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Sign-Solvable Linear Complementarity Problems

Naonori KAKIMURA∗

November 2006

Abstract

This paper presents a connection between qualitative matrix theory and linear complemen-
tarity problems (LCPs). An LCP is said to be sign-solvable if the set of the sign patterns of the
solutions is uniquely determined by the sign patterns of the given coefficients. We provide a
characterization for sign-solvable LCPs such that the coefficient matrix has nonzero diagonals,
which can be tested in polynomial time. This characterization leads to an efficient combinatorial
algorithm to find the sign pattern of a solution for these LCPs. The algorithm runs in O(γ)
time, where γ is the number of the nonzero coefficients.

1 Introduction

This paper deals with linear complementarity problems (LCPs) in the following form:

LCP(A, b): find (w, z)
s.t. w = Az + b,

wTz = 0,
w ≥ 0, z ≥ 0,

where A is a real square matrix, and b is a real vector. The LCP, introduced by Cottle [4], Cottle and
Dantzig [5], and Lemke [15], is one of the most widely studied mathematical programming problems,
which contains linear programming problems and convex quadratic programming problems. Solving
LCP(A, b) for an arbitrary matrix A is NP-complete [3], while there are several classes of matrices
A for which the associated LCPs can be solved efficiently. For details of the theory of LCPs, see
the books of Cottle, Pang, and Stone [6] and Murty [19].

The sign of a real number a, denoted by sgn a, is defined to be + for a > 0, − for a < 0, and 0
for a = 0. The sign pattern of a real matrix A is the {+, 0,−}-pattern matrix obtained from A by
replacing each entry by its sign. Matrix analysis by sign patterns, called qualitative matrix theory,
was originated in economics by Samuelson [22]. Various results about qualitative matrix theory are
compiled in the book of Brualdi and Shader [1]. For a matrix A, we denote by Q(A) the set of all
matrices having the same sign pattern as A, called the qualitative class of A. The qualitative class
of a vector is defined similarly. A square matrix A is said to be sign-nonsingular if Ã is nonsingular
for any Ã ∈ Q(A). The problem of recognizing sign-nonsingular matrices has many equivalent
problems in combinatorics [16, 20, 23, 25], while its time complexity had been open for a long time.
In 1999, Robertson, Seymour, and Thomas [21] presented a polynomial-time algorithm for solving
this problem (cf. McCuaig [17, 18]).
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For linear programming, Iwata and Kakimura [10] introduced sign-solvability in terms of qual-
itative matrix theory. A linear program max{cx | Ax = b, x ≥ 0}, denoted by LP(A, b, c), is
sign-solvable if the set of the sign patterns of the optimal solutions of LP(Ã, b̃, c̃) is the same as
that of LP(A, b, c) for any Ã ∈ Q(A), b̃ ∈ Q(b), and c̃ ∈ Q(c). They showed that recognizing
sign-solvability of a given LP is co-NP-complete, and gave a sufficient condition for sign-solvable
linear programs, which can be tested in polynomial time. Moreover, they devised a polynomial-
time algorithm to obtain the sign pattern of an optimal solution for linear programs satisfying this
sufficient condition.

In this paper, we introduce sign-solvability for linear complementarity problems. We say that
LCP(A, b) is sign-solvable if the set of the sign patterns of the solutions of LCP(Ã, b̃) coincides
with that of LCP(A, b) for any Ã ∈ Q(A) and b̃ ∈ Q(b). An LCP(A, b) such that all diagonal
entries of A are nonzero is said to have nonzero diagonals. The class of LCPs with nonzero diago-
nals includes LCPs associated with positive semidefinite matrices, P -matrices, and nondegenerate
matrices, which are all well known in the theory of LCPs. This paper aims at providing a charac-
terization for a sign-solvable LCP(A, b) with nonzero diagonals, and describing a polynomial-time
algorithm to solve them from the sign patterns of A and b.

We first provide a sufficient condition for sign-solvable LCPs with nonzero diagonals. A square
matrix A is term-nonsingular if the determinant of A contains at least one nonvanishing expansion
term. A square matrix A is term-singular if it is not term-nonsingular. A matrix A is term-singular
if and only if Ã is singular for any Ã ∈ Q(A). An m × n matrix with m ≤ n is said to be totally
sign-nonsingular if all submatrices of order m are either sign-nonsingular or term-singular, namely,
if the nonsingularity of each submatrix of order m is determined uniquely by the sign pattern of
the matrix. Totally sign-nonsingular matrices were investigated in the context of sign-solvability of
linear systems [1, 11, 12, 24] (the terms “matrices with signed mth compound” and “matrices with
signed null space” are used instead). Recognizing totally sign-nonsingular matrices can be done
in polynomial time by testing sign-nonsingularity of related square matrices [10]. We show that, if
the matrix M = (A b) is totally sign-nonsingular and A has nonzero diagonals, then LCP(A, b) is
sign-solvable.

We then present a characterization of sign-solvable LCPs with nonzero diagonals. A matrix is
said to be row-mixed if every row has both positive and negative entries. For an LCP(A, b) with
nonzero diagonals, we introduce the residual row-mixed matrix, which will be defined in Section 3.
Then LCP(A, b) with nonzero diagonals is sign-solvable if and only if either its residual row-mixed
matrix has no rows or it is totally sign-nonsingular. The residual row-mixed matrix can be obtained
in polynomial time. Thus the sign-solvability of a given LCP(A, b) with nonzero diagonals can be
recognized in polynomial time.

This characterization leads to a combinatorial polynomial-time algorithm to solve a given
LCP(A, b) with nonzero diagonals from the sign patterns of A and b. The algorithm tests the
sign-solvability, and finds the sign pattern of a solution if LCP(A, b) is sign-solvable. In this al-
gorithm, we obtain a solution of LCP(Ã, b̃) for some Ã ∈ Q(A) and b̃ ∈ Q(b). If LCP(A, b) is
sign-solvable, then LCP(A, b) has a solution with the same sign pattern as the obtained one. The
time complexity is O(γ), where γ is the number of nonzero entries in A and b. We note that the
obtained sign pattern easily derives a solution of the given LCP by Gaussian elimination. Thus
a sign-solvable LCP with nonzero diagonals is a class of LCPs which can be solved in polynomial
time.

Before closing this section, we give some notations and definitions used in the following sections.
For a matrix A, the row and column sets are denoted by U and V . If A is a square matrix,

suppose that U and V are both identical with N . We denote by aij the (i, j)-entry in A. Let A[I, J ]
be the submatrix in A with row subset I and column subset J , where the orderings of the elements
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of I and J are compatible with those of U and V . The submatrix A[J, J ] is abbreviated as A[J ].
The support of a row subset I, denoted by Γ(I), is the set of columns having nonzero entries in the
submatrix A[I, V ], that is, Γ(I) = {j ∈ V | ∃i ∈ I, aij 6= 0}. For a vector b, the jth entry of b is
denoted by bj . The vector b[J ] means the subvector with index subset J . The support of a vector
b is the column index subset {j | bj 6= 0}.

For a square matrix A, let π be a bijection from the row set N to the column set N . We denote
by p(A|π) = sgnπ

∏
i∈N aiπ(i) the expansion term of det A corresponding to π. Then a matrix A

is term-nonsingular if and only if there exists a bijection π : N → N with p(A|π) 6= 0. A square
matrix A is sign-nonsingular if and only if A is term-nonsingular and every nonvanishing expansion
term of det A has the same sign [1]. Thus, if A is sign-nonsingular, the determinant of every matrix
in Q(A) has the same sign. It is also shown in [1] that, if a square matrix A is sign-nonsignular,
then A is not row-mixed.

This paper is organized as follows. In Section 2, we provide a sufficient condition using totally
sign-nonsingular matrices. Section 3 gives a characterization for sign-solvable LCPs with nonzero
diagonals. In Section 4, we describe a polynomial-time algorithm to solve sign-solvable LCPs with
nonzero diagonals from the sign patterns of the given coefficients.

2 Totally Sign-Nonsingular Matrices

In this section, we give a sufficient condition for sign-solvable LCPs using totally sign-nonsingular
matrices. For that purpose, we define sign-nondegenerate matrices. A square matrix A is nonde-
generate if every principal minor is nonzero. A matrix A is nondegenerate if and only if LCP(A, b)
has a finite number of solutions for any vector b [6]. Recognizing nondegenerate matrices is co-NP-
complete [2, 19]. A square matrix A is said to be sign-nondegenerate if Ã is nondegenerate for any
Ã ∈ Q(A). Then the following lemma holds, which implies that sign-nondegeneracy can be tested
in polynomial time.

Lemma 2.1. A square matrix A is sign-nondegenerate if and only if A is a sign-nonsingular matrix
with nonzero diagonals.

Proof. To see the necessity, suppose that A is sign-nondegenerate. Let Ã be a matrix in Q(A).
Since all principal minors in Ã are nonzero, all diagonal entries are nonzero. Moreover, det Ã
is nonzero, which implies that A is sign-nonsingular. Thus A is a sign-nonsingular matrix with
nonzero diagonals.

To see the sufficiency, suppose that A is a sign-nonsingular matrix with nonzero diagonals.
Let J ⊆ N be an index subset. Since the principal submatrix A[J ] has nonzero diagonals, A[J ]
is term-nonsingular. Let σ1 and σ2 be bijections from J to J such that p(A[J ]|σ1) 6= 0 and
p(A[J ]|σ2) 6= 0. Define bijections πk : N → N to be πk(j) = j if j ∈ N \ J and πk(j) = σk(j)
if j ∈ J for k = 1, 2. Since A has nonzero diagonals, p(A|π1) and p(A|π2) are both nonzero. By
p(A|πk

) = p(A[J ]|σk
)
∏

i∈N\J aii for k = 1, 2, it follows from sign-nonsingularity of A that the two
nonzero terms p(A[J ]|σ1) and p(A[J ]|σ2) have the same sign. Thus A[J ] is sign-nonsingular, which
implies that A is sign-nondegenerate.

We now obtain the following theorem. For LCP(A, b), let M be the matrix in the form of
M = (A b), where the column set is indexed by N ∪ {g}.

Theorem 2.2. For a linear complementarity problem LCP(A, b) with nonzero diagonals, if the
matrix M = (A b) is totally sign-nonsingular, then LCP(A, b) is sign-solvable.
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Proof. First assume that LCP(A, b) has a solution (w, z). Let J be the support of z. Then we have

AJ

(
w[N \ J ]

z[J ]

)
+ b = 0, where AJ is the matrix in the form of

AJ =
(

O A[J ]
−I A[N \ J, J ]

)
.

Since A is sign-nondegenerate by Lemma 2.1, each principal submatrix is sign-nonsingular, and
hence AJ is also sign-nonsingular by detAJ = ± detA[J ]. Then it holds by Cramer’s rule that

zj =
{

−detAj
J/detAJ , if j ∈ J,
0, if j ∈ N \ J,

(1)

wj =
{

0, if j ∈ J,

−detAj
J/detAJ , if j ∈ N \ J,

(2)

where Aj
J is the matrix obtained from AJ by replacing the jth column vector of AJ with b. The

determinant of Aj
J is represented by

detAj
J =

{
±detM [J, J − j + g], if j ∈ J,
± detM [J + j, J + g], if j ∈ N \ J,

(3)

where J−j +g means J \{j}∪{g} with g being put at the position of j in J , the set J +j coincides
with J ∪ {j}, and J + g means J ∪ {g} in which g is put at the same position as that of j in J + j.

We show that Aj
J is either term-singular or sign-nonsingular for any J ⊆ N and j ∈ N . Assume

that there exists j ∈ N such that Aj
J is term-nonsingular, but not sign-nonsingular. First suppose

that j ∈ J . By (3), the submatrix M [J, J − j + g] is term-nonsingular, but not sign-nonsingular.
Then there exist two bijections σ1 and σ2 from J to J − j + g such that p(M [J, J − j + g]|σ1)
and p(M [J, J − j + g]|σ2) are both nonzero, and have the opposite signs. Define two bijections
πk : N → N − j + g to be πk(i) = i if i ∈ N \ J and πk(i) = σk(i) if i ∈ J for k = 1, 2. By
p(M [N,N − j + g]|πk

) = p(M [J, J − j + g]|σk
)
∏

i∈N\J aii for k = 1, 2, the two nonzero terms
p(M [N,N − j + g]|π1) and p(M [N,N − j + g]|π2) are both nonzero, and have the opposite signs.
This contradicts the total sign-nonsingularity of M . Next suppose that j ∈ N \ J . Then, by (3),
M [J + j, J + g] is term-nonsingular, but not sign-nonsingular. Let σ1 and σ2 be bijections from
J + j to J + g such that p(M [J + j, J + g]|σ1) and p(M [J + j, J + g]|σ2) are both nonzero, and
have the opposite signs. Define two bijections πk : N → N − j + g for k = 1, 2 to be πk(i) = i if
i ∈ N \(J ∪{j}) and πk(i) = σk(i) if i ∈ J ∪{j}. Then the two nonzero terms p(M [N,N −j +g]|π1)
and p(M [N,N − j + g]|π2) have the opposite signs, which contradicts the total sign-nonsingularity
of M .

Thus Aj
J is either term-singular or sign-nonsingular for any index j. The matrix AJ is sign-

nonsingular. Therefore, it follows from (1) that the sign pattern of (w, z) is independent of the
magnitudes of A and b. Hence LCP(Ã, b̃) has a solution with the same sign pattern as that of (w, z)
for any Ã ∈ Q(A) and b̃ ∈ Q(b). Thus LCP(A, b) is sign-solvable.

Next assume that LCP(A, b) has no solutions. Note that LCP(A, b) has no solutions if and
only if AJx + b = 0 has no nonnegative solutions for any J ⊆ N , that is, there exists j ∈ N
such that (A−1

J b)j < 0 for any J ⊆ N . It follows from Cramer’s rule that we have (A−1
J b)j =

−detAj
J/detAJ < 0. Since detAj

J 6= 0, the matrix Aj
J is sign-nonsingular. Hence it holds that

−det Ãj
J/det ÃJ < 0 for any Ã ∈ Q(A) and b̃ ∈ Q(b). Thus LCP(Ã, b̃) has no solutions for any

Ã ∈ Q(A) and b̃ ∈ Q(b), which means that LCP(A, b) is sign-solvable.
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Sign-solvable LCPs do not necessarily satisfy this sufficient condition. Indeed, consider LCP(A, b),
where A and b are defined to be

A =
(

+p1 +p2

+p3 +p4

)
and b =

(
+p5

+p6

)
for positive constants p1, . . . , p6 > 0. Then LCP(A, b) has a unique solution w = (p5 p6)T and z = 0,
and hence LCP(A, b) is sign-solvable. However, this does not satisfy the condition of Theorem 2.2,
as A is not sign-nonsingular.

We conclude this section with sign-solvability of LCPs associated with another class of matrices.
A square matrix A is a P -matrix if every principal minor is positive. A P -matrix is clearly
nondegenerate. It is known that A is a P -matrix if and only if LCP(A, b) has a unique solution for
any vector b. Recognizing P -matrices is co-NP-complete [7]. A matrix A is a sign-P -matrix if all
matrices in Q(A) are P -matrices. Then similar statements to Lemma 2.1 and Theorem 2.2 hold
for sign-P -matrices.

Corollary 2.3. A square matrix A is a sign-P -matrix if and only if A is a sign-nonsingular matrix
with positive diagonals.

Corollary 2.4. For a linear complementarity problem LCP(A, b) with positive diagonals, if the
matrix M = (A b) is totally sign-nonsingular, then LCP(Ã, b̃) has a unique solution with the same
sign pattern as that of LCP(A, b).

3 Characterization for Sign-Solvable LCPs with Nonzero Diagonals

In this section, we describe a characterization for a sign-solvable LCP(A, b) with nonzero diagonals.

3.1 The Residual Row-Mixed Matrix

We first introduce the residual row-mixed matrix of LCP(A, b) with nonzero diagonals.
For each row index i, the ith equation of LCP(A, b) is represented by

wi =
∑

j∈Γ({i})

aijzj + bi. (4)

First assume that M has a nonpositive row i, that is, bi ≤ 0 and aij ≤ 0 for all j ∈ N . Suppose
that bi < 0. Since any solution of LCP(A, b) is nonnegative, the ith row implies that LCP(A, b)
has no solutions. If bi = 0, then a solution (w, z) of LCP(A, b) must satisfy that zj = 0 for any
j ∈ Γ({i}).

Next assume that M has a nonnegative row i, that is, bi ≥ 0 and aij ≥ 0 for all j ∈ N . Let
(w, z) be a solution of LCP(A, b). If wi > 0, then the complementarity implies zi = 0. Suppose
that wi = 0. Since any solution is nonnegative, (w, z) must satisfy zj = 0 for any j ∈ Γ({i}), and
hence zi = 0 by aii 6= 0. Thus, if LCP(A, b) has a solution and M has a nonnegative row i, any
solution of LCP(A, b) must satisfy that zi = 0. Note that there exists j ∈ Γ({i}) with zj > 0 if and
only if the left-hand side of (4) is positive, i.e., wi > 0.

Therefore, if M has a nonnegative or nonpositive row, then we know that some entries of any
solution must be zero. We can repeat this process as follows. Set M (1) = M . For a positive
integer ν and a matrix M (ν), let I

(ν)
− be the set of nonpositive rows in M (ν), and I

(ν)
+ be the set

of nonnegative rows that have a nonzero entry in M (ν). If Γ(I(ν)
− ) contains the index g, then the
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LCP has no solutions. Define I(ν) = I
(ν)
+ ∪ I

(ν)
− and J (ν) = I

(ν)
+ ∪ Γ(I(ν)

− ). Then any solution (w, z)
of LCP(A, b) satisfies zj = 0 for any j ∈ J (ν). Let M (ν+1) be the matrix obtained from M (ν) by
deleting the rows indexed by I(ν) and the columns indexed by J (ν). Repeat this for ν = 1, 2, . . .
until I(ν) = J (ν) = ∅, that is, until either M (ν) is row-mixed or M (ν) has no rows.

We call the remaining row-mixed submatrix M ′ = (A′ b′) the residual row-mixed matrix of
LCP(A, b). Note that, if LCP(A, b) has solutions, the column index g is not deleted in each iteration.
We denote by U ′ and V ′ the row and column sets of A′, respectively. Let Ū ′ = N\U ′ and V̄ ′ = N\V ′.
Since A has nonzero diagonals, Ū ′ ⊆ V̄ ′ holds, and hence we have V ′ ⊆ U ′.

Suppose that the residual row-mixed matrix M ′ has no rows. Then V̄ ′ = N holds. This means
that any solution (w, z) of LCP(A, b) must satisfy z = 0. Since g is not deleted in each iteration,
the vector b is nonnegative. Thus (b, 0) is a unique solution of LCP(A, b).

Next suppose that M ′ = (A′ b′) is row-mixed. Consider the following system:

w = A′z + b′,
wT

i zi = 0, for any i ∈ V ′,
w ≥ 0, z ≥ 0.

(5)

We claim that there exists a one-to-one correspondence between solutions of LCP(A, b) and (5).
For a solution (w, z) of LCP(A, b), the pair (w[U ′], z[V ′]) is a solution of (5). Conversely, let
(w′, z′) be a solution of (5). Define (w, z) to be z[V ′] = z′, z[V̄ ′] = 0, and w = Az + b. Then
w[U ′] = A′z′ + b′ = w′ ≥ 0 holds. Moreover, since each row in A[Ū ′, V ′] is nonnegative, we have
w[Ū ′] = A[Ū ′, V ′]z′ + b[Ū ′] ≥ 0. By V ′ ⊆ U ′, the pair (w, z) satisfies the complementarity wTz = 0.
Thus (w, z) is a solution of LCP(A, b).

3.2 Characterization

Using the residual row-mixed matrix M ′ of LCP(A, b), we have the following theorem.

Theorem 3.1. For a linear complementarity problem LCP(A, b) with nonzero diagonals, LCP(A, b)
is sign-solvable if and only if one of the followings holds:

• The residual row-mixed matrix M ′ has no rows.

• The residual row-mixed matrix M ′ is totally sign-nonsingular.

In order to prove this theorem, we give some definitions. A linear system Ax = b has nonnegative
signed solutions if the set of the sign patterns of nonnegative solutions of Ãx = b̃ is the same as
that of nonnegative solutions of Ax = b for any Ã ∈ Q(A) and b̃ ∈ Q(b). A matrix A is said
to have nonnegative signed null space if Ax = 0 has nonnegative signed solutions. Matrices with
nonnegative signed null space were examined by Fisher, Morris, and Shapiro [8]. They showed that
a row-mixed matrix has nonnegative signed null space if and only if it is the matrix called mixed
dominating in Fischer and Shapiro [9]. By the result of mixed dominating matrices, the following
two lemmas hold.

Lemma 3.2 (Fischer and Shapiro [9]). If a row-mixed matrix A has nonnegative signed null space,
then the rows of A are linearly independent.

A matrix A is said to have row-full term-rank if A has a term-nonsingular submatrix with row
size. A matrix A has column-full term-rank if AT has row-full term-rank.

Lemma 3.3 (Fischer, Morris, and Shapiro [8]). An n × (n + 1) row-mixed matrix has nonnegative
signed null space if and only if it is a totally sign-nonsingular matrix with row-full term-rank.
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We have the following lemmas.

Lemma 3.4. Suppose that (A b) is row-mixed. If the linear system Ax + b = 0 has nonnegative
signed solutions, then it has a solution all of whose entries are positive.

Proof. Since (A b) is row-mixed, there exist Ã ∈ Q(A) and b̃ ∈ Q(b) such that the sum of the
columns of Ã and b̃ is zero, that is, Ã1 + b̃ = 0, where 1 is the column vector whose entries are all
one. This implies that Ãx = b̃ has a solution all of whose entries are positive for any Ã ∈ Q(A)
and b̃ ∈ Q(b).

Lemma 3.5. Suppose that (A b) is row-mixed and that A has column-full term-rank. The linear
system Ax+ b = 0 has nonnegative signed solutions if and only if the matrix (A b) has nonnegative
signed null space.

Proof. Suppose that the matrix (A b) has nonnegative signed null space. Since {x | Ax+b = 0, x ≥
0} = {x | (A b)

(
x
1

)
= 0, x ≥ 0} is contained in the set of nonnegative vectors in the null space of

(A b), the linear system Ax + b = 0 has nonnegative signed solutions.
Next suppose that Ax + b = 0 has nonnegative signed solutions, but (A b) does not have

nonnegative signed null space. Since the set of the nonnegative vectors in the null space of (A b)
consists of the union of {x | Ax = 0, x ≥ 0} and {x | (A b)

(
x
xg

)
= 0, x ≥ 0, xg > 0}, this assumption

implies that A does not have nonnegative signed null space. Let Ã be a matrix with column full
rank. Then the null space of Ã is empty, and Ãx + b = 0 has a unique solution all of whose entries
are positive by Lemma 3.4. By the assumption, there exists Â ∈ Q(A) such that Âx = 0 has a
nonnegative, nonzero solution x∗. Lemma 3.4 implies that Âx+b = 0 has a solution x0 all of whose
entries are positive. Then x0 − µx∗, where µ = mini∈N x0

i /x∗
i , is also a nonnegative solution of

Âx + b = 0. This contradicts that Ax + b = 0 has nonnegative signed solutions.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. There exists a one-to-one correspondence between solutions of LCP(A, b)
and (5). Hence LCP(A, b) is sign-solvable if and only if the set of sign patterns of solutions of (5)
is uniquely determined by the sign patterns of A′ and b′.

To show the necessity, suppose that LCP(A, b) is sign-solvable and that M ′ has a row. Let
x be a nonnegative vector with A′x + b′ = 0. Since (0, x) is a solution of (5), sign-solvability of
LCP(A, b) implies that the linear system A′x+b′ = 0 has nonnegative signed solutions. The matrix
A has nonzero diagonals and V ′ ⊆ U ′, which implies that A′ has column-full term-rank. It holds
by Lemma 3.5 that (A′ b′) has nonnegative signed null space. Since the rows of (A′ b′) are linearly
independent by Lemma 3.2, U ′ = V ′ holds, i.e., A′ is square. Therefore, by Lemma 3.3, (A′ b′) is
totally sign-nonsingular.

We next show the sufficiency. Suppose that M ′ has no rows. Then (b, 0) is a unique solution
of LCP(A, b), which means that LCP(A, b) is sign-solvable. Next suppose that the matrix M ′ =
(A′ b′) is totally sign-nonsingular. By V ′ ⊆ U ′, it holds that |U ′| = |V ′| or |U ′| = |V ′| + 1. If
|U ′| = |V ′|, then M ′ is sign-nonsingular, which contradicts that M ′ is row-mixed. Hence we have
|U ′| = |V ′|+1. Since A′ has nonzero diagonals, (5) forms the linear complementarity problem with
nonzero diagonals. By Theorem 2.2, LCP(A′, b′) is sign-solvable, and hence so is LCP(A, b).

If M is row-mixed, then the residual row-mixed matrix is M itself. Hence Theorem 3.1 implies
the following corollary.

Corollary 3.6. Let A have nonzero diagonals, and (A b) be a row-mixed matrix. Then LCP(A, b)
is sign-solvable if and only if the matrix M = (A b) is totally sign-nonsingular.
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We close this section with an example of sign-solvable LCPs with nonzero diagonals. Consider
LCP(A, b), where A and b have the sign patterns, respectively,

+ + 0 0 0
− + + 0 +
+ − + − 0
− 0 0 − +
0 − + 0 +

 and


0
+
−
0
−

 .

The residual row-mixed matrix is  + − 0 −
0 − + 0
+ 0 + −

 ,

which is obtained from the matrix (A b) by deleting the first two rows and the first two columns.
This residual row-mixed matrix is totally sign-nonsingular, and hence LCP(A, b) is sign-solvable.

4 Algorithm for Sign-Solvable LCPs with Nonzero Diagonals

In this section, we describe an algorithm for a given LCP(A, b) with nonzero diagonals. The
algorithm tests sign-solvability of LCP(A, b), and finds the sign pattern of a solution of LCP(A, b)
if it is sign-solvable.

The algorithm starts with finding the residual row-mixed matrix M ′ = (A′ b′) as described in
the previous section. We denote by U ′ and V ′ the row and column sets of A′, respectively. Let
Ū ′ = N \ U ′ and V̄ ′ = N \ V ′. Note that V ′ ⊆ U ′ holds. If M ′ has a row and M ′ is not totally
sign-nonsingular, then return that LCP(A, b) is not sign-solvable by Theorem 3.1.

Assume that M ′ has no rows. Then LCP(A, b) is sign-solvable, and (b, 0) is a unique solution
of LCP(A, b).

Next assume that M ′ has a row and M ′ = (A′ b′) is totally sign-nonsingular. Then LCP(A, b)
is sign-solvable by Theorem 3.1. Since M ′ is row-mixed, there exists M̃ ∈ Q(M) such that the sum
of the columns of M̃ ′ is zero, that is, Ã′1 + b̃′ = 0, where 1 is the column vector whose entries are
all one. Hence it follows from (5) that the pair (w, z), defined to be z[V̄ ′] = 0, z[V ′] = +1, and
w = Az + b, is a solution of LCP(Ã, b̃). This means that the vector w satisfies that wj > 0 if j ∈ Ū ′

and A[{j}, V ′] has nonzero entries, and wj = 0 otherwise. Since LCP(A, b) is sign-solvable, (w, z)
is the sign pattern of a solution of LCP(A, b).

We now summarize the algorithm description.

Algorithm: An algorithm for LCPs with nonzero diagonals.

Input: A linear complementarity problem LCP(A, b) with nonzero diagonals.

Output: The sign pattern of a solution if LCP(A, b) is sign-solvable.

Step 1: Set M (1) = M and ν = 1. Repeat the following until I(ν) = J (ν) = ∅.

1-1: Find I
(ν)
− and I

(ν)
+ , where I

(ν)
− is the set of nonpositive rows in M (ν), and I

(ν)
+ is the set

of nonnegative rows that have a nonzero entry in M (ν).

1-2: If g ∈ Γ(I(ν)
− ), then return that LCP(A, b) has no solutions.

1-3: Let I(ν) = I
(ν)
+ ∪ I

(ν)
− and J (ν) = I

(ν)
+ ∪Γ(I(ν)

− ). Define M (ν+1) to be the matrix obtained
by deleting the rows indexed by I(ν) and the columns indexed by J (ν) from M (ν).
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1-4: Set ν = ν + 1 and go back to Step 1.

Step 2: Let M ′ be the remaining submatrix, and U ′, V ′ be its row and column sets, respectively.
If M ′ has a row and M ′ is not totally sign-nonsingular, then return that LCP(A, b) is not
sign-solvable. Otherwise go to Step 3.

Step 3: Return that LCP(A, b) is sign-solvable and do the following.

2-1: If U ′ is empty, then return the sign pattern of a solution (w, z) = (b, 0).

2-2: Otherwise, return the sign pattern of (w, z) defined to be

sgn zj =
{

+, if j ∈ V ′

0, otherwise
and sgnwj =

{
+, if j ∈ K
0, otherwise

(6)

where K is the set of rows which have nonzero entries in A[Ū ′, V ′], that is, K = {j ∈
Ū ′ | Γ({j}) ∩ V ′ 6= ∅}.

Applying this algorithm to the example at the end of Section 3, we obtain the sign pattern of
a solution, w = ( 0 + 0 0 0)T and z = ( 0 0 + + +)T.

Based on this algorithm, we can compute a solution of a sign-solvable LCP(A, b) as well as the
sign pattern of a solution. Suppose that M ′ has a row. The solution (w, z) with the obtained sign
pattern satisfies that A′z[V ′]+b′ = 0, z[V̄ ′] = 0. Since A′ is nonsingular by total sign-nonsingularity
of M ′, we can compute a solution of LCP(A, b) by performing Gaussian elimination.

The running time bound of the algorithm is now given as follows. Note that an n × (n + 1)
row-mixed matrix A is a totally sign-nonsingular matrix with row-full term-rank if and only if A is
the matrix called S-matrix in [1, 14]. S-matrices can be recognized in O(n2) time [13].

Theorem 4.1. For a linear complementarity problem LCP(A, b) with nonzero diagonals, let n be
the matrix size of A, and γ the number of nonzero entries in A and b. Then the algorithm tests
sign-solvability in O(n2) time, and, if LCP(A, b) is sign-solvable, the algorithm finds the sign pattern
of a solution in O(γ) time.

Proof. In the νth iteration in Step 1, it requires O(γν) time to find I(ν) and J (ν), where γν is the
number of nonzero entries in the columns deleted in the νth iteration. Since each column is deleted
at most once, Step 1 takes O(γ) time in total. In Step 2, if the residual row-mixed matrix M ′ is
totally sign-nonsingular, M ′ has row-full term-rank and the column size is one larger than the row
size. Hence testing total sign-nonsingularity of M ′ is equivalent to recognizing S-matrices. Thus
it requires O(n2) time to test sign-solvability in Step 2. Step 3 requires O(γ) time. Thus this
statement holds.
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