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Abstract

Convergence theorems are established with mathematical rigour for
the differential quotient difference with shift (dqds) algorithm for the
computation of singular values of bidiagonal matrices. Global conver-
gence is guaranteed under a fairly general assumption on the shift, and
the asymptotic rate of convergence is 1.5 for the Johnson bound shift.
Numerical examples support these theoretical results.

1 Introduction
Every n x m real matrix A with rank(A) = r can be decomposed into
A=UxvT

with suitable orthogonal matrices U € R™™ and V € R"™*™ where

D Or m— .
Y= ( Onrr OZTT‘J:L*T ) , D = diag(oy,...,0.),
and o1 > --- > 0, > 0. The notation O; means a k x [ zero matrix. The
nonzero diagonal elements oq,...,0, are the singular values of A, which

play important roles in application areas. Accordingly, numerical methods
for computing singular values are of great importance in practice.

The singular values of A are equal to the square roots of the eigenvalues
of AT A and hence an iterative computation is inevitable for singular values.
Usually, the given matrix A is first transformed to a bidiagonal matrix to
reduce the overall computational cost. In the case of n > m, for example,



the matrix A can be transformed, with appropriate orthogonal matrices

UeR™™ and V € R™*™_ ag

-r .~ (B
UTAV = ( Onmn )

where B € R™*™ is an upper bidiagonal matrix. The singular values of B
coincide with those of A.

Most of the current methods for computing singular values of diagonal
matrices are based on the QR algorithm [2]. In 1990 Demmel and Kahan
were awarded the second SIAM prize in numerical linear algebra for their
improvement on the QR algorithm [3]. Their algorithm is open to the public
as DBDSQR in LAPACK [1, 10].

In relation to the study of this algorithm, the differential quotient dif-
ference (dqd) algorithm was proposed by Fernando—Parlett [7] in 1994, with
subsequent introduction of shifts to accelerate the convergence. This al-
gorithm is now called the differential quotient difference with shift (dqds)
algorithm. The dqds algorithm has received majority support due to its
accuracy, speed and numerical stability, and is implemented as DLASQ in
LAPACK. The dqds is integrated into Multiple Relatively Robust Repre-
sentations (MR?) algorithm [4, 5, 6].

In contrast to remarkable practical success, a number of fundamental
theoretical questions still remain unanswered with the dqds algorithm. First,
no convergence theorem has been established with full mathematical rigour
when shifts are incorporated, although the dqd algorithm, a version of the
dqds without employing shifts, has been analyzed successfully in [7]. Second,
no satisfactory analysis of the convergence rate is available. It is certainly
true that locally quadratic or cubic convergence has been discussed in [7]
under certain assumptions, but the assumptions are not plausible and it is
not clear (at least to the present authors) how the assumptions are to be
satisfied.

The objective of this paper is to establish two convergence results for the
dqds algorithm with mathematical rigour. The first result (Theorem 4.1)
shows that the dqds always converges as far as the shift satisfies a certain
natural condition. The second result (Theorem 5.1) shows that, if the shift
is determined by the Johnson bound [9], the asymptotic rate of convergence
is 1.5.



2 Notation

Assume that the given real matrix A has already been transformed to a

bidiagonal matrix

by b
s &

bom—2

bom—1

Following [7], we assume

Assumption (A) The bidiagonal elements of B are nonzero,
ie, by #0for k=1,...,2m— 10

This assumption guarantees (see [12]) that the singular values of B are all
distinct: o1 > -+ > gy, > 0.

Assumption (A) is not restrictive, in theory or in practice. In fact, if
a subdiagonal element is zero, i.e., by = 0 for some k, then the problem
reduces to two independent problems on matrices of smaller sizes, k X k
and (m — k) x (m — k). If there is a zero element in the diagonal, several
iterations of the dqd algorithm (i.e., the dqds algorithm without shifts)
suffice to remove the diagonal zero, and the problem is again separated into
a set of smaller problems (see [7] for details).

In our problem setting we have assumed real matrices, whereas the sin-
gular value decomposition is also defined for complex matrices. Our restric-
tion to real matrices is justified by the fact that any complex matrix can
be transformed to a real bidiagonal matrix by, say, (complex) Householder
transformations, while keeping its singular values [7].

3 The dqds algorithm

In this section, the dqds and related algorithms are summarized. Before de-
scribing the dqds algorithm, we review the pqds algorithm, which is mathe-
matically equivalent to the dqds and serves as the main target in the subse-
quent theoretical analysis. The pqds algorithm is the pqd algorithm where
shifts are incorporated to accelerate the convergence [8, 14]. The pqd algo-
rithm consists of the so-called rhombus rules (Figure 1).



Algorithm 3.1 The pqds algorithm

Initialization: q,go) = (bop_1)? (k = 1,2,...,m); e,go) = (box)? (k =
1,2,...,m—1)

1: for n:=0,1,--- do

2:  choose shift s (> 0)

3: e(()n+1) =0

4: fork:=1,---,m—1do

5 q,(an) = q,g") — eé,njl) + e,(cn) — s
6. e}(€n+1) _ el(gn)q,(;—zi—)l/ql(gnJrl)

7. end for

g gt =g — et — s

9: end for

The pqds algorithm, in computer program form, is shown in Algorithm 3.1.
The outermost loop is terminated when some suitable convergence criterion,
say, Hefff)_lu < € for some prescribed constant € > 0, is satisfied. At the ter-
mination we have

n—1
om? ~ g + Z s (2)
=0

and hence o0, can be approximated by \/ qﬁg )y Zl":_()l s(). Then by the
deflation process the problem is shrunk to an (m — 1) x (m — 1) problem,

and the same procedure is repeated until o,,_1,...,01 are obtained in turn.

It turns out to be convenient to introduce additional notations e(()n) and

eﬁ,’;) with “boundary conditions”:

=0, eM=0 (n=0,1,...) (3)
to simplify the expression of the algorithm.
Put
bgn) bgn)
(n)
B _ b3 | (4)
752
b2m71
b = b, (k=1,2,...,2m — 1), and
a” o= 8 )2 (k=1,2,...,m; n=0,1,...), (5)
™ = Y (k=1,2,...,m—1; n=0,1,...). (6)

Then Algorithm 3.1 can be rewritten in terms of the Cholesky decomposition
(with shifts):

(BT pn+1) — p)(BT _ g, (7)
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Figure 1: The rhombus rules

where B(O) = B. Tt follows that

(BMHYTBM) — () <(B(O))TB(O) _

where W = (B(=1 ... BO))=T i5 a nonsingular matrix (see Lemma 3.1).
Therefore the eigenvalues of (B(™)TB(™ are the same as those of (B(?))TB(0)—
Zl 0 sWI. In actual computation it is often observed that B converges
to a diagonal matrix as n — oo, and then, by (8), the singular values of B
can be obtained from the diagonal elements of B with sufficiently large n.
We give a theoretical proof for the global convergence in the next section.

The following lemma states that, if s < (O'I(IZ)H)Z

r(m)n is the smallest singular value of B then the variables in the

pqds algorithm are always positive so that the algorithm does not break
down.

in each iteration n,

where o

Lemma 3.1 (Positivity of the variables in the pqds algorithm). Suppose

the pqds algorithm is applied to the matriz B satisfying Assumption (A). If
s < (a(n.) )2 (n=0,1,2,...), then (B"™)TB™ (n =1,2,...) are positive

min

definite, and hence q,g") >0(k=1,...,m) and e,(cn) >0(k=1,...,m—1).

Proof. We prove by induction. Uuder Assumption (A), we have q,io)

>
0, eg)) > 0 and that (B(O))TB(O) is positive definite. Suppose that (B(”))TB(")
is positive definite and q,(gn) > 0, e,(cn) > 0. By (7), if s/ < (O'I(:i)n)Q, then
(BHINT B(n+1) js positive definite because B (BM)T — (W is positive
definite. Therefore all the diagonal elements of B are nonzero ( Qk 1 75 0)
and hence q,(gnﬂ) > 0 because of (5). By the 6th line of Algorithm 3.1, we

have e(nH) > 0. O



The dqds algorithm is obtained from the pqds algorithm by introducing
the auxiliary quantities d,(:ﬂ) defined as follows [7]:

dgnﬂ) = q§n) — s(”); dénﬂ) = q,gn) - eéntl) — s (k=2,...,m). (9)

The resulting algorithm is presented as Algorithm 3.2. Generally, the dqds
algorithm outperforms the pqds algorithm. Since the variables of the dqds
algorithm are positive (see Lemma 3.2) and no subtractions are used in the
algorithm except for computing the shifts, the numerical instability due to
loss of significant digits is less likely to happen in the dqds algorithm.

Algorithm 3.2 The dqds algorithm

Initialization: q,(co) = (bop—1)? (k = 1,2,...,m); e,(CO) = (box)? (k =
1,2,...,m—1)

1: forn:=0,1,--- do

2:  choose shift s (> 0)
3: dgnJrl) = qYL) — s
4: fork:=1,--- ,m—1do
5: ql(:—i_l) = d](gn—f—l) + €(n)
6. e]gnJrl) :: el(cn)ql(;—lf—)l/qlinJrl)
(n+1) _ 4(n+l) (n) , (n+1) n
T 4y = d g g - s
8: end for
9: qﬁ,?“) = d%LH)
10: end for

Lemma 3.2 (Positivity of the variables in the dqds algorithm). Suppose
the dqds algorithm is applied to the matriz B satisfying Assumption (A). If

s < (UI(I:?H)2 (n=0,1,2,...), then (B")TB™ (n=1,2,...) are positive
definite, and hence q,(cn) >0(k=1,...,m), e,gn) >0(k=1,...,m—1), and
d,(:) >0(k=1,...,m).

Proof. By Lemma 3.1, we have e,(:) > 0 and q,in) > 0. The inequality

d,(:’) > 0 is proved by contradiction as follows. If we had d,gn) < 0 for

some k, we would have d,(:s_)l < 0 by the 7th line of Algorithm 3.2 and then

q,(,’;‘) = dﬁ,’f) < 0. This contradicts qﬁg) > 0. O

4 Convergence of the dqds

In this section, we prove that, for any matrix B that satisfies Assump-
tion (A), the variables q,(gn) and elgn) in the dqds algorithm converge as far as
the shift is chosen such that 0 < s < (O'(n) )2, where o™ s the smallest

min min



singular value of B, Since the dqds and pqds algorithms are equivalent,
we will work with the pqds in place of the dqds in the proofs.

The next theorem establishes the convergence of the dqds. Moreover,
the theorem states that the variables q,(cn) converge to the square of the
singular values minus the sum of the shifts, and that they are placed in the

descending order.

Theorem 4.1 (Convergence of the dqds algorithm). Suppose the matriz B
satisfies Assumption (A), and the shift in the dqds algorithm is taken so that

0<s™ < (o (n )) holds. Then

Zs(") <o’ (10)
n=0
Moreover,
lim e = 0 (k=1,2,...,m—1), (11)
n—oo
e.¢]
lim q,(c) = JkQ—Zs(”) (k=1,2,...,m). (12)

In matrix form, we have

lim (B(”))TB(”) = diag (012 - Z s om? — Z s(”)> .

Proof. On the basis of the equivalence between the dqds algorithm and the
pads algorithm, we show the convergence of the pqds to prove this theorem.

By the assumption and Lemma 3.1, (B(”))TB(”) is a positive symmetric
matrix. It then follows from (8) that

N
Z s < g,,2 (13)
n=0
holds for any N > 1. In the limit of N — oo, we obtain (10).
Next we prove lim, s e,(in) = 0. By Lemma 3.1, we have e,(gn) > 0.

Therefore it is sufficient to prove > 7 e,(cn) < 400. Adding both sides of
the 5th line of Algorithm 3.1 for over n with k fixed, we obtain

ot =g —i—Zek Z Y-S50 (k=1,2,.0m). (14)
=0

Since q,(gnﬂ) > 0 by Lemma 3.1, it follows that

Ze(lH < q,io)+Zeg) —Zs(l) < ql(go)—l—Zeg) (k=1,2,...,m). (15)
1=0 1=0 1=0



Setting k = m in (15), we obtain ) ;° 0€(l+1) < q,(C ), with the aid of the
boundary conditions (3). Similarly, setting k =m—1, m—2, ..., 2in (15),
we obtain

Ze(l—i-l < 400 (k=m—-1m-—2,...,1),

(n)

which completes the proof for e .
Next, we prove (12). By (14) with n — oo, we see

n n n

lim q,(gn) = q,go) + lim Zeg) — lim Zegjll) — lim Z sW. (16)
Since the right-hand side of the equation (16) converges, q,(coo) = limy, 00 q,(cn)

exists. Because lim,,_, o eén) =0, (8) reads

n—1
lim W™ ((B(O))TB(O) _ Zs(l)[> (W)=
=0

n—o0

which shows the convergence as a set, i.e.,

{q;(lOO)7 .- 7Q£n00)} = {012 - Zs(n)7 .- '7am2 - ZS(n)}a
n=0 n=0

where it is not claimed here that q,(coo) = o042 — > s for each k. It
(c0)

remains to show that ¢, are in the descending order. From the 6th line of
Algorithm 3.1, we have

(0) qk+1
H LD =1,...,m—1).

Because all the singular values are distinct, o1 > -+ > o,,, by the assump-
(c0) (c0) (n)

tion, the limits ¢, ’,--- ,qm ~ are also distinct. Since lim, .. ¢€; " = 0, we
have
q( ) 5 q,(ffi (k=1,2,...,m—1).
O

The next theorem states the asymptotic rate of convergence of the dqds
algorithm.



Theorem 4.2 (Rate of convergence of the dqds algorithm). Under the same
assumption as in Theorem 4.1, we have
1
el op® -3 s

lim = = (k=1,....m—1). (17)
n—00 e,(f) or2 = Yoty s™

Therefore, for each k =1,...,m — 2, e,(gn) 18 always of linear convergence as

n — oo. If o2 — Yool s(M >0, then 67(:;),1 s also of linear convergence,
and it is of superlinear convergence if o> — Yoo s =

Proof. From the 6th line of Algorithm 3.1, we have

6(nJrl) ql(gn)l
k _ + _
W D) (k=1,....m—1).
€k 4y,
Then the claim is obvious from Theorem 4.1. O

5 Convergence rate of the dqds with the Johnson
bound

In this section, we prove that the asymptotic rate of convergence of the dqds
algorithm is 1.5 if the shift is determined by the Johnson bound [9]. In the
proofs we will work with the pqds in place of the dqds, as we did in the
previous section.

Though the Johnson bound is valid for a general matrix, we present here
its version for a bidiagonal matrix B.

Lemma 5.1 (Johnson bound [9]). For a matriz B of the form (1), define
| bok—2 | + [ bow |}

2

k=1,....m

A= min {|b2k_1|

where by = bay, = 0 and let o, denote the smallest singular value of B.
Then o, > X. Moreover, if the subdiagonal elements (ba, by, ..., bam—2) are
nonzero, then o, > A.

With reference to (4), (5) and (6) we define the shift by the Johnson
bound as follows:

AW = min {\/@—é(\/@—i—@)}, (18)

k=1,....m
2

st = (max{)\("), O}) (19)

This choice of the shift guarantees the condition 0 < s < (af:iily in each
iteration n, and hence the dqds is convergent by Theorem 4.1. The precise
rate of convergence can be revealed through a scrutiny of the shift.



The next lemma shows that the Johnson bound A is determined solely

(n) (n)

by ¢m’ and e,,” ; when n is large enough. As a corollary of this fact we see

that q7(,7 ) approaches zero.

Lemma 5.2. Under Assumption (A), consider the dqds with the shift (19).
For all sufficiently large n, we have

- m 9 m—1-

That is to say, the minimum of the right-hand side of (18) is attained at
k=m.

Proof. Let k < m and consider the identity
7 (L) [ ().
= (VA = Vi) = 5 (el Vel = o= Vel

From Theorem 4.1, the first term on the right-hand side remains positive:

b (V) - [ - [ oo o

n=0 n=0

while the second term vanishes since lim,, .o e,(Cn) = 0 for each k. Thus the
minimum on the right-hand side of (18) is attained at k = m. O

Lemma 5.3. Under the same assumption as in Lemma 5.2, we have

> s =0, (21)

n=0

lim q]gn) =0 —op? (k=1,...,m—1); lim ¢™ =0. (22)
n—oo n—oo

Proof. By (20) and (11), lim,, .~ A = Tim,, o q,(,?) > 0, and hence
lim s = lim (max{\™,0})2 = lim ¢™.

n—oo

Since limy_o0 s = 0 by (10), we have lim, qﬁ,?) = 0. This, together
with (12), proves (21) and (22). O

The next lemma shows A > 0 for all sufficiently large n.

10



Lemma 5.4 (Positivity of the Johnson bound in the dqds). Under the same
assumption as in Lemma 5.2, there exists an integer N such that A >0
for alln > N.

Proof. The proof consists of showing two facts: (i) For every integer N’,
there exists n > N’ such that A(™) > 0; (ii) There exists an integer N such
that A > 0 with n > N” implies A(»*1) > 0.

(i) The proof is done by contradiction. Suppose that there exists some
N’ satisfying A(™ = 0 (¥n > N’). Then s =0 (Vn > N’), and by (12) in

Theorem 4.1, we have

N/
Jim = Z W =on® =3 s >0,
n=0

which contradicts Lemma 5.3.
(ii) Assume A" > 0 for some large n such that (20) holds. In this case,
s = (A(™)2 and

gty

(1 1 1
= e (Y - D). (23)
where the 5th line of Algorithm 3.1 is used in the first equality, (20) in the

second equality, the assumption A" > 0 (ie., \/qm \/ 7(:;), in the

inequality, and the 6th line of Algorithm 3.1 in the last equahty From (23)
it follows that

A 5 0 e gnHD) 5 76 (1) \/ (n+1) \/ (n+1),
Since lim,,_ o q(nH) > 0 and lim;,—so 65:;4_11) = 0, there exists an integer N”
such that the last inequality holds for all n > N”. O

Using Lemma 5.2 and Lemma 5.4, we see that for sufficiently large n the
shift is given as follows.

Lemma 5.5 (Shift in the dqds). Under the same assumption as in Lemma 5.2

we have )
sM = (AM)2 = ¢(m _ oM 1(]7(77) + 2™ S (24)

m— 4 m—1

for all sufficiently large n.



We are now in the position to prove that the rate of convergence of the
dqds is 1.5. The next theorem refers only to the lower right two elements of
B This is sufficient from the practical point of view since whenever the
lower right elements converge to zero, the deflation is applied to reduce the
matrix size.

Theorem 5.1 (Rate of convergence of the dqds). Suppose the dqds algo-
rithm with the Johnson bound is applied to a matriz B that satisfies As-
sumption (A). Then we have

(n+1)

1
lim i:{r;il = ) (25)
n=0 (e )32 a1 — o
lim qg:ﬂ) = ! (26)
n—oo (q’r(g))?,/Q Um—12 _ O'mQ.

That is, the rate of convergence is 1.5. Hence, by (4), the lower right two

elements of B, i.e. b(ni 5 and bén}b 1, converge to 0 with the rate of 1.5.
Moreover, we have

[e(™) 1
T A . (27)
n—oo qu) Um—12 - Um2

(n)

Proof. First, we compute the rate of convergence of e,,” ;. By Lemma 5.5
the shift is determined by (24) for sufficiently large n, and we have

n n n 1 n
o) = oD — )~ L),

from the second equality in (23). By using this, together with

gt = g2 () st gy () () (9g)

which can be seen from the 6th line of Algorithm 3.1, we obtain

6(n+12) q("+11) (”+11) 1 e .
T _ m— 1— Em LMo . (29)
(n+1)\3/2 (n+2) n+1 n+1 n+1
(em—l ) / Q-1 q,(,:l) 4 q7(nj—1) \/67(711_1)

We prove that the value in the parentheses on the right-hand side of

(29) converges to 1. First, note lim, q(nH) > 0 by (22). By (11),

lim,, o0 65?1) = 0, and hence the second term in the parentheses converges

to 0. As for the third term, we see

(n+1) _ ey OB \/‘L(nTz 2\/7( )3/2

m—1 " (p41) Im” = (n+1
m—1 2Qm 1

12



from (28) and (23) (with n + 1 replaced by n). Thus

(n) (n) 9
lim —=L < Jim A 1\/ = <e§nll) — 0,
n—o00 e(n+1) n—00 2q(”+1

m—1 m

and hence the value in the parentheses on the right-hand side of (29) con-
verges to 1. Moreover, from (22), we have

n n+1
. 62:11) o q7(nj1) _ 1
lim OB lim = : (30)
n—oo (67:;_1)3/2 n—oo qrrr:—l O'm712 _ o-m2

Next, by the second equation in (28), and by (22) and (30), we see
(n) (n+1)

n
€
dm = lim q’frrLH_ll) w =V Um—12 - Jm2-

n—oo 7(’:)_1 n—oo (653)_1)3/2

Finally, using this relation, we obtain

J+D) J+D) oo —3/2 o) 1/2
Iim /2 — lim m _ m=1
ST T ¢ e e ) e
(Om1? — o 2)1/2-3/4-1/4

= (Um,12 — Om )_1/2.

6 A numerical experiment

In this section, a simple numerical experiment is presented to illustrate the
theory. Let us consider an m x m symmetric tridiagonal matrix

a b 0
A=]|b @ (31)

SO

0 b «a

is considered. The eigenvalues are

k
a + 2b cos <W> (k=1,...,m).
m+
The dqds algorithm is then applied to the bidiagonal matrix B obtained by

the Cholesky decomposition of A. The parameters are taken as m = 10,
a=1.0and b=0.2.

13



In view of Theorem 5.1, we define

(n+1) (n-+1)
q) = _Sm=t gy Am
CREVE ()2

which should converge to the constant \/(0,,—12 — 02) ! according to the
theory. The result is shown in Figure 2. The solid line shows o™, the
chained line shows 3(™) and the dashed line shows \/(0,—12 — 07,2) "1 = 4.60
in this problem setting. Both solid line and chained line approach to the
dashed line in Figure 2.

On the other hand, e™ and qf,? ) are plotted in the single logarithmic

m—1
graph Figure 3. The solid line shows 6,(7?),1 and the chained line shows qﬁ,? ),

The variables efs)_l and qu ) converge to zero. By Figure 2 and Figure 3

we can say that the rate of convergence is 1.5. Table 1 presents the index
k = k* that attains the minimum on the right-hand side of (18). If \(") < 0,
then k* is defined to be 0. The result shows that k* = m for n > 2, which
is consistent with Lemma 5.5.

Iterations n

Figure 2: The dqds algorithm: a =1, b =
0.2

14



Iterations n

Figure 3: The dqds algorithm: a =1, b =
0.2

Table 1: Critical index k* for the Johnson bound (18) in the dqds algorithm

n|0 1 2 3 4 5 6 7 8 9
E*{9 9 10 10 10 10 10 10 10 10

7 Conclusion

In this article, we have examined theoretically the convergence of the dqds
algorithm for computing singular values of bidiagonal matrices. Under a
natural condition on the shift, we have proved the convergence. Moreover,
we have proved that the asymptotic rate of convergence of the dqds algo-
rithm with the Johnson bound is 1.5. A simple numerical experiment has
confirmed the theoretical result on the asymptotic rate.
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