖

≥ f ′(w; d) + f ′(w;−d)
〈nH , d〉

=
sup{〈p, d〉 | p ∈ ∂f(w)} + sup{〈q,−d〉 | q ∈ ∂f(w)}

〈nH , d〉
,

where d = (x − y)/‖x − y‖ and the last equality follows from Lemma 6.2. Let Fw be the unique
minimal element of T (f) satisfying w ∈ riFw. By the condition (2) in Proposition 7.6, we have
Fw ⊆ H. By the pureness of {F ∈ T (f) | F ⊆ H}, there exists G ∈ T (f) such that Fw ⊆ G ⊆ H
and dimG = dim domf − 1. By Proposition 6.5 (4), we have

sup{〈p, d〉 | p ∈ ∂f(w)} + sup{〈q,−d〉 | q ∈ ∂f(w)} = sup{〈p, d〉 | p ∈ F •
w} + sup{〈q,−d〉 | q ∈ F •

w}
≥ sup{〈p, d〉 | p ∈ G•} + sup{〈q,−d〉 | q ∈ G•}.

Since x, y ∈ domf and aff G = H ∩ aff domf , G• is bounded in the directions d and −d. By
Proposition 6.5 (2), we have

aff G• = p0 + (aff G − {z})⊥

= p0 + (H ∩ aff domf − {z})⊥

for some z ∈ G and p0 ∈ Rn. Note that αnH and −βnH belong to (H ∩ aff domf − {z})⊥ for some
α, β > 0. Therefore,

sup{〈p, d〉 | p ∈ G•} + sup{〈q,−d〉 | q ∈ G•}
〈nH , d〉

≥ 〈αnH + p0, d〉 + 〈−βnH + p0,−d〉
〈nH , d〉

= α + β > 0.

Since the set {G ∈ T (f) | G ⊆ H, dimG = dim domf − 1} is finite, we obtain cH(f) > 0.

Lemma 7.10. Let H be a hyperplane, and let k be the dimension of domf .

(1) If cH(f) = 0, there exists a k-dimensional polyhedron F ∈ T (f) such that

(1.1) F ∩ H++ 6= ∅, F ∩ H−− 6= ∅, and

(1.2) the minimum of (7.2) is attained by any x ∈ F ∩ H++, y ∈ F ∩ H−−.

(2) If 0 < cH(f) < +∞, there exist k-dimensional polyhedra G1, G2 ∈ T (f) such that

(2.1) G1 ∪ G2 ∈ T (f − cH(f)lH) and

(2.2) the minimum of (7.2) is attained by any x ∈ G1 \ H, y ∈ G2 \ H.

Proof. (1) is immediate from Proposition 7.6. We show (2). Put g = f − cH(f)lH . By cH(g) = 0
and (1), there exists a k-dimensional polyhedron G such that G ∩ H++ 6= ∅ and G ∩ H−− 6= ∅.
We define G1 = G ∩ H+ and G2 = G ∩ H−. Then we have G1, G2 ∈ T (f) by Lemma 6.6 and
Proposition 7.2. Therefore, we obtain (2.1). For x ∈ G1 \ H, y ∈ G2 \ H and {w} = [x, y] ∩ H, we
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have ‖w − x‖/‖y − w‖ = lH(x)/lH(y) and lH(w) = 0. Since g is affine over G = G1 ∪ G2, we have
{g(w) − g(x)}/‖w − x‖ = {g(y) − g(w)}/‖y − w‖. Hence, it follows that

f(x) − f(w)
2lH(x)

+
f(y) − f(w)

2lH(y)

=
g(x) − g(w) + cH(f)lH(x) − cH(f)lH(w)

2lH(x)
+

g(y) − g(w) + cH(f)lH(y) − cH(f)lH(w)
2lH(y)

=cH(f).

This implies (2.2)

We are now ready to prove Proposition 7.7.

The proof of Proposition 7.7. The case H ′ = H is immediate from Lemma 7.3 (1). Hence we consider
the case that domf∩H 6= domf∩H ′. By Lemma 7.3 (3), it is sufficient to show cH′(f−tlH) ≥ cH′(f).
By the assumption that domf ∩H 6= domf ∩H ′ and Lemma 7.10, we may assume that the minimum
of (7.9) for H ′ is attained by some x, y ∈ H+ ∩ domf , or x, y ∈ H− ∩ domf , which implies that
lH is affine over [x, y]. Because ‖w − x‖/‖y − w‖ = lH′(x)/lH′(y) and {lH(w) − lH(x)}/‖w − x‖ =
{lH(y) − lH(w)}/‖y − w‖ for {w} = [x, y] ∩ H ′, we have

cH′(f − tlH) =
1
2

{
f(x) − tlH(x) − f(w) + tlH(w)

lH′(x)
+

f(y) − tlH(y) − f(w) + tlH(w)
lH′(y)

}

=
1
2

{
f(x) − f(w)

lH′(x)
+

f(y) − f(w)
lH′(y)

− t

{
lH(x) − lH(w)

lH′(x)
+

lH(y) − lH(w)
lH′(y)

}}

=
1
2

{
f(x) − f(w)

lH′(x)
+

f(y) − f(w)
lH′(y)

}

≥ cH′(f).

In the case of dimdomf = n, if H ∩ domf 6= H ′ ∩ domf , then H 6= H ′. Hence, a hyper-
plane with 0 < cH(f) < +∞ is uniquely determined from the subdivision T (f) by Proposition 7.6,
and thus Proposition 7.4 holds instead of Proposition 7.7. As a result, we obtain Polyhedral Split
Decomposition theorem. On the other hand, if domf is not full-dimensional, there exist infinitely
many hyperplanes having the same intersection with domf . Moreover, cH′(f − tlH) may not be
equal to cH′(f) for H, H ′ ∈ H(f) and t ∈ [0, cH(f)] despite that H 6= H ′. Thus, Polyhedral Split
Decomposition theorem needs some modification, and its modified version is Theorem 7.8.

We conclude this section by a remark, which is used in Section 8.

Remark 7.11. By Proposition 7.2, we have T (αlH) = {H, H+, H−} for α ∈ R++. Hence, by Lemma
6.6, corresponding to the decomposition (7.1), T (f) is decomposed as

T (f) = A(H(f)) ∧ T (f ′). (7.3)

8 Split decomposition of discrete functions

In this section, we describe the split decomposition of discrete functions defined on a finite set K
of points of Rn. The split decomposition of a discrete function is summarized as the polyhedral
split decomposition of the convex extension of the discrete function. Although Hirai [16, 17] assumes
Assumption 8.3, which guarantees the full-dimensionality of effective domains, some of his results
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do not require Assumption 8.3. Then we rearrange or restate the results and introduce the split
decomposition of discrete functions.

Let K be a finite set of points in Rn. For a function f : K → R, the homogeneous convex extension
of f is defined by

f(x) = inf
{ ∑

y∈K

λyf(y) |
∑

y∈K

λyy = x, λy ≥ 0 (y ∈ K)
}

+ δconeK(x) (x ∈ Rn). (8.1)

By definition, f is a positively homogeneous polyhedral convex function with domf = coneK.
By linear programming duality, f is also expressed as

f(x) = sup
{
〈p, x〉 | p ∈ Rn, 〈p, y〉 ≤ f(y) (y ∈ K)

}
(x ∈ Rn). (8.2)

Hence f is the support function of the polyhedron

Q(f) = {p ∈ Rn | 〈p, y〉 ≤ f(y) (y ∈ K)},

and Q(f) = ∂f(0). The polyhedral subdivision T (f) of coneK is the intersection of the normal fan
of Q(f) with coneK.

For a function g : Rn → R, we denote the restriction of g to K by gK . A function f : K → R is
said to be convex-extensible if it satisfies f

K = f . The set of convex-extensible functions is recognized
as a fundamental class in discrete convex analysis [23].

We give a fundamental property of discrete functions and their homogeneous convex extensions.

Lemma 8.1. Let f : K → R be a convex-extensible discrete function. F ∈ T (f) is represented as
cone{y | y ∈ K, 〈p, y〉 = f(y)} for some p ∈ Q(f). Furthermore f(x) = fF∩K(x) for x ∈ F .

The next proposition [17, Theorem 3.2] leads us to Discrete Split Decomposition theorem.

Proposition 8.2. For f : K → R, H ∈ H(f), and t ∈ [0, cH(f)], we have

f = tlH + f − tlKH .

For a discrete function f : K → R, the next assumption guarantees the full dimensionality of
domf = coneK.

Assumption 8.3. K ⊆ Rn is a finite set such that aff K = U for some hyperplane U not containing
the origin of Rn.

Under Assumption 8.3, the next theorem follows from Polyhedral Split Decomposition theorem
and Proposition 8.2.

Theorem 8.4 (Discrete Split Decomposition theorem [17, Theorem 3.2]). A discrete func-
tion f : K → R satisfying Assumption 8.3 can be decomposed as

f =
∑

H∈H(f)

cH(f)lKH + f ′,

where f ′ : K → R satisfies cH′(f ′) ∈ {0,+∞} for any linear hyperplane H ′. Furthermore, we have

f =
∑

H∈H(f)

cH(f)lH + f ′.

If, in addition, f is convex-extensible, then f ′ is also convex-extensible.

15



Before we give Discrete Split Decomposition theorem without Assumption 8.3, we observe the
relation between K and H(f). Let f be a convex-extensible discrete function on K. Note that since
T (f) is the intersection of the normal fan of Q(f) with coneK, each hyperplane H ∈ H(f) is linear,
i.e., H = Ha,0 for some a ∈ Rn. From the regularity of the subdivision T (f) induced by f , we notice
possible hyperplanes appearing in H(f) is limited by the point set K. Motivated by this observation,
we make the next definition.

Definition 8.5 (K-admissible). A set of linear hyperplanes H is K-admissible if H satisfies

(A1) H ∩ riconeK 6= ∅ for each H ∈ H, and

(A2) cone(F ∩ K) = F ∩ coneK for each F ∈ A(H).

Note that K-admissibility is determined solely by K. Under Assumption 8.3, K-admissibility can
be restated as in [17, §3.2].

Lemma 8.6. For f : K → R, the set of hyperplanes H(f) is K-admissible.

Proof. (A1) is clearly satisfied. We show (A2). The inclusion (⊆) is obvious. We show (⊇). By (7.3)
and Lemma 8.1, we have

F ∩ coneK =
⋃

{G | G ∈ T (f), G ⊆ F}

=
⋃

{cone(G ∩ K) | G ∈ T (f), G ⊆ F}

⊆ cone(K ∩
⋃

{G | G ∈ T (f), G ⊆ F})

= cone(F ∩ K)

Note that if a set of linear hyperplanes H is K-admissible, then any subset of H is also K-
admissible. So we define the set of linear hyperplanes HK as

HK = {H | H : a linear hyperplane, {H} is K-admissible}.

By Lemma 8.6, H(f) ⊆ HK holds for any f : K → R. Therefore, from algorithmic viewpoint,
we restrict HK to representatives, denoted by H¦

K , of HK/∼ rather than H(f), and we determine
H¦(f) ⊆ H¦

K , that is, H¦(f) = H(f) ∩ H¦
K . Without Assumption 8.3, a discrete function f can be

decomposed uniquely by using the split functions associated with hyperplanes in H¦(f). Thus, we
obtain the following theorem.

Theorem 8.7. A discrete function f : K → R can be decomposed as

f =
∑

H∈H¦(f)

cH(f)lKH + f ′,

where f ′ : K → R satisfies cH′(f ′) ∈ {0,+∞} for any linear hyperplane H ′. Furthermore, we have

f =
∑

H∈H¦(f)

cH(f)lH + f ′.

If, in addition, f is convex-extensible, then f ′ is also convex-extensible.

The next theorem implies that the discrete split decomposition can be carried out without explicit
construction of convex extensions; the quotient cH(f) can be calculated without the construction.
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Theorem 8.8 (Hirai [17, Theorem 3.4]). For a discrete function f : K → R and a hyperplane
H ∈ HK , let c̃H(f) be defined by

c̃H(f) =
1
2

inf





f(x) − fK∩H(w)
lH(x)

+
f(y) − fK∩H(w)

lH(y)

∣∣∣∣∣
x ∈ K ∩ H++,
y ∈ K ∩ H−−,
{w} = [x, y] ∩ H



.

Then we have

cH(f) = max{0, c̃H(f)}.

Here, we introduce two interesting notions “split-decomposability” and “split fan”. A function
f ∈ RK is said to be split-decomposable if f−

∑
H∈H¦(f) cH(f)lKH is (the restriction of) a linear function.

The split fan of K is the fan consisting of all split-decomposable functions on K. Split-decomposable
functions are closely related to the totally split-decomposable metrics defined by Bandelt and Dress
[1] and tree metrics in the case of K = Ω as mentioned in Section 1. We explain the relation between
split-decomposable functions on K and K-admissible sets of hyperplanes.

We begin by showing a fundamental lemma about the homogeneous convex extensions of discrete
functions.

Lemma 8.9. Let f : K → R be a discrete function. Then we have

cf + (〈q, ·〉)K = cf + 〈q, ·〉 + δconeK (c ∈ R+, q ∈ Rn).

Proof. If c = 0, then it is immediate from the definition (8.1). If c > 0, by (8.2), we have

cf + (〈q, ·〉)K(x) = sup
{
〈p, x〉 | p ∈ Rn, 〈p, y〉 ≤ cf(y) + 〈q, y〉 (y ∈ K)

}

= sup
{
c〈(p − q)/c, x〉 + 〈q, x〉 | p ∈ Rn, 〈(p − q)/c, y〉 ≤ f(y) (y ∈ K)

}

= c sup
{
〈p′, x〉 | p′ ∈ Rn, 〈p′, y〉 ≤ f(y) (y ∈ K)

}
+ 〈q, x〉

= (cf + 〈q, ·〉)(x).

In the third equality, we define p′ = (p − q)/c.

Note that the quotient of cf + (〈q, ·〉)K by a split function depends only on cf . Hence, the discrete
split decomposition of cf + (〈q, ·〉)K is determined by cf . The next proposition can be proved in the
same way as [16, Proposition 3.10], [17, Proposition 3.5].

Proposition 8.10. For H ⊆ H¦
K and α ∈ RH

++, let f =
∑

H∈H αH lKH . Then the following conditions
(a), (b) and (c) are equivalent.

(a) f =
∑

H∈H αH lH + δconeK .

(b) H = H¦(f) and αH = cH(f) for H ∈ H.

(c) H is K-admissible.

By Lemma 8.9 and Proposition 8.10, every split-decomposable function is constructed from a
K-admissible set of hyperplanes, i.e., the sum of a positive combination of (the restrictions of) the
split functions associated with the hyperplanes and (the restriction of) a linear function. Thus, split-
decomposable functions are also determined by K through the K-admissible sets of hyperplanes since
the K-admissibility depends on K. Moreover, we obtain the next proposition, which can be verified
in the same way as [16, Proposition 3.12], [17, Proposition 3.6].
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Proposition 8.11. Let H ⊆ H¦
K be a K-admissible set of hyperplanes. Then the set of vectors

{lKH | H ∈ H} ∪ {eK
i | 1 ≤ i ≤ n} is linearly independent in RK , where ei : Rn → R is the ith

coordinate function defined by ei(x) = xi for x ∈ Rn.

By Proposition 8.11, the split fan of K can be naturally regraded as a simplicial fan of RK and it
is obviously isomorphic to the set of K-admissible sets of hyperplanes in H¦

K as an abstract simplicial
complex. We give a combinatorial characterization for split fans in Section 10.

9 The Buneman index

In this section, we derive the Buneman index by discrete split decomposition.

9.1 Hirai’s split decomposition of nonnegative dissimilarity maps

We briefly introduce Hirai’s split decomposition of nonnegative dissimilarity maps.
Let X = {1, 2, . . . , n}. A nonnegative dissimilarity map is naturally regarded as a discrete function

defined on the set Λ = {χi + χj | i, j ∈ X} by the correspondence:

d(χi + χj) ← d(i, j) (i, j ∈ X).

Lemma 9.1. A discrete function f : Λ → R with f(2χi) = 0 for all i ∈ X is convex-extensible if and
only if it satisfies f(χi + χj) ≤ 0 for all i, j ∈ X.

Hence it is natural to regard a nonnegative dissimilarity map d : Λ → R as a discrete concave
function on Λ. Since aff Λ = {x ∈ Rn |

∑
i∈X x(i) = 2}, we can apply Discrete Split Decomposition

theorem to −d. The convex extension of −d is as follows:

(−d)(x) = inf
{ ∑

i,j∈X

λij(−d)(χi + χj) |
∑

i,j∈X

λij(χi + χj) = x, λij ≥ 0 (i, j ∈ X)
}

+ δconeΛ(x)

= sup
{
〈p, x〉 | p ∈ Rn, 〈p, χi + χj〉 ≤ −d(χi + χj) (i, j ∈ X)

}
(x ∈ Rn). (9.1)

From (9.1), (−d) is the support function of the polyhedron

Q(−d) =
{
p ∈ Rn | 〈p, χi + χj〉 ≤ −d(χi + χj) (i, j ∈ X)

}
.

By discrete split decomposition, Hirai extended the results of Bandelt and Dress’ split decompo-
sition of nonnegative dissimilarity maps by using a partial X-split, which is a pair {A,B} such that
∅ 6= A,B ⊆ X, A ∩ B = ∅, A ∪ B ⊆ X.

9.2 Deriving the Buneman index

We consider the finite set

Ω = {χi − χj | i, j ∈ X}.

A metric γ is regarded as a discrete function defined on the set Ω by the correspondence:

γ(χi − χj) = γ(χj − χi) ← γ(i, j) (i, j ∈ X).

Lemma 9.2. A discrete function f : Ω → R with f(0) = 0 is convex-extensible if and only if f
satisfies f(χi − χj) ≤ f(χi − χk) + f(χk − χj) for all i, j, k ∈ X.
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d(k, j)
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Figure 1: The homogeneous convex extension of a metric γ on X = {i, j, k}.

Proof. Suppose that f is convex-extensible. Since (χi − χj) = (χi − χk) + (χk − χj) for i, j, k ∈ X,
the convex-extensibility indicates f(χi − χj) ≤ f(χi − χk) + f(χk − χj).

Next suppose that f satisfies, for all i, j, k ∈ X, f(χi − χj) ≤ f(χi − χk) + f(χk − χj), which we
call the triangle inequality for convenience. For a point χu −χv ∈ Ω, we consider the following linear
program:

minimize
∑

i,j∈X

λijf(χi − χj)

subject to
∑

i,j∈X

λij(χi − χj) = χu − χv,

λij ≥ 0 (i, j ∈ X).

We interpret this linear program as a problem on the complete graph Kn each edge of which is two-
way directed, that is, has an edge of the opposite direction. For the first constraint, an arbitrary
representation of χu − χv as a nonnegative combination of other points in Ω is regarded as a union
of directed paths from u to v with nonnegative weights. The objective value for the representation
is equal to the nonnegative weighted sum of the lengths of the directed paths. Hence, f(χu − χv) is
equal to the minimum of such objective values. The triangle inequalities imply that objective values
decrease by taking a shortcut along the directed paths. Therefore, the triangle inequalities suffice the
convex-extensibility of f .

By Lemma 9.2, metrics are convex-extensible on the set Ω. The homogeneous convex extension
of γ is defined by

γ(x) = inf{
∑

i,j∈X

λijγ(χi − χj) |
∑

i,j∈X

λij(χi − χj) = x, λij ≥ 0 (i, j ∈ X)} + δconeΩ(x)

= sup{〈p, x〉 | p ∈ Rn, 〈p, χi − χj〉 ≤ γ(χi − χj) (i, j ∈ X)} (x ∈ Rn). (9.2)

The effective domain of γ is aff Ω = {x ∈ Rn |
∑

i∈X x(i) = 0}(= coneΩ = linΩ). From (9.2), γ is the
support function of the polyhedron

Q(γ) = {p ∈ Rn | 〈p, χi − χj〉 ≤ γ(χi − χj) (i, j ∈ X)}.

Figure 1 (c) illustrates the homogeneous convex extension of a metric γ on X = {i, j, k}. Since X
on a linear space as in Figure 1 (a), we can project {(χi−χj , d(i, j)) | i, j ∈ X} to 3-dimensional space
as shown in Figure 1 (b). Although γ is a polyhedral convex function, its effective domain domγ
is not fully dimensional. Then we define representatives H¦

Ω as mentioned in Section 8. We begin
by revealing HΩ := {H | H : a linear hyperplane, {H} : Ω-admissible}. We denote H

(χA−χB)/2
√

|X|,0
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by H{A,B} and all-one vector by 1. For x ∈ Rn, we define supp+x = {i | x(i) > 0, i ∈ X} and
supp−x = {i | x(i) < 0, i ∈ X}. Hereafter, coefficients for scaling vectors to unit ones are omitted for
simplicity.

Proposition 9.3. HΩ = {Hα(χA−χB)+β1,0 | {A,B} : an X-split, α, β ∈ R}.

Proof. Because 〈β1, x〉 = 0 for any x ∈ aff Ω, the term β1 of a coefficient vector can be neglected.
Hence, it suffices for showing (⊇) that each H{A,B} satisfies the conditions (A1) and (A2) in Definition
8.5. (A1) is clearly satisfied since 0 ∈ riconeΩ and 0 ∈ H{A,B}. We show (A2). Obviously, coneΩ ∩
H{A,B} ⊇ cone(Ω ∩ H{A,B}). To show (⊆), we take an arbitrary x ∈ coneΩ ∩ H{A,B}, which can be
represented as

x =
∑

χi−χj∈H++
{A,B}

λij(χi − χj) +
∑

χk−χl∈H{A,B}

λkl(χk − χl) +
∑

χu−χv∈H−−
{A,B}

λuv(χu − χv), (9.3)

where λst ≥ 0 for all (s, t) ∈ X × X. If there is a term λuv(χu − χv) with χu − χv ∈ H−−
{A,B} and

λuv > 0, there necessarily exists a term λij(χi − χj) with χi − χj ∈ H++
{A,B} and λij > 0 because

x ∈ H{A,B}. By the definition of the set Ω, there exist χi − χv and χu − χj in coneΩ. Moreover, we
have χi − χv, χu − χj ∈ H{A,B} since i, v ∈ A, j, u ∈ B.

We modify the representation (9.3) as follows. If λij ≥ λuv,

λij(χi − χj) + λuv(χu − χv) = λuv(χi − χv) + λuv(χu − χj) + (λij − λuv)(χi − χj)

and, if λij < λuv,

λij(χi − χj) + λuv(χu − χv) = λij(χi − χv) + λij(χu − χj) + (λuv − λij)(χu − χv).

Either modification gives another representation of x, and the sum of the coefficients in the first term
of RHS of (9.3);

∑
χi−χj∈H++

{A,B}
λij and the sum of the coefficients in the third term of RHS of (9.3);

∑
χu−χv∈H−−

{A,B}
λuv are smaller than before, respectively. In the case where there is a term λij(χi−χj)

with χi − χj ∈ H++
{A,B} and λij > 0, we can the same modifications as above. We can repeat these

modifications unless
∑

χi−χj∈H++
{A,B}

λij = 0 and
∑

χu−χv∈H−−
{A,B}

λuv = 0, and the two values decrease

monotonically in the repetition. Moreover, Ω is a finite set. Therefore, the repetition terminates and
the first and third terms of RHS of (9.3) is not needed to represent x, which means x is represented
as a nonnegative combination of points in Ω ∩ H{A,B}, namely, x ∈ cone(Ω ∩ H{A,B}).

Next we show (⊆). Let Ha,0 ∈ HΩ. By Ω-admissibility, Ha,0 satisfies that coneΩ ∩ Ha,0 =
cone(Ω∩Ha,0). Since dim(coneΩ∩Ha,0) = n−2, Ω∩Ha,0 contains n−2 linearly independent vectors
such as χi − χj for some i, j ∈ X. Note that (i) if χi − χj is contained in Ω ∩ Ha,0, then χj − χi is
also contained in Ω ∩ Ha,0, and (ii) if χi − χj and χj − χk are contained in Ω ∩ Ha,0, then χi − χk is
also contained in Ω ∩ Ha,0. Hence, by row and column permutations, we may assume, without loss
of generality, that a coefficient vector a satisfies

[
I − cn−1 − cn

]
a = 0, (9.4)

where I is (n − 2) × (n − 2) unit matrix and two column vectors cn−1, cn are 0-1 vectors such that
supp+cn−1 ∩ supp+cn = ∅ and supp+cn−1 ∪ supp+cn = X. In the case that supp+cn−1 = X or
supp+cn = X, it follows from the equation (9.4) that a = β1 for some β ∈ R. In the case that
supp+cn−1 6= X and supp+cn 6= X, we define A := supp+cn−1 and B := supp+cn. Then, {A,B}
is obviously an X-split. Moreover, because of the equation (9.4), vector a can be represented as
a = ξχA + ηχB = ξ−η

2 (χA − χB) + ξ+η
2 1 for some ξ, η ∈ R.
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It is obvious that, for all α, β ∈ R,

H{A,B} ∩ domγ = Hα(χA−χB)+β1,0 ∩ domγ.

Then we define the hyperplanes:

H¦
Ω := {HχA−χB ,0 | {A,B} : an X-split}.

Proposition 9.4. For each H ∈ HΩ, there exists a hyperplane H¦ such that

H ∩ domγ = H¦ ∩ domγ

in H¦
Ω. Moreover, for all H, H ′ ∈ H¦

Ω, H ∩ domγ = H ′ ∩ domγ if and only if H = H ′.

By Proposition 9.4, H¦
Ω constitutes representatives of HΩ/∼. Hence, Theorem 8.7 can be applied

to γ and γ is decomposed uniquely with hyperplanes in H(γ) ∩ H¦
Ω. Moreover, H(γ) ∩ H¦

Ω provides
an interesting result described in Remark 9.10.

Before applying Theorem 8.7 to γ, we show the main result in this paper. For H ∈ H¦
Ω, cH(γ) is

represented by Buneman index.

Theorem 9.5. Let γ : X ×X → R be a metric, and let H{A,B} be the hyperplane associated with an
X-split {A,B}. Then we have

cH{A,B}(γ) =
√

|X|max{0, bγ
{A,B}},

where bγ
{A,B} is the Buneman index for the X-split {A,B}.

Proof. We apply Theorem 8.8 to γ. c̃H{A,B}(γ) is equal to the minimum of

γ(χi − χk) − γΩ∩H{A,B}(w)
2lH{A,B}(χi − χk)

+
γ(χl − χj) − γΩ∩H{A,B}(w)

2lH{A,B}(χl − χj)

where i, j ∈ A, k, l ∈ B, and {w} = H{A,B} ∩ [χi − χk, χl − χj ]. Hence, we have

c̃H{A,B}(γ) =

√
|X|
2

min
i,j∈A,k,l∈B

{
γ(χi − χk) + γ(χl − χj) − 2γΩ∩H{A,B}

(χi − χk + χl − χj

2

)
,

γ(χi − χl) + γ(χk − χj) − 2γΩ∩H{A,B}
(χi − χl + χk − χj

2

)}
.

Since γ satisfies the triangle inequality, we obtain

γΩ∩H{A,B}
(χi − χk + χl − χj

2

)
=

1
2
(γ(χi − χj) + γ(χl − χk))

and

γΩ∩H{A,B}
(χi − χl + χk − χj

2

)
=

1
2
(γ(χi − χj) + γ(χk − χl)).

Thus, we have

c̃H{A,B}(γ) =

√
|X|
2

min
i,j∈A,k,l∈B

{
γ(i, k) + γ(l, j) − γ(i, j) − γ(l, k), γ(i, l) + γ(k, j) − γ(i, j) − γ(k, l)

}

=

√
|X|
2

min
i,j∈A,k,l∈B

{
min

{
γ(i, k) + γ(j, l),
γ(i, l) + γ(j, k)

}
− γ(i, j) − γ(k, l)

}

=
√

|X| bγ
{A,B}.

Therefore, we have cH{A,B}(γ) = max{0, c̃H{A,B}(γ)} =
√

|X|max{0, bγ
{A,B}}.
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As a result of the discrete split decomposition of metrics on Ω, the next theorem is obtained.

Theorem 9.6. Let γ : X × X → R be a metric. Then γ can be decomposed as

γ =
∑

σ∈Σb(γ)

bγ
σξσ + γ′, (9.5)

where γ′ : X × X → R is a metric with bγ′

σ′ ≤ 0 for any X-split σ′.

Proof. By applying Theorem 8.7 with H¦
Ω to γ, we obtain

γ =
∑

H∈H(γ)∩H¦
Ω

cH(γ)lΩH + γ′.

From Theorem 9.5, it is immediate that Σb(γ) = {{A,B} | {A,B} : an X-split,H{A,B} ∈ H(γ)∩H¦
Ω}

and it follows that

γ =
∑

σ∈Σb(γ)

√
|X| bγ

σlΩHσ
+ γ′.

It is clear that
√

|X| lΩHσ
is the split metric ξσ on Ω. As a result, we obtain (9.5). In addition, by

Theorem 8.7, γ′ is convex-extensible on Ω. Hence, γ′ is a metric on X by Lemma 9.2.

By the property of the Buneman index as in Lemma 4.2 and Proposition 8.10, we obtain the
following propositions.

Proposition 9.7. A metric γ is a tree metric if and only if γ is decomposed as

γ =
∑

σ∈Σb(γ)

√
|X| bγ

σlHσ + δconeΩ.

Proposition 9.8. Let H be a subset of H¦
Ω, and let Σ = {{A,B} | {A,B} : an X-split,H{A,B} ∈ H}.

Then, H is Ω-admissible if and only if Σ is pairwise compatible.

Figure 2 illustrates the polyhedral split decomposition of a metric on X with |X| = 3. It is known
that every 3-point metric can be represented by split metrics, i.e., γ′ = 0 in the decomposition (9.5).

= ++

Figure 2: The polyhedral split decomposition of a metric on X = {i, j, k}.

Remark 9.9. Our approach can be applied to an asymmetric distance which may take negative
values. We denote by γ(i, j) the distance from i to j for all i, j ∈ X. We do not necessarily assume
that γ(i, j) ≥ 0 and γ(i, j) = γ(j, i) for all distinct i, j ∈ X. Note, however, that γ(i, i) = 0 for all
i ∈ X. This γ can be regarded as a discrete function on the set Ω by the correspondence:

γ(χi − χj) ← γ(i, j) (i, j ∈ X).
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Since γ is assumed to be convex-extensible on Ω, by Lemma 9.2, γ should satisfy γ(χi − χj) ≤
γ(χi−χk)+γ(χk−χj) for all i, j, k ∈ X, which implies γ satisfies the “directional” triangle inequality,
i.e., γ(i, j) ≤ γ(i, k) + γ(k, j) for all i, j, k ∈ X. This γ is said to be an asymmetric distance.

For an asymmetric distance γ, the homogeneous convex extension of γ is represented as the same
as in (9.2). Then, we use H(γ)∩H¦

Ω to decompose γ. The quotient cH{A,B}(γ) for H{A,B} ∈ H(γ)∩H¦
Ω

can be expressed as cH{A,B}(γ) = max{0, c̃H{A,B}(γ)} where

c̃H{A,B}(γ) =

√
|X|
2

min
i,j∈A,k,l∈B

{
γ(χi − χk) + γ(χl − χj) − γ(χi − χj) − γ(χl − χk),

γ(χi − χl) + γ(χk − χj) − γ(χi − χj) + γ(χk − χl)
}

=

√
|X|
2

min
i,j∈A,k,l∈B

{
γ(i, k) + γ(l, j) − γ(i, j) − γ(l, k), γ(i, l) + γ(k, j) − γ(i, j) − γ(k, l)

}
.

Remark 9.10. The tight span of a metric space is the central concept in T-theory [14]. For a metric
d, the polyhedron P (d) ⊆ Rn is defined by

P (d) =
{
p ∈ Rn | 〈p, χi + χj〉 ≥ d(χi + χj) (i, j ∈ X)

}
.

By the definition (9.1), (−d) is the support function of −P (d) = Q(−d). The tight span of metric d
is the subset of P (d) defined as

T (d) = {p ∈ Rn | ∀i ∈ X, p(i) = sup
j∈X

{d(i, j) − p(j)}}. (9.6)

By the definition (9.6), T (d) is the set of all minimal elements in P (d) relative to the order p ≤
q ⇐⇒ p(i) ≤ q(i) for every i ∈ X. The tight span was originally constructed by Isbell in [21] and
rediscovered by Dress in [14]; see also [15] and [18]. It is known that T (d) coincides with the union
of all bounded faces of P (d) [11, Lemma 1].

The tight span T (d) expresses combinatorial properties of a finite metric space (X, d) in geometric
terms. For example, a metric is a tree metric if and only if its tight span is a tree [10]. In this remark,
we describe that, if d is a tree metric, we obtain essentially the same set as the tight span T (d) by
our decomposition of d as in Theorem 9.6.

By Bandelt and Dress’ coherent decomposition [1] or Hirai’s split decomposition of a metric d [17,
Remark 4.10], P (d) is decomposed as

P (d) = Z(d) + P (d′),

where Z(d) is given by

Z(d) =
∑

{A,B}∈Σi(d)

id{A,B}([χA − χB, χB − χA]/2 + χX/2).

If the split-prime residue d′ is zero, we have P (d) = Z(d) + Rn
+. In this case, the tight span T (d) is

the union of the faces of Z(d) whose normal cone contains negative vectors.
By our decomposition of a metric d, Q(d) is decomposed as

Q(d) = Z ′(d) + Q(d′′),

where Z ′(d) is given by

Z ′(d) =
∑

{A,B}∈Σb(d)

bd
{A,B}([χA − χB, χB − χA]/2).
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If the split-prime residue d′′ is zero, i.e., d is a tree metric, we have Q(d) = Z ′(d) + {a1 | a ∈ R}.
Moreover, in this case, we have Σb(d) = Σi(d) and bd

{A,B} = id{A,B} for each {A,B} ∈ Σb(d). Therefore,
Z ′(d) is a translation of Z(d), and, analogously to Z(d), the set of faces of Z ′(d) whose normal cone
contains negative vectors is a tree as the graph consisting of the 1-skeletons of the set. In fact, it is
known that if d is a tree metric, the finite metric space (X, d) can be isometrically embedded into
(T (d), ‖ · ‖∞) [10].

Figure 3 illustrates P (d) and Q(d) for a 3-point metric d. Since every 3-point metric can be
represented only by split metrics, Z ′(d) is a translation of Z(d).

1

(a) (b)

Figure 3: (a) P (d) (pink) and Z(d) (blue and cyan) for a metric d on X = {i, j, k} and (b) Q(d)
(pink) and Z ′(d) (blue and cyan).

Remark 9.11. We reveal the relation between the split fan of Ω and the space of phylogenetic
trees. Recall that each cone of the split fan consists of split-decomposable functions on Ω. Obviously,
the split fan is a simplicial fan isomorphic to the set of Ω-admissible sets of hyperplanes in H¦

Ω as
an abstract simplicial complex. More basically, the split fan is isomorphic to the set of pairwise
compatible sets of X-splits.

The set of pairwise compatible sets of X-splits was studied by Billera, Holmes, and Vogtmann
in [4]. We begin by reviewing their study. An X-split {A,B} with min{|A|, |B|} = 1 is called a
trivial X-split. Every trivial X-split is compatible for any X-split. Then, we exclude the trivial
X-splits and consider a simplicial complex T as follows. The vertex set of T consists of all X-splits
{A, B} such that A and B have cardinality at least two. We first define a graph whose vertex set
corresponds to non-trivial X-splits. Two vertices {A,B} and {C,D} of the graph are connected by
an edge if {A,B} and {C, D} are compatible. The space of phylogenetic trees T is now defined as the
flag complex associated with the graph, that is, each face of T corresponds to a clique of the graph.
Thus, for every face F of T, any pair {{A,B}, {C, D}} ⊆ F is compatible.

Clearly, the set of trivial X-splits is isomorphic to (n− 1)-simplex, i.e., a simplex with n vertices.
The set of pairwise compatible sets of X-splits is isomorphic to the direct product of (n− 1)-simplex
and T, and thus so is the split fan of Ω.

10 Combinatorics of split fans

In this section, we discuss the combinatorics of split fans and give a combinatorial characterization of
a K-admissible set of hyperplanes for some particular K, though Definition 8.5 describes a geometric
characterization of a K-admissible set of hyperplanes. By the combinatorial characterization, we
obtain Proposition 9.8 without Lemma 4.2 and Proposition 8.10. Moreover, the characterization
proposes K-admissibility as a new concept for matroids that arise from vector configurations and
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hyperplane arrangements. This concept is closely related to adjoints of a matroid, which is described
in Remark 10.19.

Consider a matroid MΞ associated with a set of vectors Ξ = {ξ1, ξ2, . . . , ξk} ⊆ Rn such that Ξ
contains the origin 0 and the vector in the opposite direction from the origin for each vector in Ξ\{0}.
(Without loss of generality, we may assume that Ξ = −Ξ = {−ξ1,−ξ2, . . . ,−ξk}.) Note that Ω in
Section 9 is such a set of vectors. The ground set of MΞ is Ξ and the independent sets of MΞ consist
of all linearly independent subsets of Ξ. Let r be the rank function of MΞ. For U ⊆ Ξ, the rank
r(U) of U is defined as the number of linearly independent vectors in U . In the matroid sense, a
hyperplane of MΞ is a maximal subset of Ξ having rank r(Ξ) − 1.

In this section, we say that a hyperplane H is Ξ-admissible if {H} is Ξ-admissible, and so “a set of
Ξ-admissible hyperplanes” means that each hyperplane in the set is Ξ-admissible. Another matroid
emerges from a hyperplane arrangement H consisting of Ξ-admissible hyperplanes. In particular, we
are interested in the intersection poset L(H) of the hyperplane arrangement, which will be a geometric
lattice.

The combinatorial characterization is based on the fact that each hyperplane of MΞ can be
identified with a Ξ-admissible hyperplane H, which is described in Proposition 10.13. Given Ξ-
admissible hyperplanes H, we can consider the intersection poset L(H) of hyperplanes H of MΞ

corresponding to H analogously to the intersection poset L(H). Note that each element of L(H) is a
subset of vectors in Ξ. Then, the characterization is as follows.

Theorem 10.1. Let H ⊆ HΞ be a set of Ξ-admissible hyperplanes, and let H be the set of hyperplanes
of MΞ corresponding to H. Then, H is Ξ-admissible if and only if L(H) is a geometric lattice and
the height of U is equal to r(Ξ) − r(U) for each U in L(H).

We briefly apply Theorem 10.1 to the set Ω. It is easy to see that MΩ arises from the two-way
directed complete graph Kn = (X,E). A flat of a matroid is an intersection of hyperplanes of the
matroid. It is known that each flat of MΩ can be identified with a partition of X. In particular, each
hyperplane of MΩ corresponds to a bipartition of X, i.e., an X-split. Let H1 and H2 be hyperplanes of
MΩ. If the set of Ω-admissible hyperplanes corresponding to H1 and H2 is Ω-admissible, the partition
H1 ∩ H2 must be composed of three blocks by Theorem 10.1. This implies that X-splits H1 and H2

are compatible. Although the pairwise compatibility implies Ω-admissibility, we show it in Section
10.4 since it needs preparation. As a result, we can obtain Proposition 9.8 as a corollary of Theorem
10.1. This is much simpler than the arguments for obtaining Proposition 9.8 in Section 9.

We review the lattice of flats of a matroid in Section 10.1 and hyperplane arrangements in Section
10.2.

10.1 Lattice of flats

Let M be a matroid having ground set E and rank function r : 2E → Z+. Let cl be the function 2E

into 2E defined by

cl(U) = {u ∈ E | r(U ∪ {u}) = r(U)} (U ⊆ E).

This function is called the closure operator of M and cl(U) is called the closure of U in M . If
U = cl(U), then U is called a closed set or flat of M . In particular, a flat U having r(U) = r(E) − 1
is called a hyperplane. We denote the set of all hyperplanes of M by HM .

The flats of a matroid has a special structure. For a matroid M , let LM denote the set of flats of
M ordered by inclusion.

Proposition 10.2 (cf. [24]). The partially ordered set LM forms a lattice with meet “ ∧” and join
“ ∨” operations given by

U ∧ V = U ∩ V and U ∨ V = cl(U ∪ V )
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for all flats U and V of M .

In fact, LM is a rather special type of lattice. To characterize these matroid lattices, we shall
require some more terminology. Let (P,≤) be a finite partially ordered set. If u < v in P but there
is no element w of P such that u < w < v, then we say that v covers u in P . A chain in P from u0

to un is a subset {u0, u1, . . . , un} of P such that u0 < u1 < · · · < un. The length of such a chain is
n. The chain is maximal if ui covers ui−1 for all i ∈ {1, 2, . . . , n}. If for every pair {u, v} of elements
of P with u < v, all maximal chains from u to v have the same length, then P is said to satisfy the
Jordan-Dedekind chain condition.

If the poset P has an element v such that v ≤ u for all u in P , then v is called the zero of P and
denoted by 0. Clearly, the zero of P is unique if it exists. Similarly, if P has an element w such that
w ≥ u for all u in P , then w is called the one of P and denoted by 1. The one of P is unique if it
exists.

Now suppose that P is a partially ordered set having the zero. An element u is called an atom of
P if u covers 0. The height h(v) of an element v of P is the maximum length of a chain from 0 to v.
Thus, in particular, the atoms of P are precisely the elements of height one.

If a poset P is a finite lattice, P has the zero and the one. In particular, for a matroid M , the
zero of LM is cl(∅), while the one is the ground set of M . A finite lattice L is called semimodular if
it satisfies the Jordan-Dedekind chain condition and, for every pair u and v of elements of L,

h(u) + h(v) ≥ h(u ∨ v) + h(u ∧ v).

A finite lattice L is called atomic if every element is a join of atoms. A geometric lattice is a finite
atomic semimodular lattice.

The following theorem motivates the lattice-theoretical approach to matroids.

Theorem 10.3 (Birkhoff [3]). A lattice L is geometric if and only if it is the lattice of flats of a
matroid.

By the next proposition, for the lattice LM of flats of a matroid M , the height h(U) of a flat U
corresponds with r(U), where r is the rank function of M .

Proposition 10.4 (cf. [24]). If U and V be flats of M and U ⊆ V , then every maximal chain of
flats from U to V has length r(V ) − r(U).

10.2 Hyperplane arrangements

In this paper, a finite hyperplane arrangement A is a finite set of affine hyperplanes in Rn. A
hyperplane arrangement A is central if

⋂
H∈A H 6= ∅. Equivalently, A is a translation of a linear

hyperplane arrangement.

Definition 10.5 (intersection poset). Let A be a hyperplane arrangement in Rn, and L(A) be the
set of all nonempty intersections of hyperplanes in A, including Rn itself as the intersection over the
empty set. Define x ≤ y in L(A) if x ⊇ y (as subsets of Rn). In other word, L(A) is partially ordered
by reverse inclusion. We call L(A) the intersection poset of A.

Note that Rn ∈ L(A) satisfies x ≥ Rn for all x ∈ L(A). Hence, Rn is the zero of the intersection
poset L(A).

A graded poset is defined as a poset P with a function g : P → Z from P to the chain of all
integers such that

(1) x > y implies g(x) > g(y), and
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(2) if x covers y, then g(x) = g(y) + 1.

Any graded poset satisfies the Jordan-Dedekind chain condition.

Lemma 10.6 (cf. [29]). Let A be a hyperplane arrangement in Rn. Then the intersection poset
L(A) is graded by height equal to codimension, namely, for each x ∈ L(A),

h(x) = codimx = n − dimx.

We give some more terminology about lattices. A meet-semilattice is a poset P for which any two
elements have a meet. Dually, a join-semilattice is a poset for which any two elements have a join.

Lemma 10.7 (cf. [29]). A finite meet-semilattice L with a unique maximal element 1 is a lattice.
Dually, a finite join-semilattice L with a unique minimal element 0 is a lattice.

If
⋂

H∈A = ∅, then we adjoin ∅ to L(A) as the one, so that the augmented intersection poset
L′(A) is obviously a join-semilattice by definition. Since L′(A) has the zero, L′(A) is a lattice by
Lemma 10.7. Hence, the next proposition claims that L(A) is a meet-semilattice.

Proposition 10.8 (cf. [29]). Let A be a hyperplane arrangement in Rn. Then L(A) is a meet-
semilattice. In particular, every interval [x, y] of L(A) is a lattice. Moreover, L(A) is a lattice if and
only if A is central.

In fact, the following lemma and theorem are well-known.

Lemma 10.9. Let A be a central hyperplane arrangement in Rn. Then L(A) is a semimodular
lattice.

By definition, L(A) is clearly atomic, from which the next theorem follows.

Theorem 10.10 (cf. [29]). Let A be a central hyperplane arrangement in Rn. Then L(A) is a
geometric lattice.

We close this subsection by introducing an isomorphism of posets. A function θ : P → Q from a
poset P to a poset Q is called isotone if it satisfies

x ≤ y ⇒ θ(x) ≤ θ(y). (10.1)

An isotone function which has an isotone two-sided inverse is called an isomorphism. In other word,
an isomorphism between two poset P and Q is a bijection which satisfies (10.1) and also

θ(x) ≤ θ(y) ⇒ x ≤ y.

Two posets P and Q are called isomorphic, in symbols, P ∼= Q, if and only if there exists an
isomorphism between them.

For a central hyperplane arrangement A, its intersection poset is isomorphic to the lattice of flats
of the matroid associated with the normal vectors to the hyperplanes in A.

10.3 Combinatorial characterization of a K-admissible set of hyperplanes

In this subsection, we consider a matroid MΞ associated with a set of vectors Ξ = {ξ1, ξ2, . . . , ξk} ⊆ Rn

such that Ξ contains the origin and Ξ = −Ξ. For U ⊆ Ξ, the rank r(U) of U is defined as the number
of linearly independent vectors in U . The next lemma is immediate from the definition of r.

Lemma 10.11. Let U be a subset of Ξ. Then we have r(U) = dim linU .
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We are interested in a relation between flats of MΞ and intersections of Ξ-admissible hyperplanes.
To distinguish linear spaces in Rn and flats of MΞ, we use small letters for the former and capital
letters for the latter.

For simplification, we assume:

Assumption 10.12. linΞ = aff Ξ is fully dimensional, i.e., dimaff Ξ = n.

This assumption makes some equalities simple, for example, lin(h ∩ Ξ) = h for a Ξ-admissible
hyperplane h. Without this assumption, we have lin(h ∩ Ξ) = h ∩ linΞ. In fact, the statements in
this subsection hold for the set Ω with slight modification.

Proposition 10.13.

(1) For a hyperplane H of matroid MΞ, linH is Ξ-admissible.

(2) For a Ξ-admissible hyperplane h in Rn, h ∩ Ξ is a hyperplane of MΞ.

Proof. (1) Let H be a hyperplane of MΞ. Obviously, linH satisfies the condition (A1) in Definition
8.5. Moreover, we have

cone(linH ∩ Ξ) = linH, and coneΞ ∩ linH = linH.

Hence, linH is Ξ-admissible.
(2) Let h be a Ξ-admissible hyperplane. By Ξ-admissibility, we have cone(h ∩ Ξ) = coneΞ ∩ h.

Because lin(cone(h ∩ Ξ)) = lin(h ∩ Ξ) and lin(coneΞ ∩ h) = h, it follows that lin(h ∩ Ξ) = h. Since
dimh = n − 1, we have r(h ∩ Ξ) = dim lin(h ∩ Ξ) = n − 1. In addition, h ∩ Ξ is obviously maximal.
Thereby, h ∩ Ξ is a hyperplane of MΞ.

By Proposition 10.13, there is a one-to-one correspondence between Ξ-admissible hyperplanes
and hyperplanes of MΞ. And then, we consider a poset of flats induced by a set of Ξ-admissible
hyperplanes.

Definition 10.14. Let H ⊆ HMΞ
be a set of hyperplanes in MΞ. We define L(H) as the set of all

intersections of hyperplanes in H and ground set Ξ. Define U ≤ V in L(H) if U ⊇ V . We call L(H)
the intersection poset of H.

Note that L(H) is a poset of flats since the intersection of flats is also a flat. In fact, L(H) is a
lattice. Note that L(H) is distinct from the lattice of flats of a matroid described in Section 10.1.

Lemma 10.15. The intersection poset L(H) is a lattice.

Proof. Since every flat in L(H) contains the origin, we have
⋂

H∈L(H) H 6= ∅. Hence, any two elements
U, V in L(H) have a join U ∨ V = U ∩ V , that is, L(H) is a join-semilattice. Because L(H) has 0,
which is the ground set Ξ, L(H) is a lattice by Lemma 10.7.

For a matroid MΞ and its rank function r, we define a function r∗ by setting r∗(U) = r(Ξ)−r(U) =
n − r(U) for each U ⊆ Ξ. Some authors call r∗ the corank function of MΞ. The next lemma is
immediate from Lemma 10.11.

Lemma 10.16. Let U be a subset of Ξ. Then we have r∗(U) = codimlinU .

The next proposition allows us to consider only linear spaces in the intersection poset of Ξ-
admissible hyperplanes.
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Proposition 10.17. Let H ⊆ HΞ be a set of Ξ-admissible hyperplanes. Then, H is Ξ-admissible if
and only if each F ∈ A(H) such that F ∪ −F is a linear subspace in Rn satisfies the condition (A2)
in Definition 8.5.

Proof. The only-if part is obvious. We show the if part. For G ∈ A(H), let A′ be the set of all
faces F ∈ A(H) such that F ⊆ G and F ∪ −F is a linear subspace in Rn. Because G ∈ A(H) is
a cone, any element x ∈ G can be represented as a nonnegative combination of elements belonging
to some face in A′. Since every F ∈ A′ satisfies the condition (A2), any element x ∈ F can be
expressed as a nonnegative combination of elements in Ξ ∩ F ⊆ Ξ ∩ G. Therefore, any element of
x ∈ G ∩ coneΞ(= G) can be represented as a nonnegative combination of Ξ ∩ G, which results in
coneΞ ∩ G = cone(G ∩ Ξ).

Let H ⊆ HΞ be a set of Ξ-admissible hyperplanes. If there exists F ∈ A(H) such that F ∪−F is
a linear subspace in Rn and F does not satisfy the condition (A2), there exists u ∈ L(H) such that
cone(Ξ ∩ u) ( coneΞ ∩ u since Ξ = −Ξ.

We are prepared to prove Theorem 10.1, which is restated in the following because L(H) is
obviously atomic.

Theorem 10.1. Let H ⊆ HΞ be a set of Ξ-admissible hyperplanes, and let H ⊆ HMΞ
be the set of

hyperplanes corresponding to H. Then, H is Ξ-admissible if and only if L(H) is a semimodular lattice
graded by r∗.

Theorem 10.1 lets us conclude that a Ξ-admissible set of hyperplanes depends only on the matroid
MΞ. If H is a Ξ-admissible set of hyperplanes, the corresponding lattice L(H) is graded by r∗. Hence,
the opposite (or, order dual) lattice of L(H) can be naturally embedded into the lattice of flats of
MΞ.

The proof of Theorem 10.1. First, we show the only-if part. Since H is central, L(H) is a semimodular
lattice by Lemma 10.9. Hence, it suffices for showing semimodularity that L(H) is isomorphic to L(H).
Let U be a flat in L(H). By Definition 10.14 and Proposition 10.13, U can be represented as follows:

U =
⋂

h∈H′

(Ξ ∩ h) = Ξ ∩ (
⋂

h∈H′

h)

for some H′ ⊆ H. Note that H′ is not necessarily unique while
⋂

h∈H′ h is unique. It is clear that⋂
h∈H′ h is in L(H). The map S : U 7→

⋂
h∈H′ h is obviously injective map from L(H) to L(H).

Let u be a linear space in L(H). By Definition 10.5, u can be represented as follows:

u =
⋂

h∈H′

h

for some H′ ⊆ H. By Ξ-admissibility of H,

coneΞ ∩ u = cone(Ξ ∩ u) = cone(Ξ ∩ (
⋂

h∈H′

h)) = cone(
⋂

h∈H′

(Ξ ∩ h)).

Because lin(coneΞ ∩ u) = u and lin(cone(
⋂

h∈H′(Ξ ∩ h))) = lin(
⋂

h∈H′(Ξ ∩ h)), we have

u = lin(
⋂

h∈H′

(Ξ ∩ h)).

Since Ξ∩h is a hyperplane of MΞ for each h ∈ H′, it follows that
⋂

h∈H′(Ξ∩h) is a flat and in L(H).
The map T : u 7→

⋂
h∈H′(Ξ ∩ h) is obviously injective map from L(H) to L(H).
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Therefore, the map S is a bijective map from L(H) to L(H), and the map T is a bijective map
from L(H) to L(H). It is obvious that S and T are isomorphisms, that is, L(H) is isomorphic to
L(H).

We show that L(H) is graded by the corank of MΞ. Let U be a flat of MΞ, and let u = S(U) ∈
L(H). We denote the height of L(H) and that of L(H) by k and k′, respectively. By Lemma 10.6,
we have k′(u) = codimu. From the definition of the map S, it follows that U = Ξ ∩ u. Since
linU = lin(Ξ ∩ u) = lin(cone(Ξ ∩ u)) = lin(coneΞ ∩ u) = u by Ξ-admissibility, we have linU = u.
Thus, we have r∗(U) = codim(linU) = codimu by Lemma 10.16. Since L(H) is isomorphic to L(H),
we have k(U) = k′(u) = codimu = r∗(U).

Next we show the if part. Suppose that H is not Ξ-admissible. By Proposition 10.17, there exists
u ∈ L(H) such that

cone(Ξ ∩ u) ( coneΞ ∩ u.

Since lin(cone(Ξ ∩ u)) = lin(Ξ ∩ u) and lin(coneΞ ∩ u) = u, we have

codimlin(Ξ ∩ u) > codimu.

Note that Ξ ∩ u is a flat of MΞ. By Lemma 10.6 and Lemma 10.16,

k(Ξ ∩ u) = r∗(Ξ ∩ u) = codimlin(Ξ ∩ u) > codimu = k′(u). (10.2)

Suppose that u =
∨

h∈H′ h =
⋂

h∈H′ h for some H′ ⊆ H and that u is one of the lowest elements which
do not satisfy the condition (A2) in Definition 8.5. Note that H′ has cardinality at least two since
each h ∈ H is Ξ-admissible. Without loss of generality, we may assume that k′(u) > k′(

∨
h∈H′\{h′} h)

for any h′ ∈ H′. We choose a hyperplane h0 ∈ H′. Since h0 ∧ (
∨

h∈H′\{h0} h) = Rn, it follows from
the semimodularity of L(H) that

k′(
∨

h∈H′\{h0}

h) + k′(h0) ≥ k′(Rn) + k′(u). (10.3)

Because k′(u) > k′(
∨

h∈H′\{h0} h), the inequality (10.3) gives k′(u) = k′(
∨

h∈H′\{h0} h) + 1. Moreover,
by the inequality (10.2), we have k(Ξ∩u) > k′(

∨
h∈H′\{h0} h)+1. Since u is one of the lowest elements

which violate the condition (A2) in Definition 8.5, we know that

k(
∨

h∈H′\{h0}

(Ξ ∩ h)) = k′(
∨

h∈H′\{h0}

h).

From the semimodularity of L(H), it follows that

k(
∨

h∈H′\{h0}

(Ξ ∩ h)) + k(Ξ ∩ h0) ≥ k(Ξ) + k(Ξ ∩ u).

Therefore, we have

k′(
∨

h∈H′\{h0}

h) + 1 ≥ k(Ξ ∩ u) > k′(
∨

h∈H′\{h0}

h) + 1,

which is a contradiction.

Remark 10.18. Similar arguments can be made for a vector set, say Ξ̌, satisfying Assumption 8.3,
that is, an acyclic point configuration in terms of oriented matroids. In this case, a hyperplanes of MΞ̌

such that its linear hull contains a facet of convΞ̌ does not correspond to a Ξ̌-admissible hyperplane.
Moreover, the intersection poset L(H) of hyperplanes H of MΞ̌ is not necessarily a lattice. However,
L̂(H) = L(H)∪{1}, i.e, the poset L(H) with the maximal element 1 adjoined is a lattice. The lattice
L̂(H) is isomorphic to the intersection poset L(H) of the corresponding Ξ̌-admissible hyperplanes H
and graded by r∗ if H is Ξ̌-admissible.
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Remark 10.19. We here introduce adjoints, which are “duals” of a matroid in the lattice-theoretical
sense. For a lattice L, we denote the opposite lattice by Lop. An adjoint of a matroid M is defined
as a matroid Mad of the same rank, such that there is an order preserving embedding

Lop ↪→ Lad

which identifies the coatoms of L (hyperplanes of M) with the atoms of Lad. Here we think of M
and Mad as simple matroids with geometric lattices L and Lad, respectively [5]. In general, adjoints
are not unique and they may also fail to exist, which begets the problem whether an adjoint exists
or not and to find it if it exists. However, a geometric lattice L such that its elements correspond
to the set of linear subspaces spanned by a finite set of points has an adjoint, i.e., a matroid arising
from the finite set of points. If a set of hyperplanes H is Ξ-admissible, L(H) is such a geometric
lattice. This intimates that L(H) can be embedded into the lattice LMΞ

of flats of MΞ because LMΞ

includes the lattice of an adjoint of the matroid having L(H). Note that, however, our aim is to find
a Ξ-admissible set of hyperplanes instead of adjoints. Roughly speaking, we have known an adjoint
Mad and we are seeking M .

10.4 Application to the set Ω

We apply Theorem 10.1 to the set Ω. The matroid MΩ arises from the two-way directed complete
graph Kn = (X, E). Moreover, every flat of MΩ can be identified as a partition of X as follows. If
F is a flat of MΩ, we denote by πF the partition of X in which i and j are in the same block if and
only if the vector χi − χj is in F . This correspondence F 7→ πF determines a map from the set of
flats of MΩ into the set of partitions of X. Moreover, this map is a bijection. Indeed, the map is
an isomorphism from LMΩ

to the set of partitions of X, where, for partitions U and V , we define
U ≤ V if U is a refinement of V , that is, every block of U is contained in a block of V . We call the
set of partitions the partition lattice of X. It is easy to see that hyperplanes of MΩ correspond to
bipartitions of X, i.e., X-splits. Hence, Proposition 9.3 follows from Proposition 10.13.

In order to obtain Proposition 9.8, we show the following lemma.

Lemma 10.20. Let H be a set of hyperplanes of MΩ, and let Σ be the set of X-splits corresponding
to H. Then, L(H) is a semimodular lattice graded by r∗ if and only if Σ is pairwise compatible.

Proof. We first show the only-if part. Let {H1,H2} ⊆ H. For H1 and H2, the semimodularity of
L({H1,H2}) graded by r∗ implies that r∗(H1 ∨ H2) = r∗(H1 ∩ H2) = 2. In terms of “partition”,
this condition means that the partition corresponding to H1 ∩ H2 is composed of three blocks, i.e.,
the partitions corresponding to H1 and H2 are compatible. For this reason, Σ must be pairwise
compatible.

Next we show the if part. We regard L(H) as the lattice of partitions of X. By definition, r∗(U)
is the number of blocks in U minus one for each U ∈ L(H). We begin by exhibiting that the height
of U is equal to r∗(U) for each U ∈ L(H). This follows from showing that r∗(V ) = r∗(U) + 1 in the
case that V covers U . Since V covers U , there exists an X-split H ∈ H such that U ∨H = V , where
U ∨H is the common refinement of U and H. Moreover, by pairwise compatibility of H, the number
of blocks in U ∨ H is one more than that of U , that is, r∗(V ) = r∗(U) + 1.

We then show the semimodularity of L(H). Let U =
∨

H∈H′ H ∈ L(H) for a subset H′ ⊆ H. Then,
by pairwise compatibility of H, we have r∗(U) ≤ |H′|. In particular, equality holds for some H′′ ⊆ H,
i.e., U =

∨
H∈H′′ H and r∗(U) = |H′′|.

Let V =
∨

H′∈H′ H ′ for some H′ ⊆ H with r∗(V ) = |H′|, and let W =
∨

H′′∈H′′ H ′′ for some
H′′ ⊆ H with r∗(W ) = |H′′|. We choose H′ and H′′ such that |H′ ∩ H′′| is maximal for those subsets
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of H. Since V ∨ W =
∨

H∈H′∪H′′ H, we have

r∗(V ∨ W ) ≤ |H′ ∪ H′′|
= |H′| + |H′′| − |H′ ∩ H′′|
= r∗(V ) + r∗(W ) − |H′ ∩ H′′|.

Then, we show that V ∧W =
∨

H∈H′∩H′′ H. Indeed, it follows from this that r∗(V ∧W ) ≤ |H′ ∩H′′|,
and the semimodularity of L(H) is immediate. Because V ∧ W =

∨
Y ≤V,Y ≤W Y and H ≤ V and

H ≤ W for each H ∈ H′ ∩ H′′, we have V ∧ W ≥
∨

H∈H′∩H′′ H. Suppose that the inequality is strict,
that is, V ∧W >

∨
H∈H′∩H′′ H, which means that V ∧W is a finer partition of X than

∨
H∈H′∩H′′ H.

Hence, there exists an X-split H0 ∈ H \ (H′ ∪ H′′) such that V ∧ W ≥ (
∨

H∈H′∩H′′ H) ∨ H0. Since
H0 ≤ V and H0 ≤ W , there exist H′ ∪ H′′ ∪ {H0} ⊆ Ĥ ⊆ H such that V =

∨
H∈Ĥ H and r∗(V ) = |Ĥ|

and H′ ∪ H′′ ∪ {H0} ⊆ Ȟ ⊆ H such that W =
∨

H∈Ȟ H and r∗(W ) = |Ȟ|. This contradicts the
maximality of |H′ ∩ H′′|.

As a result, we can obtain Proposition 9.8 as a corollary of Theorem 10.1. This is simpler than
the arguments for obtaining Proposition 9.8 in Section 9.

Figure 4 shows the set Ω with X = {i, j, k, l}. In Figure 4 (a), we denote by st the vector χs −χt

for each s, t ∈ X. Figure 4 (b) illustrates one of the hyperplanes of MΩ by the red points and (c)
shows (the intersection of) the corresponding hyperplane (with convΩ) in Rn by the blue region.
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Figure 4: (a) convΩ, (b) a hyperplane of MΩ as shown by the red points, and (c) the hyperplane
corresponding to the hyperplane in (b) as shown by the blue region.

Figure 5 illustrates the intersection poset of a hyperplane arrangement, and Figure 6 shows the
lattice of flats generated by joining the hyperplanes of MΩ corresponding to the hyperplanes in Figure
5. Because the lattice in Figure 6 is isomorphic to the lattice in Figure 5 and is graded by the corank
of MΩ, the set of hyperplanes in Figure 5 is Ω-admissible by Theorem 10.1.

Figure 7 illustrates (a) a lattice of flats and (b) the intersection poset of the corresponding hy-
perplanes. Although the lattice (a) is isomorphic to the intersection poset (b), the lattice (a) is not
grade by the corank of MΩ. Therefore, the set of hyperplanes in (b) is not Ω-admissible by Theorem
10.1. Indeed, the maximal element of the lattice (b) does not satisfy the condition (A2) in Definition
8.5.

11 Conclusion

We have shown that Buneman’s method can be understood as the polyhedral split decomposition
of the convex extension of a metric which is regarded as a discrete function on Ω = {χi − χj |
i, j ∈ X}. In [26], Semple and Steel say that Theorem 4.4 can be interpreted as the continuity of
Buneman’s method and the property is important and remarkable. We have provided Theorem 9.6
as a comprehensible explanation about the property in geometric terms. Moreover, we have given
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Figure 5: An intersection poset L(H).

Figure 6: The lattice L(H) generated by joining the hyperplanes of MΩ corresponding to the the
hyperplanes in Figure 5.

a combinatorial characterization for split fans by exploring the geometric lattice of the hyperplane
arrangement obtained from a split-decomposable function and the matroid associated with the vector
configuration as the domain of the function. The combinatorial characterization claims that the split
fan of the vector configuration depends only on the matroid. In the case of Ω, the split fan SF(Ω)
coincides with a well-known complex: the space of phylogenetic trees T. Our result designates that
SF(Ω) is isomorphic to the direct product of a simplex and T.

Several modifications for Buneman’s method are proposed [2, 7, 22]. It would be interesting to
provide geometric interpretation to them.
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Figure 7: (a) a lattice of flats and (b) the intersection poset of the corresponding hyperplanes.
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