
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

Efficient Implementation of Tree Skeletons

on Distributed-Memory Parallel Computers

Kiminori MATSUZAKI and Zhenjiang HU

METR 2006–65 December 2006

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.i.u-tokyo.ac.jp/edu/course/mi/index e.shtml

The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.

Efficient Implementation of Tree Skeletons
on Distributed-Memory Parallel Computers

Kiminori Matsuzaki and Zhenjiang Hu

Department of Mathematical Informatics,
Graduate School of Information Science and Technology,

University of Tokyo
{kmatsu,hu}@mist.i.u-tokyo.ac.jp

Abstract. Parallel tree skeletons are basic computational patterns that encourage us
to develop parallel programs manipulating trees. In this paper, we develop an efficient
implementation of parallel tree skeletons on distributed-memory parallel computers. In
our implementation, we divide a binary tree based on the idea of m-bridges to obtain
high locality, and represent local segments as serialized arrays to obtain high sequential
performance. We furthermore develop a cost model of our implementation of parallel tree
skeletons. We confirmed the efficacy of our implementation with several experiments.

1 Introduction

Parallel tree skeletons, first formalized by Skillicorn [34, 35], are basic computational pat-
terns of parallel programs manipulating trees. By using parallel tree skeletons, users can
develop parallel programs without bothering the low-level implementation and the details
of parallel computers. There are several studies on the systematic methods of developing
parallel programs by means of parallel tree skeletons [9, 19,21,36,37].

For efficient parallel tree manipulations, tree contraction algorithms have been stud-
ied intensively [1, 8, 24, 25, 38]. Many tree contraction algorithms have been developed on
many parallel computational models, for instance, EREW PRAM [1], Hypercubes [24],
and BSP/CGM [8]. While the original tree contraction algorithm, proposed by Miller and
Reif [25], is a parallel algorithm that reduces a tree into the root by independent removals of
nodes, several parallel tree manipulations are developed based on the tree contraction algo-
rithms [1,10]. For tree skeletons, Gibbons et al. [13] developed an implementation algorithm
of parallel tree skeletons based on tree contraction algorithms.

In this paper, we develop an efficient implementation of parallel tree skeletons for binary
trees on distributed-memory parallel computers. Compared with the implementations so far
that mainly target shared-memory parallel computers, our implementation has the following
three features.

– Less overheads of parallelism. Locality is one of the most important properties in devel-
oping efficient parallel programs especially for distributed-memory computers. We adopt
m-bridges [31] in the basic graph-theory to divide binary trees with high locality. Fur-
thermore, to minimize the overheads of parallelism, we formalized the tree skeletons as
sequential functions with some auxiliary functions for parallel implementation.

– High sequential performance. The performance of the sequential parts is as important
as that of the communication parts for efficient parallel programs. We represent a local
segment as a serialized array and implemented local computations in the tree skeletons
with loops rather than recursive functions. High sequential performance is obtained with
these techniques.

1

– Cost model. We also formalize a cost model of our parallel implementation. The cost
model helps us to divide binary trees with good load balance.

We have implemented parallel tree skeletons in C++ and MPI, and the skeletons are
available as a part of the skeleton library SkeTo [22]. We confirmed the efficacy of our
implementation of tree skeletons with several experiments.

This paper is organized as follows. In the following Section 2, we introduce parallel tree
skeletons with two examples. In Section 3, we discuss the division of binary trees after
reviewing basic graph-theoretic results. In Section 4, we develop an efficient implementation
and a cost model of parallel tree skeletons on distributed-memory parallel computers. Based
on this cost model, we discuss the optimal division of binary trees in Section 5. We then show
several experiment results in Section 6. We review related work in Section 7, and finally we
make concluding remarks in Section 8.

2 Parallel Tree Skeletons

2.1 Notations

In this paper, we borrow the notation of Haskell [4,30]. In the following, we briefly introduce
important notations and the data structure of binary trees. Roughly speaking, the defini-
tions in this paper can be read as mathematical function definitions except for the function
applications denoted by spaces.

Functions and Operators Function application is denoted by a space and the argument
may be written without brackets. Thus f a means f(a). Functions are curried, and the
function application associates to the left. Thus f a b means (f a) b. The function application
binds stronger than any other operator, so f a⊕ b means (f a)⊕ b, but does not f (a⊕ b).
The identity function is denoted by id .

Some arguments do not affect to the result of the functions. In such cases the arguments
may be called don’t-care values and they are donated as .

In addition to arithmetic operators we use binary operator ↑ that returns the larger
of the two arguments. Operators can be sectioned and be treated as functions, that is,
a ⊕ b = (⊕) a b holds.

Binary Trees Binary trees are trees whose internal nodes have exactly two children. In
this paper, leaves and internal nodes of a binary tree may have different types. The datatype
of binary trees whose internal nodes have values of type α and leaves have values of type β
is defined as follows.

data BTree α β = BLeaf α
| BNode (BTree α β) β (BTree α β)

We introduce function root that returns the value of the root node.

root (BLeaf a) = a
root (BNode l b r) = b

2.2 Parallel Tree Skeletons

Parallel binary-tree skeletons (parallel tree skeletons in short) are basic computational pat-
terns manipulating binary trees in parallel. In this section, we introduce a set of basic parallel
tree skeletons first proposed by Skillicorn [34,35] with minor modifications.

A set of basic parallel tree skeletons includes five higher-order functions categorized into
the following three.

2

mapb :: (α → γ) → (β → δ) → BTree α β → BTree γ δ
mapb kl kn (BLeaf a) = BLeaf (kl a)
mapb kl kn (BNode l b r) = BNode (mapb kl kn l) (kn b) (mapb kl kn r)

zipwithb :: (α → α′ → γ) → (β → β′ → δ) → BTree α β → BTree α′ β′ → BTree γ δ
zipwithb kl kn (BLeaf a) (BLeaf a′) = BLeaf (kl a a′)
zipwithb kl kn (BNode l b r) (BNode l′ b′ r′)

= BNode (zipwithb kl kn l l′) (kn b b′) (zipwithb kl kn r r′)

reduceb :: (α → β → α → α) → BTree α β → α
reduceb k (BLeaf a) = a
reduceb k (BNode l b r) = k (reduceb k l) b (reduceb k r)

uAccb :: (α → β → α → α) → BTree α β → BTree α α
uAccb k (BLeaf a) = BLeaf a
uAccb k (BNode l b r) = let l′ = uAccb k l

r′= uAccb k r
in BNode l′ (k (root l′) b (root r′)) r′

dAccb :: ((γ → β → γ), (γ → β → γ)) → γ → BTree α β → BTree γ γ
dAccb (gl, gr) c (BLeaf a) = BLeaf c
dAccb (gl, gr) c (BNode l b r) = let l′ = dAccb (gl, gr) (gl c b) l

r′ = dAccb (gl, gr) (gr c b) r
in BNode l′ c r′

Fig. 1. Definition of parallel tree skeletons.

– Node-wise computations: map and zipwith
The parallel skeleton mapb takes two functions kl and kn and a binary tree, and applies
kl to each leaf and kn to each internal node. The parallel skeleton zipwithb takes two
functions kl and kn and two binary trees of the same shape, and zips the trees up by
applying kl to each pair of leaves and kn to each pair of internal nodes.

– Bottom-up computations: reduce and upwards accumulate
The parallel skeleton reduceb takes a function k and a binary tree, and collapses the tree
into a value by applying the function k in a bottom-up manner. The parallel skeleton
uAccb (upwards accumulate) also takes a function k and a binary tree, and computes
(reduceb k) for each subtree. In other words, the uAccb skeleton is a shape-preserving
manipulation of trees where the resulting values are the intermediate results of the
bottom-up reduction.

– Top-down computation: downwards accumulate
The parallel skeleton dAccb (downwards accumulate) is another shape-preserving manip-
ulation of trees. This skeleton takes two functions gl and gr, an accumulative parameter
c and a binary tree, and computes a value for each node by updating the accumulative
parameter c in a top-down manner. The update is done by function gl for the left child,
and by function gr for the right child.

We give the formal sequential definition of these parallel tree skeletons in Fig. 1. We
denote the parallel tree skeletons in the sans-serif font with a suffix b. Note that the defi-
nitions of the uAccb skeleton and the dAccb skeleton is different from those defined by Skil-
licorn [34,35] in the sense that we defined them as recursive functions not in the point-free
style programming.

3

To guarantee existence of efficient parallel implementations for many parallel computers,
the parallel tree skeletons require some conditions for their parameter functions. The mapb

and zipwithb skeletons require no condition. For the reduceb, uAccb and dAccb skeletons,
we formalize the conditions for parallel implementation as follows as existence of auxiliary
functions satisfying a certain closure property.

The reduceb and uAccb skeletons with parameter function k require existence of four
auxiliary functions ϕ, ψn, ψl, and ψr satisfying the following equations.

k l b r = ψn l (ϕ b) r
ψn (ψn x l y) b r = ψn x (ψl l b r) y
ψn l b (ψn x r y) = ψn x (ψr l b r) y

Intuitive meaning of these auxiliary functions is:

For parallel computation we require some domain where there is a certain associative
computation. The computation on an internal node is lifted up by function ϕ to
the domain and pulled down by function ψn from the domain. The certain kind of
associativity on the domain is given by functions ψl and ψr that satisfy the closure
property.

We denote the function k satisfying the condition as k = ⟨ϕ, ψn, ψl, ψr⟩u.
The dAccb skeleton with parameter functions gl and gr requires existence of auxiliary

functions ϕl, ϕr, ψu, and ψd satisfying the following equations.

gl c b = ψd c (ϕl b)
gr c b = ψd c (ϕr b)
ψd (ψd c b) b′ = ψd c (ψu b b′)

Intuitive meaning of these auxiliary functions is:

For parallel computation we require some domain in which there is an associative
computation. The computation on an internal node is lifted up by functions ϕl and
ϕr to the domain and pulled down by function ψd. The function ψu indicates the
associative computation in the domain.

We denote the pair of functions (gl, gr) satisfying the condition as (gl, gr) = ⟨ϕl, ϕr, ψu, ψd⟩d.

2.3 Examples

To illustrate how we can develop parallel programs by composing these parallel tree skele-
tons, we show skeletal parallel programs for two examples, computing height and the party
planning problem [7].

Computing Height of Binary Tree Height of a binary tree is the maximum of depths for
all the nodes. Since the depths can be computed by using dAccb skeletons, we can develop
a skeletal parallel program that computes the height of a binary tree as follows. In this
definition, the auxiliary functions are easily derived because the parameter functions for
uAccb and dAccb skeletons are defined with an associative operator, respectively.

height t = let dt = dAccb ((+), (+)) 1 t
in reduceb max3 dt
where max3 l b r = l ↑ b ↑ r

((+), (+)) = ⟨id , id , (+), (+)⟩d
max3 = ⟨id ,max3 ,max3 ,max3 ⟩u

4

In fact, we can develop another skeletal parallel program that computes the height of a
binary tree with a single bottom-up computation. The following recursive function computes
the height of a binary tree with a single bottom-up computation.

height (BLeaf a) = 1
height (BNode l b r) = 1 + (l ↑ r)

By applying the parallelization techniques in [19] to this recursive function, we can obtain
the following skeletal parallel program.

height t = reduceb (λl b r.1 + (l ↑ r)) (mapb (λx.1) id t)
where λl b r.1 + (l ↑ r) = ⟨ϕ, ψn, ψl, ψr⟩u

ϕ b = (−∞, b)
ψn l (b1, b2) r = b1 ↑ (b2 + l) ↑ (b2 + r)
ψl (l1, l2) (b1, b2) r = (b1 ↑ (b2 + l1) ↑ (b2 + r), b2 + l2)
ψr l (b1, b2) (r1, r2) = (b1 ↑ (b2 + l) ↑ (b2 + r1), b2 + r2)

As seen in this program, we often require more computation in the auxiliary functions of the
skeletons than sequential programs. The complicity of auxiliary functions can be considered
as overheads for parallel computation.

Party Planning Problem The party planning problem appeared in a textbook [7] as
an exercise for sequential dynamic programming problem on trees. The specification of the
party planning problem is as follows.

The president of a company wants to have a company party. To make the party
fun for all attendees, the president does not want both an employee and his or her
direct supervisor to attend. The company has a hierarchical structure, that is, the
supervisory relations form a tree rooted at the president, and the personnel office has
rating each employee with a conviviality rating of a real number. Given the structure
of the company and the ratings of employees, the problem is to mark the guests so
that the sum of the conviviality ratings of marked guests is its maximum.

This problem is an instance of so-called maximum marking problems [5, 32].
A known sequential program that solves the party planning problem is given as the

function ppp with auxiliary functions ppp ′ and maxsums as shown in Fig. 2. In the program,
the function maxsums takes a binary tree and computes a pair of values (ms, us):

– ms: the maximum of sums of non adjacent nodes under the condition that the root node
is selected, and

– us: the maximum of sums of non adjacent nodes under the condition that the root node
is not selected.

From the sequential program, we can obtain a skeletal parallel program as shown in
Fig. 3 by applying the derivation techniques in our previous papers [19, 21]. The detailed
derivation of the skeletal parallel program will be shown in the first author’s Ph.D. thesis.

5

ppp :: BTree Int → BTree Bool
ppp t = ppp′ False t
ppp′ p marked (BLeaf a) = if p marked then BLeaf False

else let (ms, us) = maxsums (BLeaf a)
in BLeaf (ms > us)

ppp′ p marked (BNode l b r) = if p marked
then BNode (ppp′ False l) False (ppp′ False r)
else let (ms, us) = maxsums (BNode l b r)

marked = ms > us
in BNode (ppp′ marked l) marked (ppp′ marked r)

maxsums (BLeaf a) = (a, 0)
maxsums (BNode l b r) = let (ms l, us l) = maxsums l

(msr, usr)= maxsums r
in (us l + b + usr, (ms l ↑ us l) + (msr ↑ usr))

Fig. 2. A sequential program that solves the party planning problem.

ppp t = let t′ = uAccb ⟨ϕu, ψu
n, ψu

l , ψu
r ⟩u (mapb (λa.(a, 0)) id t)

ct= dAccb ⟨ϕd, ϕd, ψd
u, ψd

d⟩d False t′

in zipwithb mark mark ct t′

mark c (ms, us) = if c then False else ms > us

ϕu b =
((

0 −∞
−∞ 0

)
, b

)

ψu
n

(
l1
l2

) (
b,

(
a11 a12

a21 a22

)) (
r1

r2

)
= let

(
x1

x2

)
=

(
b + l2 + r2

(l1 ↑ l2) + (r1 ↑ r2)

)
in

(
(a11 + x1) ↑ (a12 + x2)
(a21 + x1) ↑ (a22 + x2)

)

ψu
l

(
bl,

(
al
11 al

12

al
21 al

22

)) (
bn,

(
an
11 an

12

an
21 an

22

)) (
r1

r2

)
=

(
bl,

(
an
11 an

12

an
21 an

22

)
×+,↑

(
−∞ bn + r2

r1 ↑ r2 r1 ↑ r2

)
×+,↑

(
al
11 al

12

al
21 al

22

))

ψu
r

(
l1
l2

) (
bn,

(
an
11 an

12

an
21 an

22

)) (
br,

(
ar
11 ar

12

ar
21 ar

22

))
=

(
br,

(
an
11 an

12

an
21 an

22

)
×+,↑

(
−∞ bn + l2

l1 ↑ l2 l1 ↑ l2

)
×+,↑

(
ar
11 ar

12

ar
21 ar

22

))
ϕd (ms, us) = (False, (ms > us))

ψd
d c (b1, b2) = case c of True → b1;False → b2;

(b
1
,b

2
)

(b′1, b
′
2)

ψd
u (b1, b2) (b′1, b

′
2) (True,True) (True,False) (False,True) (False,False)

(True,True) (True,True) (True,True) (False,False) (False,False)
(True,False) (True,True) (True,False) (False,True) (False,False)
(False,True) (True,True) (False,True) (True,False) (False,False)
(False,False) (True,True) (False,False) (True,True) (False,False)

Fig. 3. The skeletal parallel program for the party planning problem. The function ψd
u looks up the

table. The operator ×+,↑ is matrix multiplication on the commutative semi-ring {Num, ↑, +} where
operators + and ↑ are used instead of × and + in the usual matrix multiplication.

6

3 Division of Binary Trees with High Locality

To develop efficient parallel programs on distributed-memory parallel computers, we need
to divide data structures into smaller parts to distribute them to the processors. Here, the
division of data structures should have the following two properties for efficiency of the
parallel programs.

– Locality. The data distributed to each processor should be adjacent. If two elements that
are adjacent in the original data are distributed to different processors, we may need
communications between the processors.

– Load balance. The number of nodes distributed to each processor should be equal since
the cost of local computation is often proportional to the number of nodes.

It is easy to divide a list with these two properties, that is, for a given list of N elements
we simply divide the list into P sublists with N/P elements for each sublist. It is, however,
difficult to divide a tree satisfying both of the two properties. The non linear and ill-balanced
structure of binary trees makes it difficult to divide the tree into connected components with
good load balance.

In this section, we introduce a division of binary trees based on the basic graph theory,
and then we show the representation of distributed tree structure.

3.1 Graph-Theoretic Results for Division of Binary Trees

We start the discussion by introducing some graph-theoretic results [31]. Let sizeb(v) denote
the number of nodes in the subtree rooted at node v.

Definition 1 (m-Critical Node [31]). Let m be an integer such that 1 < m ≤ N where
N is the number of nodes in a binary tree. A node v is called m-critical node, if v is an
internal node and for each child v′ of v inequality ⌈sizeb(v)/m⌉ > ⌈sizeb(v′)/m⌉ holds. ⊓⊔

Definition 2 (m-Bridge [31]). Let m be an integer such that 1 < m ≤ N where N is the
number of nodes in a binary tree. A set of maximal adjacent nodes where m-critical nodes
are only on the terminals of the set is called an m-bridge. ⊓⊔

Figure 4 illustrates the m-critical nodes and the m-bridges.
The m-critical nodes and the m-brides have several properties that are important in

dividing binary trees.
The following two lemmas show properties of the m-critical nodes and the m-bridges in

terms of the global shape of them.

13

3 9

1 1 7 1

3 3

1 1 1 1

Fig. 4. An example of m-critical nodes and m-bridges. Left: In this binary tree, there are three
4-critical nodes denoted by the doubly-lined circles. The number in each node denotes the number
of nodes in the subtree. Right: For the same tree there are seven 4-bridges, each of which is a set of
connected nodes.

7

Lemma 1 ([31]). If v1 and v2 are m-critical nodes then their least common ancestor is
also an m-critical node. ⊓⊔

Lemma 2 ([31]). If B is an m-bridge of a tree then B has at most one m-critical node at
the bottom. ⊓⊔

The root node in each m-bridge is an m-critical node except for the root m-bridge that
includes the global root node. If we remove the root m-critical node if it exists, from Lemma 2
and the definition of the m-bridge, the m-bridge has at most one m-critical node. In the
following, we call the m-critical node in a segment as the terminal node.

The following three lemmas are related to the number of nodes in an m-bridge and the
number of m-bridges in a tree. Note that the former two lemmas holds on general trees
while the last lemma only holds on binary trees.

Lemma 3 ([31]). The number of nodes in an m-bridge is at most m + 1. ⊓⊔

Lemma 4 ([31]). Let N be the number of nodes in a tree then the number of m-critical
nodes in the tree is at most 2N/m − 1. ⊓⊔

Lemma 5. Let N be the number of nodes in a binary tree then the number of m-critical
nodes in the binary tree is at least (N/m − 1)/2.

Proof. Let nk be the number of nodes in binary trees that have k m-critical nodes. We prove
this lemma by showing that the following inequality.

nk ≤ (2k + 1)m (1)

holds by induction.
1. Base case (k = 0):

By definition of m-critical nodes, for the root node v we have ⌈size(v)/m⌉ = 1. Therefore,
we obtain 0 < size(v) ≤ m, which satisfies the inequality (1) for the case k = 0.
2. Inductive case:

Assume that for all i such that i < k inequality ni ≤ (2i+1)m holds. Let v be the critical
node nearest to the root node. Since the least common ancestor of two m-critical nodes is
also m-critical node as Lemma 1 says, we can find such an m-critical node for any binary
tree. Now we consider the following three parts of a tree: the left subtree of the node v,
which has k1 terminal nodes, the right subtree of the node v, which has k2 terminal nodes,
and the other parts, which has no terminal node. By definition 1 + k1 + k2 = k holds.

Let x1, x2, and x3 be the numbers of nodes of the first, second, and third parts, respec-
tively. Then, by hypothesis we obtain x1 ≤ (2k1 + 1)m and x2 ≤ (2k2 + 1)m hold. The
number of nodes in the third part is at most m, that is x3 ≤ m, where the equality holds if
the numbers of nodes v and root r are given as size(v) = am + 1 and size(r) = (a + 1)m for
some value a.

With these inequalities, we can prove the inequality (1) with the following calculation.

nk = x1 + x2 + x3

≤ (2k1 + 1)m + (2k2 + 1)m + m

= (2(k1 + k2 + 1) + 1)m
= (2k + 1)m

It follows from the transformation of inequality (1) as

nk ≤ (2k + 1)m
(nk/m − 1)/2 ≤ k

that the lemma holds. ⊓⊔

8

In the previous studies [18,31], we divided a tree into m-bridges using the parameter m
given by m = 2N/P where N denotes the number of nodes and P denotes the number of
processors. By this division we obtain at most 2P − 1 m-bridges and thus each processor
deals with at most two m-bridges in this case. This division of course enjoys high locality,
but it is not good enough in terms of load balancing since the maximum number of nodes
passed to a processor may be 2N/P , which is twice of the average number of nodes N/P .

In Section 5, we adjust the value m for more efficient division based on the cost model
developed in Section 4. The idea is that we divide a binary tree into more m-bridges using
smaller m so that we obtain enough load balance while keeping the overheads caused by
loss of locality rather small.

3.2 Data Structure for Distributed Segments

To obtain efficient parallel programs, the performance of the sequential parts is as important
as that of the communication parts. This means that the data structure of local segments
is important.

Generally speaking, data structure of trees are often implemented using pointers or
references. There are, however, two problems in this implementation for large-scale tree
applications. First problem is that a lot of memory is required. Considering trees of integers
or trees of real numbers, for example, the pointers use as many memory as the value for
each node. Furthermore, if we allocate nodes one by one, more memory are consumed for the
information of freeing the nodes. Second problem is the loss of locality. Recent computers
have a cache hierarchy to bridge the gap between the CPU speed and the memory speed,
and cache misses greatly decrease the performance especially in data-intensive applications.
If we allocate nodes from here and there then the probability of cache misses increase.

To resolve these problems, we represent a binary tree as an array serialized in the order
of the preorder traversal. We represent a tree divided based on the m-bridges with one
array gt for the global structure and one array of arrays segs for the local segments. Note
that the arrays in segs are distributed among processors and only one processor has the
array for each local segment. Figure 5 illustrates the array representation of the distributed
tree. Since adjoining elements are aligned one next to another in this representation, we can
reduce cache misses.

In the discussion of implementation algorithms in the next section, we denote seg [i] for
the ith value in the serialized array seg , and use functions isLeaf(seg [i]), isNode(seg [i]) and
isTerminal(seg [i]) to check whether the ith node is a leaf, an internal node, and a terminal
node, respectively.

1

2
3

4 5

6 7 8 9

gt = [2N, 2N, 2L, 2L,2L]

segs = [[1T],
[2T],
[4N, 6L, 7L],
[5N, 8L, 9L],
[3L]]

Fig. 5. Array representation of divided binary trees. Each local segment of segs is distributed to
one of processors and is not shared. Labels L, N and T denote a leaf, a normal internal node, and a
terminal node, respectively. Each m-critical node is included in the parent segment.

9

4 Implementation and Cost Model of Tree Skeletons

In this section, we show the implementation and the cost model of the tree skeletons on
distributed-memory parallel computers. We implement the local computations in tree skele-
tons using loops and stacks on the serialized arrays to reduce the cache misses. This is the
most significant technique with which the parallel programs achieve high performance in
the sequential parts of the algorithm.

We introduce several parameters for discussion of the cost model (Table 1). The com-
putational time of function f executed with p processors is denoted by tp(f). Parameter
N denotes the number of nodes, and P denotes the number of processors. Parameter m is
used for m-critical nodes and m-bridges, and M denotes the number of segments after the
division. For the ith segment, in addition to the parameter of the number of nodes Li, we
introduce parameter Di indicating the depth of the critical node. Parameter cα denotes the
communication time for a value of type α.

The cost model for tree accumulations can be uniformly given in the following form:

max
p

∑
pr(i)=p

(Li × tl + Di × td) + M × tm

where pr(i) denotes the processor assigned to ith segment, and tl, td, and tm are certain
parameters. The cost model consists of the maximum cost of the local computation and the
cost of the global computation. The cost of the local computation is the summation of costs
for all the segments assigned to a processor, where (Li × tl) indicates the computational
time required in sequential computation and (Di × td) indicates the overheads for parallel
computing. The last term (M × tm) indicates the overheads of global computation.

4.1 Implementation and Cost Model of Map and Zipwith Skeleton

Since there are no dependencies among nodes in the computation of the mapb skeleton, we
can implement the mapb skeleton by applying the following function map local to each
local segment. The map local function applies function kl to each leaf and function kn to
each internal node and the terminal node in a local segment seg .

map local(kl, kn, seg)
for i ← 0 to seg .size − 1

if (isLeaf(seg [i])) seg ′[i] ← kl(seg [i]);
if (isNode(seg [i])) seg ′[i] ← kn(seg [i]);
if (isTerminal(seg [i])) seg ′[i] ← kn(seg [i]);

return seg ′;

In a local segment with Li nodes, the number of leaves is at most Li/2+1 and the number
of internal nodes including the terminal node is at most Li/2 + 1. Therefore, ignoring small

Table 1. Parameters for the cost model.

tp(f) computational time of function f using p processors
N the number of nodes in the input tree
P the number of processors
m the parameter for m-critical nodes and m-bridges
M the number of segments given by division of trees
Li the number of nodes in the ith segment
Di the depth of the terminal node in the ith segment
cα the time need for communicating one data of type α

10

constants we can specify the computational cost of the map local function as follows.

t1(map local) =
Li

2
× t1(kl) +

Li

2
× t1(kn)

Therefore, the cost model for the mapb skeleton is as follows.

tP (mapb) = max
p

∑
pr(i)=p

Li ×
t1(kl) + t1(kn)

2

Since the zipwithb skeleton performs the similar computation as the mapb skeleton, we
can give the implementation algorithm and the cost model for the zipwithb skeleton in the
same manner.

4.2 Implementation and Cost Model of Reduce Skeleton

We then show the implementation and the cost model of the reduceb skeleton called with
function k and auxiliary functions k = ⟨ϕ, ψn, ψl, ψr⟩u. Let the type of reduceb skeleton be
reduceb :: (β → α → α → α) → BTree α β → α and the type of the intermediate value be γ
(i.e., the function ϕ has type ϕ :: β → γ).

The implementation of the reduceb skeleton consists of the following three steps:

1. local reduction for each segment,
2. gathering local results to the root processor, and
3. global reduction on the root processor.

Step 1. Local Reduction The bottom-up computation of the reduceb skeleton can be
computed by reversed traversal on the array using a stack for the intermediate results.
Firstly we apply reduce local function to each local segment to reduce it to a value. In
the computation of the reduce local function, we need to apply functions ϕ and either ψl

or ψr to the terminal node and its ancestors while we apply function k to the other internal
nodes. We apply function k, not ϕ and ψn, for reasons of efficiency. To specify where the
terminal node or its ancestor is in the stack, we use a variable d that indicates the position.
Note that in the computation of the reduce local function, the stack has at most one
node among the terminal node and its ancestors.

reduce local(k, ϕ, ψl, ψr, seg)
stack ← ∅; d ← −∞;
for i ← seg .size − 1 to 0

if (isLeaf(seg[i]))
stack ← seg[i]; d ← d + 1;

if (isNode(seg[i]))
lv ← stack ; rv ← stack ;
if (d == 0) stack ← ψl(lv , ϕ(seg[i]), rv);
else if (d == 1) stack ← ψr(lv , ϕ(seg[i]), rv); d ← 0;
else stack ← k(lv , seg[i], rv); d ← d − 1;

if (isTerminal(seg[i]))
stack ← ϕ(seg[i]); d ← 0;

top ← stack ; return top;

In this step, we traverse arrays in the reversed order using a stack, where functions ϕ and
either ψl or ψr is applied to the terminal node and its ancestors and function k is applied
to the other internal nodes. Thus, the cost of reduce local is given as

t1(reduce local) =
(

Li

2
− Di

)
× t1(k) + Di × (t1(ϕ) + max(t1(ψL), t1(ψR))) .

11

Step 2. Gathering Local Results to Root Processor In the second step, we gather all
the local results to the processors. This is easily done by using MPI’s processor-to-processor
communication. The communication cost is given by the number of leaf segments and the
number of internal segments.

tP (Step 2) =
M

2
× cα +

M

2
× cγ

After this step, the gathered values are put in array gt .

Step 3. Global Reduction on Root Processor Finally we compute the result of the
reduceb skeleton by applying reduce global function to the array of local results. This
computation is performed on the root processors. We can compute the result by applying
ψn for each internal node in a bottom-up manner and thus we implement the bottom-up
computation by a reversed traversal using a stack on the array for the global structure.

reduce global(ψn, gt)
stack ← ∅;
for i ← gt .size − 1 to 0

if (isLeaf(gt[i]))
stack ← gt[i];

if (isNode(gt[i]))
lv ← stack ; rv ← stack ; stack ← ψn(lv , gt [i], rv)

top ← stack ; return top;

In this step the function ψn is applied to each internal node and thus the cost of
reduce global is given as follows.

t1(reduce global) =
M

2
× t1(ψn)

Summarizing the discussion above, we can give the cost model of the reduceb skeleton.

tP (reduceb)
= max

p

∑
pr(i)=p

t1(reduce local) + tP (Step 2) + t1(reduce global)

= max
p

∑
pr(i)=p

(
Li ×

t1(k)
2

+ Di × (−t1(k) + t1(ϕ) + max(t1(ψl), t1(ψr)))
)

+ M × cα + cγ + t1(ψn)
2

4.3 Implementation and Cost Model of Upwards Accumulate Skeleton

Next, we develop the implementation of the uAccb skeleton called with function k and
auxiliary functions k = ⟨ϕ, ψN , ψL, ψR⟩u. Let the type of the uAccb skeleton be uAccb ::
(β → α → α → α) → BTree α β → BTree α α and the type of intermediate value be γ in
the same way as the reduceb skeleton.

The implementation of the upwards accumulation on distributed trees consists of the
following five steps:

1. local upwards accumulation for each segment,
2. gathering results of local reduction to the root processor,
3. global upwards accumulation on the root processor,
4. distributing results of global upwards accumulation, and
5. local update for each internal segment.

12

Step 1. Local Upwards Accumulation At the first step, we apply the following function
uAcc local to each segment to compute local upwards accumulation. This function puts
the intermediate result to array seg ′ if a node has no terminal node as descendants. (This
result value is indeed the result of the uAcc skeleton.) This function returns the result of
the local reduction and the array seg ′.

uAcc local(k, ϕ, ψl, ψr, seg)
stack ← ∅; d ← −∞;
for i ← seg .size − 1 to 0

if (isLeaf(seg [i]))
seg ′[i] ← seg [i]; stack ← seg ′[i]; d ← d + 1;

if (isNode(seg [i]))
lv ← stack ; rv ← stack ;
if (d == 0) stack ← ψl(lv, ϕ(seg [i]), rv); d ← 0;
else if (d == 1) stack ← ψr(lv, ϕ(seg [i]), rv); d ← 0;
else seg ′[i] ← k(lv, seg [i], rv); stack ← seg ′[i]; d ← d − 1;

if (isTerminal(seg [i]))
stack ← ϕ(seg [i]); d ← 0;

top ← stack ; return(top, seg ′);

In the computation of the uAcc local function, ϕ and either of ψl or ψr are applied
to each node on the path from the critical node to the root, and k is applied to the other
internal nodes. Since the number of internal nodes is a half of Li, we obtain the cost of the
uAcc local function as follows. This cost is the same as that of reduce local function.

t1(uAcc local) =
(

Li

2
− Di

)
× t1(k) + Di × (t1(ϕ) + max(t1(ψl), t1(ψr)))

Step 2. Gathering Results of Local Reduction to Root Processor In the second step,
we gather the results of the local reduction to the global structure gt of the root processor.
From each leaf segment a value of type α is communicated, and from each internal segment
a value of type γ is communicated. Since the number of leaf segments and the number of
internal segments are almost M/2 respectively, the communication cost of the second step
is given as follows.

tP (Step 2) =
M

2
× cα +

M

2
× cγ

Step 3. Global Upward Accumulation on Root Processor In the third step, we com-
pute the upwards accumulation for the global structure gt on the root processor. Function
uAcc global performs sequential upwards accumulation using function ψn.

uAcc global(ψn, gt)
stack ← ∅;
for i ← gt .size − 1 to 0

if (isLeaf(gt [i]))
gt ′[i] ← gt [i];

if (isNode(gt [i]))
lv ← stack ; rv ← stack ; gt ′[i] ← ψn(lv, gt[i], rv);

stack ← gt ′[i];
return(gt ′);

In this function, we apply function ψn to each internal segment of gt , and thus the cost
of the third step is given as

t1(uAcc global) =
M

2
× t1(ψn) .

13

Step 4. Broadcasting Global Results At the fourth step, we send the results of global
upwards accumulation to processors, where two values are sent to each internal segment and
no value is sent to each leaf segment. All the values have type α after the global upwards
accumulation, and thus the communication cost in the fourth step is given as follows.

tP (Step 4) = M × cα

Step 5. Local Update on Path from Root to Terminal Node At the last step, we
apply function uAcc update to each internal segment. The two values pushed to the stack
at the beginning of the function are the values passed in the previous step. These two values
correspond to the results of children of the terminal node. Note that in the last step we only
compute the missing values left in the segment seg ′.

uAcc update(k, seg , seg ′, lc, rc)
stack ← ∅; stack ← rc; stack ← lc;
d ← −∞;
for i ← seg .size − 1 to 0

if (isLeaf(seg [i]))
stack ← seg ′[i]; d ← d + 1;

if (isNode(seg [i]))
lv ← stack ; rv ← stack ;
if (d == 0) seg ′[i] ← k(lv, seg [i], rv); stack ← seg ′[i];
else if (d == 1) seg ′[i] ← k(lv, seg [i], rv); stack ← seg ′[i]; d ← 0;
else stack ← seg ′[i]; d ← d − 1;

if (isTerminal(seg [i]))
lv ← stack ; rv ← stack ;
seg ′[i] ← k(lv, seg [i], rv); stack ← seg ′[i]; d ← 0;

return(seg ′);

In this step, function k is applied to the nodes on the path from the terminal node to
the root node for each internal segment. Noting that the depth of the terminal nodes is Di,
we can give the cost of uAcc update as follows.

t1(uAcc update) = Di × t1(k)

Summarizing the discussion above we can specify the cost model of the uAccb skeleton.

tP (uAccb)
= max

p

∑
pr(i)=p

t1(uAcc local) + tP (Step 2) + t1(uAcc global)

+ tP (Step 4) + max
p

∑
pr(i)=p

t1(uAcc update)

= max
p

∑
pr(i)=p

(
Li ×

t1(k)
2

+ Di × (t1(ϕ) + max(t1(ψl), t1(ψr)))
)

+ M × (3cα + cγ + t1(ψn))/2

4.4 Implementation and Cost Model of Downwards Accumulate Skeleton

Finally we develop the implementation and the cost model for the dAccb skeleton called
with functions (gl, gr) and auxiliary functions (gl, gr) = ⟨ϕl, ϕr, ψu, ψd⟩d. Let the type of the
skeleton be dAccb :: (γ → β → γ, γ → β → γ) → γ → BTree α β → BTree γ γ and the type
of the intermediate value be δ (i.e., the function ϕl has type ϕl :: β → δ, for example.).

The implementation of the dAccb skeleton also consists of the five steps as follows:

14

1. computing two intermediate values for each internal segment,
2. gathering local results to the root processor,
3. global downwards accumulation on the root processor,
4. distributing the results of global downwards accumulation, and
5. local downwards accumulation for each segment.

Step 1. Computing Local Intermediate Values In the first step, we compute for each
internal segment two local intermediate values that are used updating the accumulative
parameter from the root node to the both children of the terminal node. To minimize the
computation cost we first find the terminal node and then compute two values only on
the path from the terminal node to the root node. We implement this computation by the
following function dAcc path, in which the computation is done by a reversed traversal on
the array with an integer d instead of a stack.

dAcc path(ϕl, ϕr, ψu, seg)
d ← −∞;
for i ← seg .size − 1 to 0

if (isLeaf(seg [i]))
d ← d + 1;

if (isNode(seg [i]))
if (d == 0)

toL = ψu(ϕl(seg [i]), toL); toR = ψu(ϕl(seg [i]), toR);
else if (d == 1)

toL = ψu(ϕr(seg [i]), toL); toR = ψu(ϕr(seg [i]), toR);
d ← 0;

else
d ← d − 1;

if (isTerminal(seg [i]))
toL ← ϕl(seg [i]); toR ← ϕr(seg [i]);
d ← 0;

return (toL, toR);

In this step we apply ψu and either ϕl or ϕr twice for each node on the path from the
terminal node to the root node. Thus the cost of the dAcc path function is given as follows.

t1(dAcc path) = Di × (max(t1(ϕl), t1(ϕr)) + 2t1(ψu))

Step 2. Gathering Local Results to Root Processor In the second step, we gather
the local results of the internal segments to the root processor. Since the two intermediate
values have type δ and the number of internal segments is M/2, the communication cost in
the second step is given as follows.

tP (Step 2) = M × cδ

The two local results from each internal segment are put to the array of the global tree
structure gt .

Step 3. Global Downwards Accumulation In the third step, we compute global down-
wards accumulation on the root processor. We implement this global downwards accumula-
tion with a forward traversal using a stack as shown in the following function dAcc global.
The initial value of accumulative parameter is pushed to the stack, and then the accumu-
lative parameter in the stack is updated with the local results given in the previous step.

15

For each segment, the result of global accumulation is the accumulative parameter passed
to the root node of the segment.

dAcc global(ψd, c, gt)
stack ← ∅; stack ← c;
for i ← 0 to gt .size − 1

if (isLeaf(gt [i]))
gt ′[i] ← stack ;

if (isNode(gt [i]))
gt ′[i] ← stack ; (toL, toR) ← gt[i];
stack ← ψd(gt ′[i], toR); stack ← ψd(gt ′[i], toL);

return gt ′;

The dAcc global function applies function ψd twice for each internal segment in the
global structure. Therefore, the computational cost of the dAcc global function is given
as follows.

t1(dAcc global) = M × t1(ψd)

Step 4. Distributing Global Results In the fourth step, we distribute the results of
global downwards accumulation to the corresponding processor. Since each result of global
downwards accumulation has type γ, the communication cost in the fourth step is given as
follows.

tP (step 4) = M × cγ

Step 5. Local Downwards Accumulation Finally, we compute local downwards accu-
mulation for each segment. The initial value c′ of the accumulative parameter is given in
the previous step. Note that the definition of the following dAcc local function is just the
same as the sequential version of the downwards accumulation on the serialized array.

dAcc local(gl, gr, c
′, seg)

stack ← ∅; stack ← c′;
for i ← 0 to seg .size − 1

if (isLeaf(seg [i]))
seg ′[i] ← stack ;

if (isNode(seg [i]))
seg ′[i] ← stack ; stack ← gr(seg ′[i], seg [i]); stack ← gl(seg ′[i], seg [i]);

if (isTerminal(seg [i]))
seg ′[i] ← stack ;

return seg ′;

The local downwards accumulation applies functions gl and gr for each internal node.
Since the number of the internal nodes are almost Li/2, the computational cost of the
dAcc local function is given as follows.

t1(dAcc local) =
Li

2
× (t1(gl) + t1(gr))

16

Summarizing the discussion above, we obtain the following cost model for the dAccb

skeleton.

tP (dAccb)
= max

p

∑
pr(i)=p

t1(dAcc path) + tP (Step 2) + t1(dAcc global)

+ tP (Step 4) + max
p

∑
pr(i)=p

t1(dAcc local)

= max
p

∑
pr(i)=p

(
Li ×

t1(gl) + t1(gr)
2

+ Di × (max(t1(ϕl), t1(ϕr)) + 2t1(ψu))
)

+M × (cδ + t1(ψd) + cγ)

5 Optimal Division of Binary Trees based on Cost Model

As we stated at the beginning of Section 3, locality and load balance are two major prop-
erties in developing efficient parallel programs in particular on distributed-memory parallel
computers. By using the m-bridges for dividing and distributing a binary tree, we enjoy
good locality with large m, while we enjoy good load balance with smaller m. Therefore, we
need to find an appropriate value for m.

First we give the criterion among parameters of the cost model. From Lemma 3 and the
representation of local segments in Fig. 5,

Li ≤ m (2)

holds. Since the maximum height of a tree is a half of the number of nodes, we obtain

Di ≤ Li/2 ≤ m/2 . (3)

From Lemmas 4 and 5, the number of local segments M is bound as

1
2

(
N

m
− 1

)
≤ M ≤ 2N

m
− 1 . (4)

We distribute the local segments to processors so as to obtain good load balance. By
transforming the cost model using inequality (3), we obtain the following simpler form.

max
p

∑
pr(i)=p

(Li × tl + Di × td) + M × tm

≤ max
p

∑
pr(i)=p

(
Li × tl +

Li

2
× td

)
+ M × tm

= (max
p

∑
pr(i)=p

Li) ×
(

tl +
td
2

)
+ M × tm

Next we want to bound the maximum of summation maxp
∑

pr(i)=p Li by the parameter m,
N , and P . One easy way to implement the load balancing is distributing the local segments
greedily from the largest one. Since the maximum number of nodes in a local segment is m
as stated in inequality (2) and the total number of nodes in the original binary tree is N ,
we can bound the summation as follows:

max
p

∑
pr(i)=p

Li ≤
N

P
+ m

17

where P denotes the number of processors. By substituting this inequality to the cost model,
we can bound the cost of the worst case.

max
p

∑
pr(i)=p

(Li × tl + Di × td) + M × tm ≤
(

N

P
+ m

)
×

(
tl +

td
2

)
+ M × tm (5)

Now we want to minimize the worst-case cost given in the right-hand side of inequal-
ity (5). By substituting the parameter M (inequality (4)), the worst-case cost is bound with
respect to m. We can bound the worst-case cost for smaller m as

(
N

P
+ m

)
×

(
tl +

td
2

)
+ M × tm ≤

(
N

P
+ m

)
×

(
tl +

td
2

)
+

1
2

(
N

m
− 1

)
× tm ,

and we can bound the worst-case cost for larger m as

(
N

P
+ m

)
×

(
tl +

td
2

)
+ M × tm ≤

(
N

P
+ m

)
×

(
tl +

td
2

)
+

2N

m
− 1 × tm .

From these bounds, we can minimize the worst-case cost for some value m in the following
range. √

tm
2tl + td

√
N ≤ m ≤ 2

√
tm

2tl + td

√
N

This new bound for the parameter m is much smaller than the previous studies [18,31].
In Section 6, we will show several experiment results that support this discussion.

6 Experiment Results

To confirm the efficiency of the implementation of binary-tree skeletons, we made several
experiments. We used our PC-cluster of uniform PCs with Pentium 4 2.8 GHz CPU and 2
GByte memory connected with Gigabit Ethernet. The compiler and MPI library used are
gcc 4.1.1 and MPICH 1.2.7, respectively.

We used the skeletal parallel program that solves the party planning problem in Fig. 3.
The input trees are (1) a balanced tree, (2) a randomly generated tree and (3) a fully ill-
balanced tree, each with 16777215 (= 224 − 1) nodes. The parameters of the cost model are
tl = 0.18 µs, td = 0.25 µs, and tm = 100 µs on our PC cluster.

Figure 6 shows the the general performance of the tree skeletons. Each execution time
excludes the initial data distribution and final gathering. The speedups are plotted against
the efficient sequential implementation of the program. As seen in these plots, the imple-
mentation shows not only scalability but also good sequential performance. For the fully
ill-balanced tree the implementation performs worse but this is caused by the factor of
Di × td (∼ 0.7Li × tl) introduced for parallelism.

To analyze more in detail, we made more experiments by changing the value of m. The
results are shown in Fig. 7. Roughly speaking, as seen from Fig. 7 (left), the implementa-
tion of tree accumulations scales under both large and small m. Figure 7 (right) plots the
execution time with respect to the parameter m. The performance gets worse for too small
m or too large m, where good performance is shown under the range 5× 104 < m < 1× 105

computed from inequality (5) with substitution of the parameters tl, td, tm, and N given
above.

18

0

0.5

1

1.5

2

6456484032241612841

E
xe

cu
ti
o
n

T
im

es
(s

)

Number of Processors

Balanced Tree
Random Tree

Ill-balanced Tree

0

10

20

30

40

50

60

6456484032241612841

S
p
ee

d
u
p
s

a
g
a
in

st
S
eq

.
P
ro

g
ra

m

Number of Processors

Balanced Tree
Random Tree

Ill-balanced Tree
linear

Fig. 6. Execution times and speedups against sequential program where m = 2 × 104.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

6456484032241612841

E
xe

cu
ti
o
n

T
im

es
(s

)

Number of Processors

m = 2000
m = 20000

m = 200000

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

5002008040201042

E
xe

cu
ti
o
n

T
im

es
(s

)

Value of m (×1000)

P = 16
P = 32
P = 64

Fig. 7. Execution times changing parameter m for the randomly generated tree.

7 Related Work

Tree contraction algorithms, whose idea was first proposed by Miller and Reif [25], are
very important parallel algorithms for efficient manipulations of trees. Many researchers
have devoted themselves to developing efficient implementations of the tree contraction
algorithms on various parallel models [1–3, 6, 8, 11, 15, 23, 24, 38]. Among them, Gibbons
and Rytter developed an cost-optimal algorithm on CREW PRAM [11]; Abrahamson et
al. developed an cost-optimal and practical algorithm on EREW PRAM [1]; Miller and
Reif showed implementations on hypercubes or related networks [23,24]; and recently more
efficient implementations are discussed [2, 38] for symmetric multiprocessors (SMP) and
chip-level multiprocessing (CMP). A lot of tree programs have been described by the tree
contraction algorithms [3, 6, 11,14,17,26–29].

There have been several studies on the implementations of parallel tree skeletons [12,
13, 16, 18, 33–35]. Gibbons et al. [13, 34] have developed an implementation of parallel tree
skeletons based on the tree contraction algorithms. There algorithm can be used on many
parallel computers, due to the various implementation algorithms on various parallel com-
puters. Skillicorn [35] and our previous paper [18] have discussed implementations of parallel
tree skeletons based on the division of trees. Compared with these implementation algo-
rithms, our implementation is unique in terms of data structure of local segments for better
sequential performance and the cost model supporting good division of trees. As far as we
are aware, we are the first who implement the parallel tree skeletons as a parallel skele-
ton library. Our implementation of the tree skeletons will be available as a part of SkeTo
library [22]. In terms of manipulations of general trees, which are formalized as parallel

19

rose-tree skeletons [20], some of them are implemented efficiently in parallel [16, 33]. Sevil-
gen et al. [33] has shown an implementation algorithm for tree accumulations on general
trees where rather strict conditions are requested for efficient implementation. Kakehi et
al. [16] has developed an efficient implementation of tree reduction on general trees based
on the serialized representation like XML formats.

8 Conclusion

In this paper, we have developed an efficient implementation of parallel tree skeletons. Not
only our implementation shows good performance even against sequential programs, but
also the cost model of the implementation helps us to divide a tree into segments with good
load balance. The implementation will be available as a part of SkeTo library1. One of our
future work is to develop a profiling system that determines more accurate parameter m for
dividing trees.

References

1. Karl R. Abrahamson, N. Dadoun, David G. Kirkpatrick, and Teresa M. Przytycka. A simple
parallel tree contraction algorithm. Journal of Algorithms, 10(2):287–302, June 1989.

2. David A. Bader, Sukanya Sreshta, and Nina R. Weisse-Bernstein. Evaluating arithmetic expres-
sions using tree contraction: A fast and scalable parallel implementation for symmetric multi-
processors (smps) (extended abstract). In Sartaj Sahni, Viktor K. Prasanna, and Uday Shukla,
editors, High Performance Computing – HiPC 2002, 9th International Conference, Bangalore,
India, December 18–21, 2002, Proceedings, volume 2552 of Lecture Notes in Computer Science,
pages 63–78. Springer, 2002.

3. Raja P. K. Banerjee, Vineet Goel, and Amar Mukherjee. Efficient parallel evaluation of CSG
tree using fixed number of processors. In ACM Symposium on Solid Modeling Foundations and
CAD/CAM Applications, May 19–21, 1993, Montreal, Canada, pages 137–146, 1993.

4. Richard S. Bird. Introduction to Functional Programming using Haskell. Prentice Hall Series in
Computer Science. Prentice Hall, 2nd edition, April 1998.

5. Richard S. Bird. Maximum marking problems. Journal of Functional Programming, 11(4):411–
424, July 2001.

6. Richard Cole and Uzi Vishkin. The accelerated centroid decomposition technique for optimal
parallel tree evaluation in logarithmic time. Algorithmica, 3:329–346, March 1988.

7. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms. MIT Press, second edition, Sptember 2001.

8. Frank K. H. A. Dehne, Afonso Ferreira, Edson Cáceres, Siang W. Song, and Alessandro Roncato.
Efficient parallel graph algorithms for coarse-grained multicomputers and BSP. Algorithmica,
33(2):183–200, January 2002.

9. Hossain Deldari, John R. Davy, and Peter M. Dew. Parallel CSG, skeletons and performance
modeling. In Proceedings of the Second Annual CSI Computer Conference (CSICC’96), pages
115–122, 1996.

10. Krzysztof Diks and Torben Hagerup. More general parallel tree contraction: Register allocation
and broadcasting in a tree. Theorecital Computer Science, 203(1):3–29, August 1998.

11. Alan Gibbons and Wojciech Rytter. An optimal parallel algorithm for dynamic expression
evaluation and its applications. In Kesav V. Nori, editor, Foundations of Software Technology
and Theoretical Computer Science, Sixth Conference, New Delhi, India, December 18–20, 1986,
Proceedings, volume 241 of Lecture Notes in Computer Science, pages 453–469. Springer, 1986.

1 http://www.ipl.t.u-tokyo.ac.jp/sketo/

20

12. Jeremy Gibbons. Computing downwards accumulations on trees quickly. In Gopal Gupta,
George Mohay, and Rodney Topor, editors, Proceedings of the 16th Australian Computer Science
Conference, pages 685–691, 1993.

13. Jeremy Gibbons, Wentong Cai, and David B. Skillicorn. Efficient parallel algorithms for tree
accumulations. Science of Computer Programming, 23(1):1–18, October 1994.

14. Xin He. Efficient parallel algorithms for solving some tree problems. In 24th Allerton Conference
on Communication, Control and Computing, pages 777–786, 1986.

15. Gustedt Jens. Communication and memory optimized tree contraction and list ranking. Tech-
nical report, INRIA, Unité de recherche, Rhône-Alpes, Montbonnot-Saint-Martin, FRANCE,
December 2000.

16. Kazuhiko Kakehi, Kiminori Matsuzaki, Kento Emoto, and Zhenjiang Hu. An practicable frame-
work for tree reductions under distributed memory environments. Technical Report METR
2006-64, Department of Mathematical Informatics, Graduate School of Information Science and
Technology, University of Tokyo, December 2006.

17. Kiminori Matsuzaki, Zhenjiang Hu, Kazuhiko Kakehi, and Masato Takeichi. Systematic deriva-
tion of tree contraction algorithms. Parallel Processing Letters, 15(3):321–336, September 2005.

18. Kiminori Matsuzaki, Zhenjiang Hu, and Masato Takeichi. Implementation of parallel tree skele-
tons on distributed systems. In The Third Asian Workshop on Programming Languages and
Systems, APLAS’02, Shanghai Jiao Tong University, Shanghai, China, November 29 – Decem-
ber 1, 2002, Proceedings, pages 258–271, 2002.

19. Kiminori Matsuzaki, Zhenjiang Hu, and Masato Takeichi. Parallelization with tree skeletons.
volume 2790 of Lecture Notes in Computer Science, pages 789–798. Springer, 2003.

20. Kiminori Matsuzaki, Zhenjiang Hu, and Masato Takeichi. Parallel skeletons for manipulating
general trees. Parallel Computing, 32(7–8):590–603, September 2006.

21. Kiminori Matsuzaki, Zhenjiang Hu, and Masato Takeichi. Towards automatic parallelization
of tree reductions in dynamic programming. In Phillip B. Gibbons and Uzi Vishkin, editors,
SPAA 2006: Proceedings of the 18th Annual ACM Symposium on Parallelism in Algorithms
and Architectures, July 30–August 2, 2006, Cambridge, Massachusetts, USA, pages 39–48. ACM
Press, 2006.

22. Kiminori Matsuzaki, Hideya Iwasaki, Kento Emoto, and Zhenjiang Hu. A library of constructive
skeletons for sequential style of parallel programming. In InfoScale ’06: Proceedings of the 1st
international conference on Scalable information systems, volume 152 of ACM International
Conference Proceeding Series, page 13. ACM Press, 2006.

23. Ernst W. Mayr and Ralph Werchner. Optimal routing of parentheses on the hypercube. Journal
of Parallel and Distbributed Computing, 26(2):181–192, April 1995.

24. Ernst W. Mayr and Ralph Werchner. Optimal tree contraction and term matching on the
hypercube and related networks. Algorithmica, 18(3):445–460, July 1997.

25. Gary L. Miller and John H. Reif. Parallel tree contraction and its application. In 26th Annual
Symposium on Foundations of Computer Science, 21–23 October 1985, Portland, Oregon, USA,
pages 478–489. IEEE Computer Society, 1985.

26. Gary L. Miller and John H. Reif. Parallel tree contraction, part 2: Further applications. SIAM
Journal on Computing, 20(6):1128–1147, 1991.

27. Gary L. Miller and Shang-Hua Teng. Dynamic parallel complexity of computational circuits. In
Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, 25–27 May
1987, New York City, NY, USA, pages 254–263. ACM Press, 1987.

28. Gary L. Miller and Shang-Hua Teng. Tree-based parallel algorithm design. Algorithmica,
19(4):369–389, December 1997.

29. Gary L. Miller and Shang-Hua Teng. The dynamic parallel complexity of computational circuits.
SIAM Journal on Computing, 28(5):1664–1688, 1999.

21

30. S. Peyton Jones and J. Hughes. Report on the programming language Haskell 98: A non-strict,
purely functional language. Available from http://www.haskell.org/, February 1999.

31. John H. Reif, editor. Synthesis of Parallel Algorithms. Morgan Kaufmann Publishers, February
1993.

32. Isao Sasano, Zhenjiang Hu, and Masato Takeichi. Generation of efficient programs for solving
maximum multi-marking problems. In Walid Taha, editor, Semantics, Applications, and Imple-
mentation of Program Generation, Second International Workshop, SAIG 2001, Florence, Italy,
September 6, 2001, Proceedings, volume 2196 of Lecture Notes in Computer Science, pages 72–91.
Springer, 2001.

33. Fatih E. Sevilgen, Srinivas Aluru, and Natsuhiko Futamura. Parallel algorithms for tree accu-
mulations. Journal of Parallel and Distbributed Computing, 65(1):85–93, 2005.

34. David B. Skillicorn. Foundations of Parallel Programming, volume 6 of Cambridge International
Series on Parallel Computation. Cambridge University Press, 1994.

35. David B. Skillicorn. Parallel implementation of tree skeletons. Journal of Parallel and Dist-
bributed Computing, 39(2):115–125, December 1996.

36. David B. Skillicorn. A parallel tree difference algorithm. Information Processing Letters,
60(5):231–235, December 1996.

37. David B. Skillicorn. Structured parallel computation in structured documents. Journal of Uni-
varsal Computer Science, 3(1):42–68, January 1997.

38. Uzi Vishkin. A no-busy-wait balanced tree parallel algorithmic paradigm. In Gary Miller and
Shang-Hua Teng, editors, SPAA 2000: Proceedings of the 12th Annual ACM Symposium on
Parallel Algorithms and Architectures, July 09–13, 2000, Bar Harbor, Maine, USA, pages 147–
155. ACM Press, 2000.

22

