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Exploiting Sparsity in the Matrix-Dilation Approach to

Robust Semidefinite Programming∗

Yasuaki Oishi† and Yusuke Isaka†

A computationally improved approach is proposed for a robust semidefinite programming
problem whose constraint is polynomially dependent on uncertain parameters. By exploit-
ing sparsity, the proposed approach gives an approximate problem smaller in size than the
matrix-dilation approach formerly proposed by the group of the first author. Here, the
sparsity means that the constraint of the given problem has only a small number of nonzero
terms when it is expressed as a polynomial of the uncertain parameters. This sparsity is
extracted with a special graph called a rectilinear Steiner arborescence, based on which a
reduced-size approximate problem is constructed. The quality of the approximation can
be evaluated quantitatively. This evaluation shows that the quality can be improved to
any level by dividing the parameter region into small subregions.

Keywords: robust semidefinite programming, linear matrix inequalities, matrix dilation,
sparsity, rectilinear Steiner arborescences, computational cost, conservatism.

1. Introduction

Robust semidefinite programming (robust SDP in short) is an important optimization problem

that has many applications in nonlinear optimization and robust control. See [1, 9, 3, 5, 31]

for surveys. It is an optimization of a linear objective function subject to a linear matrix

inequality (LMI in short) constraint whose coefficients depend on uncertain parameters. The

LMI constraint is required to be satisfied for all possible parameter values. A robust SDP is

difficult to solve in general. Indeed, it is proven to be NP-hard even in a simple case that

the parameter dependence of the constraint is affine and the parameter region is box-shaped

[21]. Hence, approximate approaches have been considered [2, 10, 4, 5], where a usual and thus

solvable SDP problem is constructed as an approximation of a given robust SDP problem.

In general, there is a nonzero approximation error between the optimal values of the origi-

nal robust SDP problem and the constructed approximate problem. Recently, asymptotically

exact approaches were proposed in the case of polynomial parameter dependence. In these

approaches, one can reduce the approximation error to any level by allowing the increase of the
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size of the approximate problem, that is, the increase of the number of variables and/or the

increase of the size of the LMI constraints. More interestingly, it is reported that an approx-

imate problem of a finite size often gives an almost exact result. In particular, Ohara–Sasaki

[22] and Bliman [6] proposed an approach based on the Kalman–Yakubovich–Popov lemma,

Scherer [30] an approach based on Pólya’s theorem, Scherer–Hol [32] an approach based on

the sum of squares (SOS in short; see also the works of Lasserre [16], Parrilo [24], and Kojima

[13]), and the group of the first author an approach based on matrix dilation [11, 23]. On the

other hand, these approaches have a computational drawback. Namely, when they are applied

to a practical problem, the constructed approximate problem often becomes too large for the

currently available SDP solvers. This may be a natural consequence of the difficulty of the

original problem. However, still there is a possibility that a small-size approximate problem is

constructed for a special class of robust SDP problems of practical importance.

In this paper, we consider reduction of the size of the approximate problem in the matrix-

dilation approach. The key idea is to assume a kind of sparsity in the given robust SDP

problem and to exploit it with a special graph called a rectilinear Steiner arborescence. To

be specific, suppose that the LMI constraint of the given robust SDP problem polynomially

depends on a p-dimensional uncertain parameter θ = [θ1 θ2 · · · θp]
T. Let di denote the

maximum degree of the LMI constraint as a polynomial in θi for each of i = 1, 2, . . . , p. Then,

in general, the LMI constraint has
∏p

i=1(di + 1) terms when it is expressed as a polynomial

in θ. In the matrix-dilation approach of [23], all of these terms are supposed to have nonzero

coefficients. However, this is not believed to be the case in many practical problems. We

assume in this paper that only a small number of terms has nonzero coefficients. We express

these nonzero terms as integral points in the p-dimensional Euclidean space and construct a

rectilinear Steiner arborescence covering these points. Using the properties of the rectilinear

Steiner arborescence, we can construct an approximate problem. The size of the arborescence

determines the size of the resulting approximate problem, which is always smaller than or equal

to that of the approximate problem in [23]. The discrepancy is especially evident when the

number of nonzero terms is small and the degrees di are high.

Even with the above improvement, an advantage of the matrix-dilation approach is still

kept. Namely, an a priori upper bound can be obtained on the approximation error. This

upper bound can be reduced to any level by dividing the parameter region into small subregions.

Hence, the asymptotic exactness of the approach is guaranteed. The upper bound is also useful

in making a good approximation with a small computational cost. No corresponding result

has been obtained in other asymptotically exact approaches though an attempt toward this

direction is found in [7].

In the recent works [27, 29], an approach close to [11, 23] is independently taken for special
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robust SDP problems related to robust control. The reduction technique in the present paper

is readily applicable to these problems. Exploitation of sparsity has been considered in the

SOS approach [25, 12, 14, 35, 17, 15]. The techniques for the exploitation are, however, quite

different from the present one. Comparison with these techniques is a future research subject.

The construction of this paper is as follows. Section 2 provides a robust SDP problem as

well as the outline of the matrix-dilation approach. The succeeding two sections provide main

results of this paper. In particular, Section 3 gives a reduced-size approximate problem while

Section 4 provides an upper bound on the approximation error. After a numerical example is

presented in Section 5, the paper is concluded in Section 6.

The symbol Rp stands for the set of p-dimensional real vectors while Zp
+ stands for the set of

p-dimensional vectors of nonnegative integers. The symbol T denotes the transpose of a matrix

or a vector. For θ = [θ1 θ2 · · · θp]
T ∈ Rp and α = [α1 α2 · · · αp]

T ∈ Zp
+, the symbol θα

means the product θα1
1 θα2

2 · · · θαp
p . The symbols Oq×r and Iq designate the q× r zero matrix and

the q × q identity matrix, respectively. The sizes of these matrices are omitted when they are

obvious from the context. The maximum singular value of a matrix A is written as σ(A). For

a real symmetric matrix A, the inequality A º O means that A is positive semidefinite, that

is, xTAx is nonnegative for any real vector x. Similarly, A Â O expresses that A is positive

definite. For two real symmetric matrices A and B, the inequality A º B means A− B º O.

The Kronecker product of two (not necessarily symmetric) matrices A = (aij) and B is defined

as

A⊗B :=




a11B · · · a1rB
...

...

aq1B · · · aqrB


 .

There hold (A⊗B)T = AT⊗BT and (A⊗B)(C⊗D) = (AC)⊗(BD) for matrices of appropriate

sizes. For a set S, the symbol |S| denotes its cardinality.

2. A robust SDP problem and the matrix-dilation ap-

proach

In this section, we present a robust SDP problem as well as the outline of the matrix-dilation

approach, which was proposed in [11] and analyzed in [23].

A robust SDP problem considered in this paper is the following:

P : minimize cTx

subject to E(x) º O, F (x, θ) º O (∀θ ∈ Θ).
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Here, c ∈ Rn is a given vector; x = [x1 x2 · · · xn]T ∈ Rn is an optimization variable; θ =

[θ1 θ2 · · · θp]
T ∈ Θ is an uncertain parameter; its domain Θ is a polytope in Rp with a

nonempty interior; E(x) is a function affine in x, whose value is an `× ` real symmetric matrix;

F (x, θ) is a function affine in x and polynomial in θ, whose value is an m×m real symmetric

matrix. We denote by di the maximum degree of F (x, θ) as a polynomial in θi for i = 1, 2, . . . , p.

With V0 := {α ∈ Zp
+ | 0 ≤ αi ≤ di for i = 1, 2, . . . , p}, we can write F (x, θ) =

∑
α∈V0

Fα(x)θα.

Note that |V0| =
∏p

i=1(di+1). We can assume that maxi=1,2,...,p di ≥ 1 without loss of generality.

Otherwise, F (x, θ) º O is independent of θ and the problem P is easy to solve.

It is difficult to solve the problem P directly. The matrix-dilation approach of [11, 23] is

an approximate approach to overcome this difficulty, which is a generalization of the robust

control technique of Masubuchi–Shimemura [19] within the framework of matrix dilation [8, 26].

The difficulty of P originates from the semi-infinite constraint F (x, θ) º O (∀θ ∈ Θ). In the

matrix-dilation approach, this semi-infinite constraint is replaced by its sufficient condition

expressed as a finite number of usual LMI constraints. Construction of the sufficient condition

is based on matrix dilation and division of the parameter region. The approximate problem

thus obtained has the minimum value, in general, larger than that of the original problem P .

The approximation error converges to zero, however, as the maximum size of the subregions

tends to zero.

In order to present the approximate problem explicitly, we define

F∗(x) := [Fα(2)(x) Fα(3)(x) · · · Fα(|V0|)(x)],

G(x) :=

[
2Fα(1)(x) F∗(x)

F∗(x)T O

]
,

M(θ) := [θα(1)

Im θα(2)

Im · · · θα(|V0|)Im]T,

where α(1), α(2), . . . , α(|V0|) are the elements of V0 with α(1) being the origin. The matrix G(x) is

|V0|m× |V0|m while the matrix M(θ) is |V0|m×m. They satisfy 2F (x, θ) = M(θ)TG(x)M(θ).

Furthermore, we consider a |V0|m × (|V0| − 1)m matrix H(θ) such that the square matrix

[M(θ) H(θ)] is nonsingular and the relation M(θ)TH(θ) = O holds for all θ ∈ Rp. Such H(θ)

is called an orthogonal complement of M(θ). The key fact is that the orthogonal complement

H(θ) can be chosen to be affine in θ [23]. This establishes the following fact, which provides a

basis for the present approach.

Lemma 1. Let x be any point in Rn and θ(1), θ(2), . . ., θ(Q) be any points in Rp. Then, F (x, θ) º
O holds for all θ in the convex hull of {θ(1), θ(2), . . . , θ(Q)} if there exists W satisfying

G(x) + H(θ(q))WT + WH(θ(q))T º O (∀q = 1, 2, . . . , Q). (1)
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Proof. Choose any θ in the convex hull of {θ(1), θ(2), . . . , θ(Q)} and express it as a convex

combination. Convex combination of (1) with the same coefficients gives G(x) + H(θ)WT +

WH(θ)T º O for the chosen θ because of the affinity of H(θ). Premultiplication of M(θ)T and

postmultiplication of M(θ) to this inequality provide M(θ)TG(x)M(θ) = 2F (x, θ) º O. ¤

We now formally state the matrix-dilation approach. Let ∆ = {Θ[j]}J
j=1 be a division of Θ,

i.e., a family of convex polytopes with nonempty interiors such that the equality Θ =
⋃J

j=1 Θ[j]

holds and the set Θ[j] ∩ Θ[k] has an empty interior whenever j 6= k. For a convex polytope

Θ[j] with a nonempty interior, let verΘ[j] denote the set of its vertices. For a given division

∆ = {Θ[j]}J
j=1, we consider the following approximate problem:

P (∆) : minimize cTx

subject to E(x) º O, G(x) + H(θ)(W [j])T + W [j]H(θ)T º O

(∀θ ∈ ver Θ[j]; ∀j = 1, 2, . . . , J).

This problem P (∆) has only a finite number of constraints and, thus, is solvable as a usual

SDP problem. From Lemma 1, the relationship between this problem and the original problem

follows, which is stated in the next proposition. Here, noting that the feasible region of P (∆) is

in the space of (x, {W [j]}J
j=1), we refer to its projection to the x-space as the projected feasible

region of P (∆).

Proposition 2. Let ∆ be a division of Θ. Then, the projected feasible region of the approximate

problem P (∆) is contained in the feasible region of the original problem P . In particular,

min P ≤ min P (∆).

In the matrix-dilation approach, we solve the approximate problem P (∆) in place of the original

problem P . Although there is a nonzero approximation error minP (∆) − min P in general,

we can make it smaller by subdividing each subregion in ∆ and considering the corresponding

approximate problem. Indeed, the approximation error is known to have an upper bound

proportional to the maximum radius of the division [23]. Here, the radius of a subregion Θ[j]

is rad Θ[j] := minθ∈Θ[j] maxθ′∈Θ[j] maxi=1,2,...,p |θi − θ′i|, where a θ that attains the minimum

is called a center of Θ[j]. The maximum radius of a division ∆ = {Θ[j]}J
j=1 is defined as

rad ∆ := maxj=1,2,...,J rad Θ[j].

From a computational point of view, the approximate problem is desired to have a small size.

Unfortunately, the size of the approximate problem tends to be large for a practical problem

even with a coarse division. Sometimes it exceeds the capability of the currently available SDP

solvers. This is partly because |V0| =
∏p

i=1(di + 1) increases rapidly as the degrees di increase.

In the next section, we assume a kind of sparsity in the given problem P and use it for the

construction of reduced-size G(x), M(θ), and H(θ). This leads to a reduced-size approximate
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Figure 1. The directed graph (V0, A0) (gray) in the case of p = 2, d1 = 4, and d2 = 2 together

with a rectilinear Steiner arborescence (V, A) (black) for the set S whose elements are shown

by the large circles

problem. Even with this improvement, an upper bound on the approximation error remains

available, whose derivation is a task of Section 4.

3. A reduced-size approximate problem

In this section, we consider reduction of the size of the approximate problem. The key idea is

to exploit sparsity in the given robust SDP problem P using a special graph called a rectilinear

Steiner arborescence. This graph enables us to redefine G(x), M(θ), and H(θ) with smaller

matrices and, then, to obtain a reduced-size approximate problem. Let us recall the require-

ments on these matrices. There has to hold 2F (x, θ) = M(θ)TG(x)M(θ). Moreover, H(θ) has

to be an orthogonal complement of M(θ) and be affine in θ.

Recall the expression F (x, θ) =
∑

α∈V0
Fα(x)θα. We assume that the coefficient matrices

Fα(x) are nonzero for only a small number of α’s. This is a kind of sparsity of the given robust

SDP problem P . Such sparsity is observed in many practical situations. We let S be the support

of F (x, θ) defined as S := {α ∈ V0 ⊂ Zp
+ |Fα(x) 6≡ O}. Since F (x, θ) is not independent of θ,

the support S contains at least one element not being the origin.

In order to exploit this sparsity, we first embed V0 ∈ Zp
+ into Rp in a natural way. We

consider a directed graph (V0, A0) in Rp with the set of vertices being V0 and with the set of

arcs being A0 = {(α, β) |α, β ∈ V0, αi + 1 = βi for some i = 1, 2, . . . , p, and αj = βj for all

j 6= i}. In a word, the arcs are the line segments of length one connecting two vertices and

directed away from the origin. When an arc (α, β) satisfies αi + 1 = βi, it is said to be parallel

to the ith axis.

For the support S, we consider a subgraph (V, A) of (V0, A0) having the following properties:

(i) V contains any vertex in S as well as the origin; (ii) any vertex in V is reachable from the

origin through a unique path in (V, A). Here, a vertex α is said to be reachable from a vertex

β if either α = β or there is a path connecting β to α through the arcs in the directed way.
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Such a graph (V, A) is referred to as a rectilinear Steiner arborescence for S (see [28] and the

references therein). Figure 1 gives an example in the case of p = 2, d1 = 4, and d2 = 2. The

directed graph (V0, A0) is presented in gray. For the set S whose elements are expressed by the

large circles, a rectilinear Steiner arborescence is shown in black.

The rectilinear Steiner arborescence (V, A) is important for redefinition of G(x), M(θ), and

H(θ). In particular, Property (i) is used to have 2F (x, θ) = M(θ)TG(x)M(θ) while Property (ii)

is used to have an affine orthogonal complement H(θ). The rectilinear Steiner arborescence is

desired to have a small |V |, though not necessarily the smallest, because this leads to small-size

G(x), M(θ), and H(θ). Note that 2 ≤ |V | ≤ |V0|.
With these preparations, we now redefine the required matrices. Let the vertices in V be

α(1), α(2), . . ., α(|V |). The numbering is arbitrary as far as α(1) is the origin. For technical

convenience, however, we choose the numbering to be consistent with the partial order defined

by (V, A). That is, the vertex α(r) is reachable from α(q) only if q ≤ r. This is consistent with

α(1) being the origin. See Figure 1 for an example. With this notation, we define

F∗(x) := [Fα(2)(x) Fα(3)(x) · · · Fα(|V |)(x)],

G(x) :=

[
2Fα(1)(x) F∗(x)

F∗(x)T O

]
, (2)

M(θ) := [θα(1)

Im θα(2)

Im · · · θα(|V |)
Im]T.

See Example 4 below for an example. The new G(x) is |V |m× |V |m while M(θ) is |V |m×m.

It is easy to see that 2F (x, θ) = M(θ)TG(x)M(θ). We next define

H(θ) := H̃(θ)⊗ Im (3)

with the (q, r)-element of H̃(θ) being

H̃(θ)qr =





−θi, if the arc (α(q), α(r+1)) belongs to A and is parallel to the ith axis;

1, if q = r + 1;

0, otherwise

for q = 1, 2, . . . , |V | and r = 1, 2, . . . , |V | − 1. The size of H(θ) is thus |V |m × (|V | − 1)m.

Obviously, H(θ) is affine in θ. The next lemma states the relationship between M(θ) and H(θ).

Lemma 3. The matrix H(θ) is an orthogonal complement of M(θ).

Proof. By the definition, the matrix H̃(θ) is upper triangular in the sense that H̃(θ)qr 6= 0

only if q ≤ r + 1. Moreover, H̃(θ)qr = 1 if q = r + 1. Hence, the matrix H̃(θ) is of column

full rank and, thus, so is H(θ). Since M(θ) is clearly of column full rank, the nonsingularity of
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[M(θ) H(θ)] follows from the orthogonality M(θ)TH(θ) = O. Let us show the orthogonality.

Write M(θ) = M̃(θ) ⊗ Im with M̃(θ) = [θα(1)
θα(2) · · · θα(|V |)

]T. Noting that M(θ)TH(θ) =

[M̃(θ)TH̃(θ)]⊗Im, we consider the product between M̃(θ)T and the rth column vector of H̃(θ).

Since (V, A) is an arborescence, there is one and only one q such that the arc (α(q), α(r+1))

belongs to A. Let us write this q as q̂ and suppose that the arc (α(bq), α(r+1)) is parallel to the

ith axis. Then, H̃(θ)qr is equal to −θi for q = q̂, equal to unity for q = r + 1, and equal to zero

otherwise. Hence, the considered product is equal to θα(bq)
(−θi)+ θα(r+1)

, which is equal to zero.

Repeating this reasoning for each r, we arrive at the desired orthogonality. ¤

The matrices defined above have the required properties and, hence, can be used in the

matrix-dilation approach. Namely, with ∆ = {Θ[j]}J
j=1 being a division of Θ, we consider a

new approximate problem

P (∆) : minimize cTx

subject to E(x) º O, G(x) + H(θ)(W [j])T + W [j]H(θ)T º O

(∀θ ∈ ver Θ[j]; ∀j = 1, 2, . . . , J)

with G(x) and H(θ) in (2) and (3), respectively. Then, Proposition 2 holds on this problem.

As is mentioned in Section 2, we can reduce the approximation error by subdividing ∆. It is

not obvious, however, whether a quantitative relationship can be obtained in this case between

the approximation error and the maximum radius of the division. Indeed, the technique in [23]

cannot be used in the present setting. In the next section, we use another technique to derive

an upper bound of the approximation error.

Example 4. Let us consider maximization of f(θ) = −100(θ2 − θ2
1)

2 − (1 − θ1)
2 in θ ∈ Θ =

[0, 2]2. Its maximum value f(θ) = 0 is attained at θ = [1 1]T. This function is known as

the Rosenbrock function and is often used as a benchmark for nonlinear optimization [20].

Maximization of this f(θ) is formulated as the following robust SDP problem:

minimize x

subject to x− f(θ) ≥ 0 (∀θ ∈ Θ).

In this case, F (x, θ) = x − f(θ) = x + 1 − 2θ1 + θ2
1 + 100θ4

1 − 200θ2
1θ2 + 100θ2

2 with n = 1,

` = 0, m = 1, p = 2, d1 = 4, and d2 = 2. Its support S is as presented in Figure 1. Using the

rectilinear Steiner arborescence in the figure, we obtain the matrices

Fα(1)(x) = x + 1, F∗(x) = [−2 1 0 100 − 200 0 100],

8



M(θ) =




1

θ1

θ2
1

θ3
1

θ4
1

θ2
1θ2

θ2

θ2
2




, H(θ) =




−θ1 −θ2

1 −θ1

1 −θ1 −θ2

1 −θ1

1

1

1 −θ2

1




.

With these matrices, we can construct an approximate problem for a division of Θ. ¤

We close this section by discussing the size of the new approximate problem. In the new

approximate problem, the dilated LMI constraint G(x) + H(θ)(W [j])T + W [j]H(θ)T º O has

the size |V |m × |V |m while |V0|m × |V0|m in the conventional approximate problem. Since

|V | ≤ |V0|, the new approximate problem has the size smaller than or equal to that of the

conventional one. This discrepancy becomes especially evident in some cases. This is seen from

the next result.

Proposition 5. For a given support S, there exists a rectilinear Steiner arborescence (V, A)

with |V | ≤ |S|∑p
i=1 di + 1.

Proof. For each α = [α1 α2 · · · αp]
T ∈ S, consider a directed path connecting [0 0 · · · 0]T,

[1 0 · · · 0]T, . . ., [α1 0 · · · 0]T, [α1 1 · · · 0]T, . . ., [α1 α2 · · · 0]T, . . ., [α1 α2 · · · αp]
T

in this order. The length of this path is less than or equal to
∑p

i=1 di. The union of these |S|
paths forms a rectilinear Steiner arborescence for S. It is clear that this arborescence (V, A)

satisfies |V | ≤ |S|∑p
i=1 di + 1. ¤

Recall that |V0| =
∏p

i=1(di +1). When |S| is small and di’s are large, the |V | in the proposition

is much smaller than |V0|.
It is NP-hard to find a rectilinear Steiner arborescence with the smallest |V | for a given S

[33]. Fortunately, what we need is not an arborescence with the smallest |V | but an arborescence

with a small |V |. A simple heuristic algorithm for this purpose is found in [28].

Remark 6. Suppose that the support S is equal to the whole vertex set V0. If we construct

a rectilinear Steiner arborescence for this S as in the proof of Proposition 5, we obtain the

full-size G(x), M(θ), and H(θ) in the previous section. In this sense, the present approach is a

generalization of the conventional approach in [23]. ¤

9



Remark 7. In general, the reduced-size approximate problem has a larger approximation error

min P (∆) − min P than the full-size approximate problem in the previous section. Although

no quantitative result has been known on this possible deterioration, computational experience

tells that it is not as evident as the profit of the size reduction. See Section 5. ¤

4. An upper bound on the approximation error

In this section, we give an upper bound on the approximation error of the reduced-size approx-

imate problem. This upper bound is proportional to the maximum radius rad ∆ of the division

and hence gives a quantitative relationship between the approximation error and the resolution

of the division. This result is an extension of that in [23], which is on the full-size approximate

problem.

The key idea is to relate the following auxiliary problem with the approximate problem

P (∆):

Pε : minimize cTx

subject to E(x) º O, F (x, θ) º εI (∀θ ∈ Θ),

where ε is a nonnegative number. We will show below that ε can be chosen so that min P ≤
min P (∆) ≤ min Pε. Note that min Pε is convex in ε and that P0 is identical with the original

problem P . With g being an upper bound on a subgradient of minPε, we have min Pε−min P ≤
gε. Since this implies min P (∆) − min P ≤ gε, we obtain the desired upper bound on the

approximation error. This basic idea is the same as in the full-size case [23]. However, the

technique used in [23] for the choice of ε is not applicable to the reduced-size approximate

problem because the whole set of Fα(x), α ∈ V0, is not used there. We, hence, introduce a

different technique with a coordinate transformation matrix L(θ).

We need the following assumption to give the result.

Assumption 8.

(a) The robust SDP problem P is strictly feasible, that is, there exists x ∈ Rn such that

E(x) Â O and F (x, θ) Â O (∀θ ∈ Θ).

(b) For any v, the level set
{
x ∈ Rn | cTx ≤ v, E(x) º O, and F (x, θ) º O (∀θ ∈ Θ)

}
is

bounded. ¤

We now present the main result of this section, which provides the desired upper bound.

10



Theorem 9. Suppose that Assumption 8 holds. Then, the reduced-size approximate problem

P (∆) satisfies

min P (∆)−min P ≤ C1rad ∆. (4)

for any division ∆ with rad ∆ ≤ C2, where C1 and C2 are positive numbers independent of ∆.

The specific forms of C1 and C2 will be given in (9) and (10), respectively.

A direct consequence of this theorem is the asymptotic exactness of our matrix-dilation

approach. That is, the approximation error of the reduced-size approximate problem converges

to zero as the maximum radius of the division goes to zero. Evaluation of C1 and C2 is

possible as in [23], though the resulting bound is often conservative. Recall that the existing

asymptotically exact approaches [22, 6, 30, 32] do not have a corresponding quantitative result.

Their asymptotic exactness is proven only qualitatively.

The bound (4) also gives a relationship between the approximation error and the size of the

approximate problem. Namely, in order to reduce the approximation error, we need to decrease

the maximum radius, which increases the number of subregions and, then, the number of the

LMI constraints. Especially when the parameter dimension is high, this increase is rapid and

makes it difficult to solve the approximate problem. It is possible to partially address this issue

by improvement of the bound and adaptive division of the parameter region. The discussion is

completely parallel to that in [23]. The details are omitted.

The rest of this section is devoted to the proof of Theorem 9. We first prepare the |V |m×
|V |m matrix L(θ), which will be used for simplification of the dilated LMI constraint G(x) +

H(θ)(W [j])T + W [j]H(θ)T º O. This matrix is defined as

L(θ) := L̃(θ)⊗ Im (5)

with

L̃(θ)qr =





θα(q)−α(r)
, if α(q) is reachable from α(r) in (V, A);

0, otherwise.

The matrix L̃(θ) is lower triangular, i.e., L̃(θ)qr 6= 0 only if q ≥ r. Moreover, its diagonal

elements are all equal to unity. A consequence is nonsingularity of L̃(θ) and also of L(θ).

The product L(θ)TG(x)L(θ) has the following form.

Lemma 10. For the matrices G(x) and L(θ) in (2) and (5), respectively, we can write

L(θ)TG(x)L(θ) =

[
2F (x, θ) F∗∗(x, θ)

F∗∗(x, θ)T O

]

with

F∗∗(x, θ) =
[ ∑

α∈V (2)

Fα(x)θα−α(2)
∑

α∈V (3)

Fα(x)θα−α(3) · · ·
∑

α∈V (|V |)

Fα(x)θα−α(|V |)
]
,
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where V (r) is the set of vertices reachable from α(r) in (V, A) for r = 2, 3, . . . , |V |.

Proof. Direct calculation gives the lemma. ¤

We next consider the product L(θ)TH(θ′) for θ, θ′ ∈ Rp.

Lemma 11. For the matrices H(θ) and L(θ) in (3) and (5), respectively, we can write

L(θ)TH(θ′) =




∗ ∗ · · · ∗
1 ∗ · · · ∗
0 1 · · · ∗
...

...
. . .

...

0 0 · · · 1



⊗ Im,

where an element expressed by ∗ is either equal to zero or expressed as θα(θi − θ′i) for some

α ∈ Zp
+ and i = 1, 2, . . . , p. When θ = θ′ in particular, the elements expressed by ∗ are all equal

to zero.

Proof. Noting that L(θ)TH(θ′) = [L̃(θ)TH̃(θ′)] ⊗ Im, we will evaluate the (s, r)-element of

L̃(θ)TH̃(θ′), which is the inner product between the sth column of L̃(θ) and the rth column

of H̃(θ′), where s = 1, 2, . . . , |V | and r = 1, 2, . . . , |V | − 1. As in the proof of Lemma 3, the

element H̃(θ′)qr is equal to −θ′i if q = q̂, equal to unity if q = r+1, and equal to zero otherwise.

Here, we suppose that the unique arc ending at α(r+1) is (α(bq), α(r+1)) and is parallel to the ith

axis. The value of the considered (s, r)-element depends on the reachability of the vertices α(bq)

and α(r+1) from α(s) in (V, A). Namely, there are three possible cases.

(Case 1) Both α(bq) and α(r+1) are reachable from α(s). This occurs only when s ≤ q̂ < r +1.

In this case, the considered value is equal to

θα(bq)−α(s)

(−θ′i) + θα(r+1)−α(s)

= θα(bq)−α(s)

(θi − θ′i).

Note that α(bq) − α(s) ∈ Zp
+.

(Case 2) The vertex α(r+1) coincides with α(s), i.e., s = r + 1. In this case, the quantity is

equal to unity.

(Case 3) Neither α(bq) nor α(r+1) is reachable from α(s). In this case, the quantity is equal to

zero.

Summarizing these results, we obtain the statement of the lemma. ¤

With these preparations, we relate Pε and P (∆). By Assumption 8, there exists ε0 > 0 such

that, for any 0 ≤ ε ≤ ε0, the auxiliary problem Pε is strictly feasible. Let v0 be a number with

min Pε0 ≤ v0 and define the level set

X :=
{
x ∈ Rn | cTx ≤ v0, E(x) º O, and F (x, θ) º O (∀θ ∈ Θ)

}
,
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which is nonempty and bounded. Then, for each 0 ≤ ε ≤ ε0, the minimum of Pε is attained in

X and only in X.

We begin by the special case that Θ ⊆ [−1, 1]p. In this case, |θi| ≤ 1 for any θ ∈ Θ and any

i = 1, 2, . . . , p. Let U be a number such that

max
x∈X

max
θ∈Θ

σ[F∗∗(x, θ)] ≤ U.

Lemma 12. Suppose that Θ ⊆ [−1, 1]p and

rad ∆ ≤ min
{ 2ε0

(U +
√
|V |m)2

,
1

|V |
}

.

Then, we have min P ≤ min P (∆) ≤ min Pε for

ε =
(U +

√
|V |m)2

2
rad ∆.

Proof. Since min P ≤ min P (∆) as is noticed in Section 3, we will show min P (∆) ≤ min Pε.

Let ∆ be {Θ[j]}J
j=1. The ε given in the lemma satisfies 0 ≤ ε ≤ ε0. Hence, the minimum of Pε

is attained at a point in X. Let such a minimizing point be x ∈ X. Note that F (x, θ) º εI

for any θ ∈ Θ. The proof is complete if this x is contained in the projected feasible region of

P (∆), that is, there exists W [j] for each j = 1, 2, . . . , J such that

G(x) + H(θ)(W [j])T + W [j]H(θ)T º O (∀θ ∈ ver Θ[j]). (6)

We show that this inequality holds with W [j] := (1/rad Θ[j])H(θc) for each j, where θc is a

center of Θ[j].

In order to show the desired inequality (6), we premultiply L(θ)T and postmultiply L(θ) to

it for θ ∈ ver Θ[j]. Lemmas 10 and 11 give the concrete forms of L(θ)TG(x)L(θ) and L(θ)TH(θ).

By Lemma 11 again, the product (W [j])TL(θ) = (1/rad Θ[j])H(θc)TL(θ) has the form



∗ 1/rad Θ[j] 0 · · · 0

∗ ∗ 1/rad Θ[j] · · · 0
...

...
...

. . .
...

∗ ∗ ∗ · · · 1/rad Θ[j]



⊗ Im,

where an element expressed by ∗ is either equal to zero or of the form

θα(θi − θc
i )

rad Θ[j]
,

whose magnitude is at most one since |θi| ≤ 1 and |θi − θc
i | ≤ rad Θ[j] for i = 1, 2, . . . , p. Let

us write the product (W [j])TL(θ) as [H1 H2] with the (|V | − 1)m × m matrix H1 and the

(|V | − 1)m× (|V | − 1)m matrix H2. Then, we have

L(θ)TH(θ)(W [j])TL(θ) =

[
Om×m Om×(|V |−1)m

H1 H2

]
.
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Since H1 has at most (|V | − 1)m nonzero elements whose magnitude is at most one, we have

σ(H1) ≤
√

(|V | − 1)m. On the other hand, H2 is lower triangular and each of its columns

has the diagonal element 1/rad Θ[j] and at most |V | − 2 nonzero off-diagonal elements, whose

magnitude is at most one. Hence, we have

H2 + HT
2 º

( 2

rad Θ[j]
− |V |+ 2

)
I.

Now, the left-hand side of (6) multiplied by L(θ)T and L(θ) has the upper-left m × m block

equal to

2F (x, θ) º 2εI.

Its Schur complement is

H2 + HT
2 − [F∗∗(x, θ)+HT

1 ]T[2F (x, θ)]−1[F∗∗(x, θ)+HT
1 ]

º
( 2

rad Θ[j]
− |V |+ 2

)
I − {

σ[F∗∗(x, θ)] +
√

(|V | − 1)m
}2 1

2ε
I.

Noting that 2/rad Θ[j]− |V |+ 2 ≥ 1/rad Θ[j] and σ[F∗∗(x, θ)] ≤ U , we see the positive semidef-

initeness of the right-hand side matrix. This completes the proof. ¤

The general case that not necessarily Θ ⊆ [−1, 1]p can be reduced to the special case. Let

us write

θ := max{1, max
θ∈Θ

max
i=1,2,...,p

|θi|} (7)

and |α| := α1 + α2 + · · ·+ αp. Since

F (x, θ) =
∑
α∈V

Fα(x)θα =
∑
α∈V

Fα(x)θ
|α|(θ

θ

)α

,

we can regard Fα(x)θ
|α|

as a coefficient and θ/θ as a parameter. The problems P and Pε

essentially remain the same with this replacement. Since θ/θ moves in [−1, 1]p, the discussion

in the special case can be applied. To state the result, we define

F ∗∗(x, θ) :=
[ ∑

α∈V (2)

Fα(x)θ
|α|(θ

θ

)α−α(2) ∑

α∈V (3)

Fα(x)θ
|α|(θ

θ

)α−α(3)

· · ·

∑

α∈V (|V |)

Fα(x)θ
|α|(θ

θ

)α−α(|V |)]

and

U := max
x∈X

max
θ∈Θ

σ[F ∗∗(x, θ)]. (8)
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Lemma 13. Suppose that

rad ∆ ≤ min
{ 2θε0

(U +
√
|V |m)2

,
θ

|V |
}

.

Then, we have min P ≤ min P (∆) ≤ min Pε for

ε =
(U +

√
|V |m)2

2θ
rad ∆.

Proof. We observed that the replacement of Fα(x) by Fα(x)θ
|α|

and θ by θ/θ does not

change the problems P and Pε. As is shown below, this replacement does not change either the

approximate problem P (∆). The parameter after the replacement, i.e., θ/θ, moves in [−1, 1]p.

Hence, the result of Lemma 12 is valid with U replaced by U and rad ∆ by rad ∆/θ. This

completes the proof.

We show that the approximate problem P (∆) does not change by the replacement above.

Let G(x) and H(θ) be the matrices obtained from G(x) and H(θ), respectively, by this replace-

ment. It is routine to confirm that

G(x) = diag{Im, T}G(x)diag{Im, T},
H(θ) = diag{Im, T}H(θ)T−1,

where T := diag{θ|α
(2)|

, θ
|α(3)|

, . . . , θ
|α(|V |)|} ⊗ Im and diag denotes a block-diagonal matrix.

Therefore, the existence of W satisfying

G(x) + H(θ)WT + WH(θ)T º O

is equivalent to the existence of W satisfying

G(x) + H(θ)W
T

+ WH(θ)T º O

with the correspondence W = diag{Im, T}WT . This means that the approximate problem

P (∆) does not change essentially by the replacement. ¤

We now take the final step for the proof of Theorem 9. Recall that we assume Assumption 8

and that ε0 is a number such that the auxiliary problem Pε is strictly feasible for any 0 ≤ ε ≤ ε0.

The numbers θ and U are as in (7) and (8), respectively. Finally, let g be an upper bound on

the left derivative of min Pε at ε = ε0. Then, with

C1 =
g(U +

√
|V |m)2

2θ
, (9)

C2 = min
{ 2θε0

(U +
√
|V |m)2

,
θ

|V |
}

, (10)
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we can prove the theorem.

Proof of Theorem 9. Lemma 13 implies that, when rad ∆ ≤ C2, we have min P ≤
min P (∆) ≤ min Pε for ε = [(U +

√
|V |m)2/2θ]rad ∆. Owing to the convexity of minPε,

the upper bound g is greater than or equal to the left derivative of minPε at this ε. Hence,

the convexity of min Pε again implies min P ≥ min Pε − gε, from which min Pε −min P ≤ gε.

Substitution of the concrete form of ε gives the theorem. ¤

5. A numerical example

We compare our reduced-size approximate problem with the full-size approximate problem in

its computational cost. A numerical experiment shows the superiority of the former.

Let us consider maximization of fµ(θ) = −100(θµ
2−θ2µ

1 )2−(1−θµ
1 )2 in θ ∈ Θ = [0, 2]2, where

µ is a positive integer. As is described in Example 4, this type of maximization is formulated

into a robust SDP problem and is solvable with our approach. For µ = 1, in particular, this

problem is identical with that in Example 4 and the corresponding reduced-size approximate

problem was given there. For a general µ, the support S of F (x, θ) = x − fµ(θ) has the

coordinate µ times larger than that of x − f1(θ). Hence, magnifying µ times the rectilinear

Steiner arborescence for µ = 1, we obtain an arborescence for a general µ and then the reduced-

size approximate problem. Construction of the full-size approximate problem is as in [23]. For

each approximate problem, we use the coarsest division ∆ = {Θ}, that is, we use the whole

parameter region Θ as one subregion.

The computational time to solve the approximate problems is shown in Figure 2 (a). Here,

we used SeDuMi [34] for the SDP solver with the help of YALMIP [18]. The computer was

equipped with Pentium 4 of 2.4GHz and 2GByte memory. Each approximate problem gave

sufficiently good approximation, whose error was less than 10−4. We can see in the figure

that the reduced-size approximate problem had much smaller computational time than the

full-size approximate problem. Indeed, the full-size approximate problem was not solvable

for µ ≥ 3 owing to numerical difficulties. Figure 2 (b) shows the sizes of the approximate

problems. The reduced-size approximate problem had a much smaller size, which explains its

small computational time.

6. Conclusion

A reduced-size approximate problem is proposed in the matrix-dilation approach to robust SDP.

This reduction results from exploitation of sparsity of a given robust SDP problem. Its effect
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Figure 2. Comparison between the reduced-size (the solid lines) and the full-size (the broken

lines) approximate problems

is especially evident when the LMI constraint of the given problem has a small support and

high degrees. Even with this improvement, the good property of the matrix-dilation approach

is still kept. Namely, a quantitative relationship is derived between the approximation error

and the maximum radius of the division. This relationship implies the asymptotic exactness of

the approach.
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