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Linking Systems and Matroid Pencils ∗

Satoru Iwata†

November 2006

Abstract

A matroid pencil is a pair of linking systems having the same ground sets in
common. It provides a combinatorial abstraction of matrix pencils. This paper
investigates the properties of matroid pencils analogous to the theory of Kronecker
canonical form. As an application, we give a simple alternative proof for a theorem
of Murota on power products of linking systems.

1 Introduction

Linking systems (or bimatroids) were introduced by Kung [2] and Schrijver [6] as a

combinatorial abstraction of matrices. They naturally provide combinatorial counter-

parts of linear algebraic notions such as multiplications of matrices. In this paper, we

introduce matroid pencils as a combinatorial abstraction of matrix pencils.

A matrix pencil is a pair of matrices of the same size. It is often treated as a

polynomial matrix whose nonzero entries are of degree at most one. Based on the

theory of elementary divisors, Weierstrass established a criterion for strict equivalence,

as well as a canonical form, of regular matrix pencils. Somewhat later, Kronecker

investigated singular pencils to obtain a canonical form for matrix pencils in general

under strict equivalence transformations, which is now called the Kronecker canonical

form. The Kronecker canonical form of matrix pencils plays fundamental roles in

application areas such as differential algebraic equations and control theory.
∗This research is supported in part by a Grant-in-Aid for Scientific Research of the Ministry of

Education, Science, Sports and Culture of Japan.
†Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan, and

Graduate School of Information Science and Technology, University of Tokyo, Tokyo 113-8656, Japan

(iwata@kurims.kyoto-u.ac.jp).
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The Kronecker canonical form is characterized by the structural indices determined

by the ranks of expanded matrices (Theorems 2.1 and 2.2). For matroid pencils, we

define associated linking systems corresponding to the expanded matrices. Then we

show that the ranks of these linking systems have the same properties as the expanded

matrices (Lemmas 4.1–4.11), which enables us to define “structural indices” of matroid

pencils. In particular, we will reveal that the ranks of a certain type of the associated

linking systems are determined by some periodic structure (Theorem 5.2). This result

in turn brings about an alternative proof of a theorem of Murota [3] on power products

of linking systems.

The outline of this paper is as follows. Section 2 is devoted to a brief description

of the Kronecker canonical form of matrix pencils. Section 3 provides a preliminary

on linking systems. In Section 4, we introduce matroid pencils and describe their

properties. Section 5 investigates the periodic structure. Finally, in Section 6, we

present an alternative proof for the theorem on power products of linking systems.

2 The Kronecker Canonical Form of Matrix Pencils

Let D(s) = sA + B be an m× n matrix pencil of rank r. A matrix pencil D̄(s) is said

to be strictly equivalent to D(s) if there exists a pair of nonsingular constant matrices

U and V such that D̄(s) = UD(s)V . A matrix pencil D(s) = sA + B is said to be

regular if detD(s) 6= 0 as a polynomial in s. It is strictly regular if both A and B are

nonsingular matrices.

For a positive integer µ, we consider µ× µ matrix pencils Nµ and Kµ defined by

Nµ =




1 s 0 · · · 0

0 1 s
. . .

...
...

. . . . . . . . . 0
...

. . . 1 s

0 · · · · · · 0 1




, Kµ =




s 1 0 · · · 0

0 s 1
. . .

...
...

. . . . . . . . . 0
...

. . . s 1

0 · · · · · · 0 s




.

For a positive integer ε, we further denote by Lε an ε× (ε + 1) matrix pencil

Lε =




s 1 0 · · · 0

0 s 1
. . .

...
...

. . . . . . . . . 0

0 · · · 0 s 1




.
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We also denote by L>η the transpose matrix of Lη.

The following theorem establishes the Kronecker canonical form of matrix pencils

under strict equivalence transformations. See [4, §5.1.3 ] for its proof.

Theorem 2.1 (Kronecker, Weierstrass) For any matrix pencil D(s), there exists

a pair of nonsingular constant matrices U and V such that D̄(s) = UD(s)V is in a

block-diagonal form

D̄(s) = block-diag(Hν ,Kρ1 , · · · ,Kρc , Nµ1 , · · · , Nµd
, Lε1 , · · · , Lεp , L

>
η1

, · · · , L>ηq
, O),

where ρ1 ≥ · · · ≥ ρc > 0, µ1 ≥ · · · ≥ µd > 0, ε1 ≥ · · · ≥ εp > 0, η1 ≥ · · · ≥ ηq > 0, and

Hν is a strictly regular matrix pencil of size ν. The numbers c, d, p, q, ν, ρ1, · · · , ρc,

µ1, . . . , µd, ε1, · · · , εp, η1, · · · , ηq are uniquely determined.

The block-diagonal matrix pencil D̄(s) in Theorem 2.1 is often referred to as the

Kronecker canonical form of D(s). The numbers µ1, . . . , µd are called the indices of

nilpotency. The numbers ε1, · · · , εp and η1, · · · , ηq are the minimal column and row

indices, respectively. These numbers together with ν, ρ1, · · · , ρc are collectively called

the structural indices of D(s).

For an m× n matrix pencil D(s) = sA + B, we construct a (k + 1)m× kn matrix

Ψk(D) and a km× (k + 1)n matrix Φk(D) defined by

Ψk(D) =




A O · · · O

B A
. . .

...

O B
. . . O

...
. . . . . . A

O · · · O B




, Φk(D) =




B A O · · · O

O B A
. . .

...
...

. . . . . . . . . O

O · · · O B A




.

We denote ψk(D) = rankΨk(D) and ϕk(D) = rank Φk(D). We also construct a pair

of km× kn matrices Θk(D) and Ωk(D) defined by

Θk(D) =




A O · · · · · · O

B A
. . .

...

O B
. . . . . .

...
...

. . . . . . A O

O · · · O B A




, Ωk(D) =




B A O · · · O

O B A
. . .

...
...

. . . . . . . . . O
...

. . . B A

O · · · · · · O B




.

We denote θk(D) = rankΘk(D) and ωk(D) = rank Ωk(D). Then it is easy to see that

the ranks of these expanded matrices are expressed by the structural indices as follows.
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Theorem 2.2 Let (ν, ρ1, · · · , ρc, µ1, . . . , µd, ε1, . . . , εp, η1, . . . , ηq) be structural indices

of a matrix pencil D(s). Then we have

ψk(D) = rk +
p∑

i=1

min{k, εi}, ϕk(D) = rk +
q∑

i=1

min{k, ηi},

θk(D) = rk −
d∑

i=1

min{k, µi}, ωk(D) = rk −
c∑

i=1

min{k, ρi},

where r is the rank of D(s).

3 Linking Systems

Let S and T be a pair of finite sets. Let Λ be a nonempty collection of pairs of subsets

of S and T . Then the triple (S, T,Λ) is a linking system if it satisfies the following

axioms.

(L1) If (X, Y ) ∈ Λ, then |X| = |Y |.

(L2) If (X, Y ) ∈ Λ and x ∈ X, then there exists y ∈ Y such that (X\{x}, Y \{y}) ∈ Λ.

(L3) If (X, Y ) ∈ Λ and y ∈ Y , then there exists x ∈ X such that (X\{x}, Y \{y}) ∈ Λ.

(L4) If (X,Y ) ∈ Λ and (X ′, Y ′) ∈ Λ, then there exists (X◦, Y ◦) ∈ Λ such that

X ⊆ X◦ ⊆ X ∪ Y and Y ′ ⊆ Y ◦ ⊆ X ′ ∪ Y ′.

A member of Λ is called a linked pair. The sets S and T are respectively called the

row set and the column set of Λ.

The rank function λ : 2S × 2T → Z of L = (S, T,Λ) defined by

λ(X, Y ) = max{|W | | (W,Z) ∈ Λ, W ⊆ X, Z ⊆ Y } (X ⊆ S, Y ⊆ T )

satisfies the following properties.

(R1) 0 ≤ λ(X,Y ) ≤ min{|X|, |Y |} for any X ⊆ S and Y ⊆ T .

(R2) λ(X, Y ) ≤ λ(X ′, Y ′) for any X ⊆ X ′ ⊆ S and Y ⊆ Y ′ ⊆ T .

(R3) λ(X, Y ) + λ(X ′, Y ′) ≥ λ(X ∪X ′, Y ∩ Y ′) + λ(X ∩X ′, Y ∪ Y ′) for any X,X ′ ⊆ S

and Y, Y ′ ⊆ T .
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In particular, (R3) is referred to as linking bisubmodularity. The rank of L, denoted

by r(L), is the maximum size |X| of a linked pair (X,Y ) ∈ Λ, i.e., r(L) = λ(S, T ).

Alternatively, we may define linking systems in terms of rank functions satisfying

the above (R1)–(R3). Then the family Λ of linked pairs is determined by

Λ = {(X, Y ) | λ(X, Y ) = |X| = |Y |, X ⊆ S, Y ⊆ T}.

A principal example of linking systems comes from matrices. Let A be a matrix

with row set S and column set T . For a pair of X ⊆ S and Y ⊆ T , we denote by

A[X, Y ] the submatrix of A indexed by X and Y . Then L(A) = (S, T,Λ(A)) is a

linking system, where

Λ(A) = {(X,Y ) | rankA[X, Y ] = |X| = |Y |, X ⊆ S, Y ⊆ T}.

The rank function λ of L(A) is given by

λ(X,Y ) = rankA[X, Y ],

which satisfies(R1)–(R3).

For a pair of linking systems L = (S, T,Λ) and L′ = (S′, T ′, Λ′), the union L∨L′ =
(S ∪ S′, T ∪ T ′, Λ ∨ Λ′) defined by

Λ ∨ Λ′ = {(X ∪X ′, Y ∪ Y ′) | X ∩X ′ = ∅, Y ∩ Y ′ = ∅, (X,Y ) ∈ Λ, (X ′, Y ′) ∈ Λ′}

is a linking system. Note that S ∩ S′ and T ∩ T ′ can be nonempty.

Lemma 3.1 Let λ and λ′ be the rank functions of L = (S, T, Λ) and L′ = (S′, T ′,Λ′).
Then the rank function λ ∨ λ′ of L ∨ L′ is given by

(λ∨ λ′)(X, Y ) = min
W⊆X,Z⊆Y

{λ(W ∩ S,Z ∩ T ) + λ′(W ∩ S′, Z ∩ T ′) + |X \W |+ |Y \Z|}.

The union of linking systems is analogous to the addition of matrices. Similarly,

multiplication of linking systems is defined as follows. For a pair of linking systems

A = (R,S,Λ) and B = (S, T,Ξ), the multiplication is defined by A ∗B = (R, T,Λ ∗Ξ)

with

Λ ∗ Ξ = {(W,Y ) | ∃X ⊆ S, (W,X) ∈ Λ, (X,Y ) ∈ Ξ}.
Let I = (S, S,∆) denote the diagonal linking system with ∆ = {(X,X) | X ⊆ S}.
Then we have the following lemma.

Lemma 3.2 The rank of A ∗B satisfies

r(A ∗B) = r(A ∨ I ∨B)− |S|.
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4 Matroid Pencils

A matroid pencil is a pair of linking systems having the row/column sets in common.

Consider a matroid pencil (A,B) with A = (S, T,Λ) and B = (S, T,Ξ). The rank of

(A,B) is defined by the rank of A∨B, which we denote by r throughout this section.

We now introduce combinatorial counterparts of expanded matrices. For a positive

integer j, let Sj and Tj be distinct copies of S and T , respectively. Furthermore, let

Aj = (Sj , Tj ,Λj) and Bj = (Sj+1, Tj , Ξj) be the copies of A and B, respectively.

For each positive integer k, consider the unions:

Ψk(A,B) = A1 ∨B1 ∨A2 ∨ · · · ∨Ak ∨Bk,

Φk(A,B) = B1 ∨A2 ∨B2 ∨ · · · ∨Bk ∨Ak+1,

Θk(A,B) = A1 ∨B1 ∨A2 ∨ · · · ∨Bk−1 ∨Ak,

Ωk(A,B) = B1 ∨A2 ∨B2 ∨ · · · ∨Ak ∨Bk.

We denote the ranks of by Ψk(A,B), Φk(A,B), Θk(A,B), and Ωk(A,B) by ψk, ϕk,

θk, and ωk, respectively. Note that ϕk is equal to the rank of Ψk(B,A) and ωk is the

rank of Θk(B,A). For k = 0, we set ψ0 = ϕ0 = θ0 = ω0 = 0. Obviously, these four

sequences are monotone nondecreasing in k. The following lemmas show that ψk and

ϕk are concave in k while θk and ωk are convex in k.

Lemma 4.1 For any k > 0, we have 2ψk ≥ ψk−1 + ψk+1 and 2ϕk ≥ ϕk−1 + ϕk+1.

Proof. Let σ be the rank function of Ψk+1(A,B). Let S∗ and T ∗ denote the row and

column sets of Ψk+1(A,B), respectively. For Z = T2 ∪ · · · ∪ Tk, we have

σ(S∗, T1 ∪ Z) + σ(S∗, Z ∪ Tk+1) ≥ σ(S∗, T ∗) + σ(S∗, Z)

by the linking bisubmodularity of σ. Note that ψk = σ(S∗, T1 ∪ Z) = σ(S∗, Z ∪ Tk+1),

ψk−1 = σ(S∗, Z) and ψk+1 = σ(S∗, T ∗). Thus we obtain 2ψk ≥ ψk−1 + ψk+1. By

interchanging the roles of A and B, we also obtain 2ϕk ≥ ϕk−1 + ϕk+1.

Lemma 4.2 For any k > 0, we have 2θk ≤ θk−1 + θk+1 and 2ωk ≤ ωk−1 + ωk+1.

Proof. Let σ denote the rank function of Θk+1. Let S∗ and T ∗ denote the row and

column sets of Θk+1. For X = S1 ∪ · · · ∪ Sk and Y = T2 ∪ · · · ∪ Tk+1, we have

σ(X, Y ) + σ(S∗, T ∗) ≥ σ(X, T ∗) + σ(S∗, Y )
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by the linking bisubmodularity of σ. Note that θk−1 = σ(X,Y ), θk+1 = σ(S∗, T ∗) and

θk = σ(X, T ∗) = σ(S∗, Y ). Thus we obtain 2θk ≤ θk−1 + θk+1. By interchanging the

roles of A and B, we obtain 2ωk ≤ ωk−1 + ωk+1.

Let λ and ξ be the rank functions of A = (S, T,Λ) and B = (S, T,Ξ), respectively.

Then the rank r of (A,B) is given by

r = min
W⊆S,Z⊆T

{λ(W,Z) + ξ(W,Z) + |S \W |+ |T \ Z|}.

A pair (W,Z) that attains the minimum in the right hand side is called a minimum

cover of A ∨B. A pair of (X, Y ) ∈ Λ and (X ′, Y ′) ∈ Ξ is called a maximum linking if

it satisfies X ∩X ′ = ∅, Y ∩ Y ′ = ∅ and |X|+ |X ′| = r.

Lemma 4.3 Let (W,Z) be a minimum cover of A∨B. Then we have ψk ≤ rk+|S\W |
and ϕk ≤ rk + |T \ Z|.

Proof. Let S∗ and T ∗ denote the row and column sets of Ψk(A,B). That is, S∗ =

S1∪· · ·∪Sk+1 and T ∗ = T1∪· · ·∪Tk. Let Wj ⊆ Sj be the copies of W for j = 1, . . . , k+1

and Zj ⊆ Tj the copies of Z for j = 1, . . . , k. Put W ∗ = W1 ∪ · · · ∪ Wk+1 and

Z∗ = Z1 ∪ · · · ∪ Zk. Then we have

ψk ≤ (λ1 ∨ · · · ∨ λk)(W ∗, Z∗) + (ξ1 ∨ · · · ∨ ξk)(W ∗, Z∗) + |S∗ \W ∗|+ |T ∗ \ Z∗|
= k λ(W,Z) + k ξ(W,Z) + (k + 1) |S \W |+ k |T \ Z| = rk + |S \W |.

By interchanging the roles of A and B, we obtain ϕk ≤ rk + |T \ Z|.

Lemma 4.4 Let (W,Z) be a minimum cover of A∨B. Then we have θk ≤ rk−ξ(W,Z)

and ωk ≤ rk − λ(W,Z) for any k.

Proof. Let S∗ and T ∗ denote the row and column sets of Θk(A,B). That is, S∗ =

S1 ∪ · · · ∪Sk and T ∗ = T1 ∪ · · · ∪ Tk. Let Wj ⊆ Sj and Zj ⊆ Tj be the copies of W and

Z, respectively. Then W ∗ = W1 ∪ · · · ∪Wk and Z∗ = Z1 ∪ · · · ∪ Zk satisfy

θk ≤ (λ1 ∨ · · · ∨ λk)(W ∗, Z∗) + (ξ1 ∨ · · · ∨ ξk−1)(W ∗, Z∗) + |S∗ \W ∗|+ |T ∗ \ Z∗|
= k λ(W,Z) + (k − 1) ξ(W,Z) + k |S \W |+ k |T \ Z| = rk − ξ(W,Z).

By interchanging the roles of A and B, we obtain ωk ≤ rk − λ(W,Z).

8



Lemma 4.5 Let (X, Y ) ∈ Λ and (X ′, Y ′) ∈ Ξ be a maximum linking. Then we have

ψk ≥ rk and ϕk ≥ rk for any k.

Proof. Let Xj , X
′
j ⊆ Sj be the copies of X, X ′ ⊆ S for j = 1, . . . , k + 1 and Yj , Y

′
j ⊆ Tj

the copies of Y, Y ′ ⊆ T for j = 1, . . . , k. Put X∗ = X1 ∪ · · · ∪Xk ∪X ′
2 ∪ · · · ∪X ′

k+1 and

Y ∗ = Y1 ∪ · · · ∪ Yk ∪ Y ′
1 ∪ · · · ∪ Y ′

k. Then (X∗, Y ∗) is a linked pair in Ψk(A,B). Hence

we have ψk ≥ k |X| + k |X ′| = rk. By interchanging the roles of A and B, we obtain

ϕk ≥ rk.

Lemma 4.6 Let (X, Y ) ∈ Λ and (X ′, Y ′) ∈ Ξ be a maximum linking. Then we have

θk ≥ rk − |X ′| and ωk ≥ rk − |X|.

Proof. Let Xj , X
′
j ⊆ Sj be the copies of X, X ′ ⊆ S and Yj , Y

′
j ⊆ Tj the copies of

Y, Y ′ ⊆ T for j = 1, . . . , k. Put X∗ = X1 ∪ · · · ∪ Xk ∪ X ′
2 ∪ · · · ∪ X ′

k and Y ∗ =

Y1 ∪ · · · ∪ Yk ∪ Y ′
1 ∪ · · · ∪ Y ′

k−1. Then (X∗, Y ∗) is a linked pair in Θk(A,B). Hence we

have θk ≥ k |X|+ (k − 1) |X ′| = rk − |X ′|. By interchanging the roles of A and B, we

obtain ωk ≥ rk − |X|.

Lemma 4.7 For any k, we have θk+1 − θk ≤ r and ωk+1 − ωk ≤ r.

Proof. This is immediate from Lemmas 4.2 and 4.4.

Lemma 4.8 For any k, we have ψk+1 − ψk ≥ r and ϕk+1 − ϕk ≥ r.

Proof. This is immediate from Lemmas 4.1 and 4.5.

Lemma 4.9 If k ≥ r, we have ψk+1 − ψk = ϕk+1 − ϕk = r.

Proof. Since ψk is concave in k by Lemma 4.1, it follows from Lemmas 4.3 and 4.8 that

there exists an integer h such that ψk+1 − ψk = r holds for any k ≥ h. Let ` be the

smallest such h. Then by Lemma 4.1, we have ψ` ≥ (r + 1)`. On the other hand, a

minimum cover (W,Z) of A ∨B satisfies ψ` ≤ r` + |S \W | by Lemma 4.3. Therefore,

we have ` ≤ |S \W | ≤ r. Thus we obtain ψk+1 − ψk = r for k ≥ r. Similarly, we also

obtain ϕk+1 − ϕk = r for k ≥ r.

Lemma 4.10 If k ≥ r, we have θk+1 − θk = ωk+1 − ωk = r.

9



Proof. Since θk is convex in k by Lemma 4.2, it follows from Lemmas 4.6 and 4.7 that

there exists an integer h such that θk+1 − θk = r holds for any k ≥ h. Let ` be the

smallest such h. Then by Lemma 4.2, we have θ` ≤ (r − 1)`. On the other hand, for a

maximum linking (X, Y ) ∈ Λ and (X ′, Y ′) ∈ Ξ, we have θ` ≥ r`− |X ′| by Lemma 4.6.

Therefore, we have ` ≤ |X| ≤ r. Thus we obtain θk+1− θk = r for k ≥ r. Similarly, we

also obtain ωk+1 − ωk = r for k ≥ r.

Lemma 4.11 For any k, we have ψk + ϕk − θk − ωk ≤ r.

Proof. Let S∗ and T ∗ denote the row and column sets of Θk+1(A,B). That is, S∗ =

S1 ∪ · · · ∪ Sk+1 and T ∗ = T1 ∪ · · · ∪ Tk+1. We also denote S◦ = S2 ∪ · · · ∪ Sk+1 and

T ◦ = T1∪· · ·∪Tk. By the linking bisubmodularity of the rank function σ of Θk+1(A,B),

we have

σ(S∗, T ∗) + σ(S◦, T ◦) ≥ σ(S∗, T ◦) + σ(S◦, T ∗).

Since θk+1 = σ(S∗, T ∗), ωk = σ(S◦, T ◦), ψk = σ(S∗, T ◦) and ϕk = σ(S◦, T ∗), this can

be rewritten as θk+1+ωk ≥ ψk+ϕk. Therefore, we have ψk+ϕk−θk−ωk ≤ θk+1−θk ≤ r

by Lemma 4.7.

Lemma 4.11 leads us to the definition of ν(A,B) = r − ψr − ϕr + θr + ωr ≥ 0,

which is analogous to the size of the strictly regular block in the Kronecker canonical

form. For a matrix pencil D(s) = sA + B, consider a matroid pencil (L(A),L(B)). It

is not always true that ν(A,B) is equal to the size of the strictly regular block in the

Kronecker canonical form D̄(s) of D(s). A recent result in [1] implies that the equality

holds if D(s) is a generic matrix pencil, i.e., if the nonzero entries in A and B are

independent parameters.

5 Periodic Linking

In this section, we investigate a periodic structure of Θk(A,B). Recall that a linked

pair (X∗, Y ∗) in Θk(A,B) consists of disjoint sums X∗ = X1 ∪ · · · ∪Xk ∪X ′
2 ∪ · · · ∪X ′

k

and Y ∗ = Y1 ∪ · · · ∪ Yk ∪ Y ′
1 ∪ · · · ∪ Y ′

k−1 such that (Xj , Yj) ∈ Λj for j = 1, . . . , k

and (X ′
j+1, Y

′
j ) ∈ Ξj for j = 1, . . . , k − 1. Then a linked pair (X∗, Y ∗) with such a

decomposition is said to be a periodic linking if (Xj , Yj) are the copies of the same

(X,Y ) ∈ Λ for j = 1, . . . , k and (X ′
j+1, Y

′
j ) are the copies of the same (X ′, Y ′) ∈ Ξ for

j = 1, . . . , k−1. This section is to show that a maximum size |X∗| = |Y ∗| of a periodic

linking (X∗, Y ∗) in Θk is equal to the rank θk.

10



Let (X ∪X ′, Y ∪Y ′) be a linked pair of A∨B such that (X, Y ) ∈ Λ and (X ′, Y ′) ∈
Ξ. Then the periodic linking (X∗, Y ∗) determined by (X, Y ) and (X ′, Y ′) is of size

k |X|+ (k − 1) |X ′|.
Given a linked pair (X,Y ) ∈ Λ, we construct an auxiliary directed graph GA(X,Y ) =

(S ∪ T, E) with vertex set S ∪ T and arc set E = ES ∪ ET ∪ E+ ∪ E− defined by

ES = {(u, v) | u ∈ S \X, v ∈ X, (X ∪ {u} \ {v}, Y ) ∈ Λ},
ET = {(u, v) | u ∈ Y, v ∈ T \ Y, (X,Y ∪ {v} \ {u}) ∈ Λ},
E+ = {(u, v) | u ∈ S \X, v ∈ T \ Y, (X ∪ {u}, Y ∪ {v}) ∈ Λ},
E− = {(u, v) | u ∈ Y, v ∈ X, (X \ {v}, Y \ {u}) ∈ Λ}.

Similarly, for a linked pair (X ′, Y ′) ∈ Ξ, we also construct an auxiliary directed graph

GB(X ′, Y ′) = (S ∪ T, F ). Furthermore, the auxiliary directed graph for a linked pair

(X ∪ X ′, Y ∪ Y ′) in A ∨ B is the superposition of GA(X,Y ) and GB(X ′, Y ′). For

simplicity we denote this graph by GA∨B = (S ∪ T, E ∪ F ).

The linked pair (X ∪X ′, Y ∪ Y ′) in A ∨B determines a periodic linking (X∗, Y ∗).
Let S∗ and T ∗ denote the row and column sets of Θk(A,B). That is, S∗ = S1∪· · ·∪Sk

and T ∗ = T1∪· · ·∪Tk. For j = 1, . . . , k, let Ej denote the edge set of GAj (Xj , Yj). For

j = 1, . . . , k − 1, let Fj denote the edge set of GBj (Xj+1, Yj). The auxiliary directed

graph GΘk(A,B) = (S∗ ∪ T ∗, E∗ ∪ F ∗) for (X∗, Y ∗) is given by E∗ = E1 ∪ · · · ∪ Ek and

F ∗ = F1 ∪ · · · ∪ Fk−1.

Lemma 5.1 Suppose (X, Y ) ∈ Λ and (X ′, Y ′) ∈ Ξ form a linking in A ∨ B that

maximizes k |X|+ (k − 1) |X ′|. Then the periodic linking (X∗, Y ∗) that consists of the

copies of (X,Y ) and (X ′, Y ′) is a maximum linking in Θk(A,B).

Proof. If (X∗, Y ∗) is not a maximum linking, there exists a directed path from S∗ \X∗

to T ∗ \ Y ∗ in GΘk(A,B). Let P ∗ be such a path with minimum number of arcs. The

corresponding set of arcs in GA,B forms a directed path from S \ X to T \ Y . Note

that P does not include a cycle. Let S(P ) and T (P ) denote the sets of vertices in S

and T , respectively, along P . Then the symmetric differences XP = X4S(P ), YP =

Y4T (P ), X ′
P = X ′4S(P ) and Y ′

P = Y ′4T (P ) form new linked pairs (XP , YP ) ∈ Λ

and (X ′
P , Y ′

P ) ∈ Ξ.

Let s and t be the initial and terminal vertices of P . Suppose that P ∗ starts from Sh

and terminates in T`. Then we have k |XP |+(k−1) |X ′
P | = k |X|+(k−1) |X ′|+k+`−h.

If s /∈ X ′ and t /∈ Y ′, then XP ∩X ′
P = ∅ and YP ∩Y ′

P = ∅, which implies that (XP , YP )
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and (X ′
P , Y ′

P ) form a linking in A∨B. Since k + `− h > 0, this contradicts the choice

of (X, Y ) and (X ′, Y ′). If s ∈ X ′ and t /∈ Y ′, we have XP ∩X ′
P = {s}, YP ∩Y ′

P = ∅, and

h = 1. By (L2), there exists v ∈ Y ′
P such that (X ′

P \ {s}, Y ′
P \ {v}) ∈ Ξ. Thus (XP , YP )

and (X ′
P \ {s}, Y ′

P \ {v}) form a linking in A ∨ B with k |XP | + (k − 1) |X ′
P \ {s}| =

k |X|+ (k− 1) |X ′|+ `, which contradicts the choice of (X,Y ) and (X ′, Y ′). Similarly,

if s /∈ X ′ and t ∈ Y ′, we have XP ∩X ′
P = ∅, YP ∩ Y ′

P = {t}, and ` = k. By (L3), there

exists u ∈ X ′ such that (X ′
P \{u}, Y ′

P \{t}) ∈ Ξ. Thus (XP , YP ) and (X ′
P \{u}, Y ′

P \{t})
form a linking in A∨B with k |XP |+(k−1) |X ′

P \{u}| = k |X|+(k−1) |X ′|+k+1−h,

which contradicts the choice of (X, Y ) and (X ′, Y ′). Finally, if s /∈ X ′ and t ∈ Y ′, we

have XP ∩ X ′
P = ∅, YP ∩ Y ′

P = {t}, h = 1 and ` = k. It follows from (L2) and

(L3) that (X ′
P \ {s}, Y ′

P \ {t}) ∈ Ξ or there exist u ∈ X ′ and v ∈ Y ′ such that

(X ′
P \ {s, u}, Y ′

P \ {t, v}) ∈ Ξ. In the former case, (XP , YP ) and (X ′
P \ {s}, Y ′

P \ {t})
form a linking in A ∨ B with k |XP | + (k − 1) |X ′

P \ {s}| = k |X| + (k − 1) |X ′| + k.

In the latter case, (XP , YP ) and (X ′
P \ {s, u}, Y ′

P \ {t, v}) form a linking in A ∨ B

with k |XP | + (k − 1) |X ′
P \ {s, u}| = k |X| + (k − 1) |X ′| + 1. In either case, we have

contradiction to the choice of (X,Y ) and (X ′, Y ′). Thus we may conclude that (X∗, Y ∗)
is a maximum size linking in Θk(A,B).

Theorem 5.2 For a matroid pencil (A,B), we have

θk(A,B) = max{k |X|+(k−1) |X ′| | (X, Y ) ∈ Λ, (X ′, Y ′) ∈ Ξ, X∩X ′ = ∅, Y ∩Y ′ = ∅}.

6 Eigensets and Power Products

In this section, we give an alternative proof to a theorem of Murota [3] on maximum

eigensets and the ranks of power products of linking systems.

Let A = (S, S,Λ) be a linking system whose row set and column set are identical.

Murota [3] introduced the concept of eigenset of such a linking system and investigated

its connection to power products. A subset X ⊆ S is called an eigenset if (X, X) ∈ Λ.

Let Ak denote the k-th power product A ∗ · · · ∗ A of A. Then r(Ak) is monotone

nonincreasing and convex in k. Hence there exists ` ≤ |S| such that r(Ak) = r(Ak+1)

holds for k ≥ `. We denote this rank by r(A∞). The following theorem characterizes

r(A∞) in terms of eigensets.

Theorem 6.1 (Murota [3]) For a linking system A = (S, S,Λ), we have

r(A∞) = max{|X| | (X, X) ∈ Λ}.
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We now present an alternative proof of this result using Theorem 5.2. Consider a

matroid pencil (A, I) with diagonal linking system I = (S, S,∆) and denote the rank

of Θk(A, I) by θk(A, I). Then it follows from Lemma 3.2 that

r(Ak) = θk(A, I)− (k − 1) |S|.

Therefore, the following lemma completes the proof of Theorem 6.1.

Lemma 6.2 For k ≥ |S|, we have

θk(A, I) = (k − 1) |S|+ max{|X| | (X,X) ∈ Λ}.

Proof. Applying Theorem 5.2 to (A, I), we obtain

θk(A, I) = max{k |X|+ (k − 1) |Z| | (X, Y ) ∈ Λ, X ∩ Z = ∅, Y ∩ Z = ∅}.

Taking (X,Y ) = (∅, ∅) and Z = S in the right hand side, we observe θk ≥ (k − 1) |S|.
If |X|+ |Z| < |S|, we have k |X|+(k− 1) |Z| ≤ (k− 1) |S| − (k− 1)+ |X| ≤ (k− 1) |S|,
where the last inequality follows from |X| < |S| ≤ k. This implies that the maximum

of the right hand side must be attained by some X ⊆ S and Z = S \ X. Thus we

obtain

θk(A, I) = max{k |X|+ (k − 1) |S \X| | (X, X) ∈ Λ},

which is obviously equivalent to the desired formula.

For a square matrix A, consider a linking system A = L(A). It should be noted

that Ak can be different from L(Ak). A theorem of Poljak [5], however, shows that

rankAk = r(Ak) holds if A is a generic matrix, i.e., if the nonzero entries of A are

independent parameters. An alternative proof for this theorem is also described in [1].
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