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Abstract

We study Markov bases of hierarchical models in general and those of decom-
posable models in particular for multiway contingency tables by determining the
structure of fibers of sample size two. We prove that the number of elements of
fibers of sample size two are powers of two and we characterizes the primitive moves
of Markov bases in terms of connected components of a certain graph defined from
the generating class of a hierarchical model. This allows us to derive a complete
description of minimal Markov bases and minimal invariant Markov bases for de-
composable models in view of the fact that they posses Markov bases consisting of
primitive moves, i.e. square-free moves of degree two.

1 Introduction

Hierarchical models are of basic importance for statistical analysis of multiway contin-
gency tables (e.g. [13]). Decomposable models defined in terms of chordal graphs are
particularly useful submodels of hierarchical models. Chordal graphs find applications
in many fields as essential components of explicit solutions for some classes of nonlinear
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problems. For estimation of parameters, the maximum likelihood estimators of decom-
posable models are explicitly written as rational functions of marginal frequencies of the
model. It is also possible to give explicit improvements of maximum likelihood estimators
under the Poisson sampling scheme in a decision theoretic framework ([10],[9]).

For testing goodness of fit of hierarchical models, Markov chain Monte Carlo approach
based on Markov bases is very useful ([5]). However the structure of Markov bases for
general hierarchical model is very difficult as illustrated in [2]. Again decomposable mod-
els are particularly simple in this respect because they possess Markov bases consisting
of primitive moves, i.e. square-free moves of degree two. ([6],[11],[7]). These Markov
bases are explicitly constructed based on a clique tree of the chordal graph defining the
decomposable model and one Markov basis suffices for performing goodness of fit tests
in applications. However from theoretical viewpoint it is important to study and clarify
the properties of Markov bases for decomposable models, because they give insights into
Markov bases for more general and difficult cases.

The present authors have been studying Markov basis from the viewpoint of minimality
([2], [16]) and invariance ([1], [3]). In this paper we clarify structures of primitive moves
and prove that the sizes of fibers of minimal Markov bases are powers of two. All elements
of fibers of sample size two are indispensable monomials ([4]). This result enables us
to explicitly describe minimal Markov bases and minimal invariant Markov bases for
decomposable models. We also give a necessary and sufficient condition for the uniqueness
of the minimal Markov basis for decomposable models.

The organization of the paper is as follows. In Section 2 we setup notations for this
paper and summarize preliminary results. In Section 3 we clarify structures of fibers of
sample size two. Using this characterization in Section 4 we give a complete description
of minimal Markov bases and minimal invariant Markov bases for decomposable models.
In Section 5 we briefly discuss reduced Gröbner bases for decomposable models and we
end the paper with some concluding remarks in Section 6.

2 Preliminaries

2.1 Preliminaries on contingency tables and Markov bases

In this section we setup appropriate notations of multiway contingency tables and sum-
marize some preliminary results on decomposable models and Markov bases needed for
this paper.

Concerning the notation for multiway contingency tables we mostly follow [13], [11]
and [6]. Let ∆ = {1, . . . ,m} denote the set of variables of an m-way contingency table.
Let Iδ, δ ∈ ∆, denote the number of levels of the variable δ. For convenience we take the
set of levels of the variable δ as {0, 1, . . . , Iδ − 1} starting from 0 as in [11]. The cells of
the contingency table are indexed by

i = (i1, . . . , im) ∈ I = {0, 1, . . . , I1 − 1} × · · · × {0, 1, . . . , Im − 1}.
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n(i) denotes the frequency of the cell i and n = {n(i)}i∈I denotes an m-way contingency
table. The set of positive cells supp(n) = {i ∈ I | n(i) > 0} is the support of n.

For a subset D ⊂ ∆ of the variables, the D-marginal nD of n is the contingency
table with marginal cells iD ∈ ID =

∏
δ∈D{0, 1, . . . , Iδ − 1} and entries given by nD(iD) =∑

i
DC∈I

DC
n(iD, iDC ). Here we are denoting i = (iD, iDC ) by ignoring the order of the

indices.
Next we summarize some terminology and facts on hierarchical models and decom-

posable models from [13]. Let D = {D1, . . . , Dr} be a set of subsets of ∆, such that
there is no inclusion relation among Di’s and ∆ = ∪r

i=1Di. D is called the generating
class of a hierarchical model. A hierarchical model with the generating class D is called
graphical if D = {D1, . . . , Dr} is the set of (maximal) cliques of an undirected graph G
with the set of vertices ∆. In this paper by a clique we mean the set of vertices of a
maximal complete induced subgraph. A graphical model is called decomposable if G is
chordal (decomposable, triangulated), i.e. every cycle of G with length greater than three
has a chord. A clique tree (or a junction tree) T of a chordal graph G is a tree, such that
the vertices of T are cliques of G and it satisfies the following property:

Ds ∩ Dt ⊂ Du for all Du on the path between Ds and Dt in T .

An intersection S of neighboring cliques in a clique tree is called a separator. S separates T
into two subtrees and let A and B denote the unions of cliques of two subtrees, respectively.
Then S decomposes G as {A\S,B \S, S}, where S is a minimal vertex separator between
any vertex in A\S and any vertex in B \S. In the following S denotes the set of minimal
vertex separators of a chordal graph. In this paper, when G is not connected, we regard
the empty set ∅ as a minimal vertex separator of G.

For a clique D ∈ D, let Simp(D) denote the set of simplicial vertices in D and let
Sep(D) denote the set of non-simplicial vertices in D. Then D = Simp(D) ∪ Sep(D) is a
partition (disjoint union) of D ([8]). If Simp(D) 6= ∅, D is called a simplicial clique. A
simplicial clique D is called a boundary clique if there exists another clique D′ ∈ D such
that Sep(D) = D ∩ D′ ([14]). Simplicial vertices in boundary cliques are called simply
separated vertices ([8]). Hara and Takemura[8] showed that a clique D is boundary clique
if and only if there exists a clique tree T such that D is its endpoint. Hence there exists
at least two boundary clique in any chordal graph.

Finally we summarize some relevant facts on fibers and Markov bases ([16], [17]).
Given the generating class D = {D1, . . . , Dr} of a hierarchical model, we denote the set
of marginal frequencies as

b = {nDj
(iDj

), iDj
∈ IDj

, j = 1, . . . , r}.

We consider b as a column vector with dimension d =
∑r

j=1

∏
δ∈Dj

Iδ, where the elements
are ordered according to an appropriate lexicographical order. We also order the elements
of n appropriately and consider n as a column vector. Then the relation between the
joint frequencies n and the marginal frequencies b is written simply as

b = An,
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where A is a d × (
∏

δ∈∆ Iδ) matrix consisting of 0’s and 1’s. A is the “incidence matrix”
of cells and marginals with 1 indicating that the corresponding cell (column) is included
in the corresponding marginal (row).

The marginal tables nD1 , . . . , nDr are consistent ([6]) if, for any r1, r2, the (Dr1 ∩Dr2)-
marginal of nDr1

is equal to the (Dr1 ∩ Dr2)-marginal of nDr2
.

Given b, the set
Fb = {n ≥ 0 | b = An}

of contingency tables sharing the same marginal frequencies b is called a fiber or b-fiber.
All contingency tables n in the same fiber Fb has the same total frequency n =

∑
i∈I n(i).

We call this common total frequency sample size or degree of b and denote it by deg b.
Therefore “fibers of sample size two” in the title of this paper means Fb with deg b = 2.
For brevity in the following we use the term “degree two fibers”.

An integer array z of the same dimension as n is called a move if Az = 0, i.e., all the
marginal sums of z are zeros. Moves are used for steps of Markov Chain Monte Carlo
simulation within each fiber. If we add a move or subtract a move z to n ∈ Fb, then
n± z ∈ Fb and we can move from n to another state n + z (or n− z) in the same fiber
Fb, as long as there is no negative element in n ± z. A finite set M of moves is called a
Markov basis if for every fiber the states become mutually accessible by the moves from
M. A Markov basis M is minimal if every proper subset of M is no longer a Markov
basis. When we separate positive elements and negative elements of a move, then each
move z is written as difference of its positive part and negative part as z = z+ − z−.
Then Az+ = Az−. Therefore the positive part and the negative of a move belong to the
same fiber. In this case we simply say that a move z belongs to the fiber FAz+ . Minimal
Markov bases may not be unique, but the fibers of the moves of all minimal Markov bases
are common. See the definition of the minimum fiber Markov basis in [17]. In this paper
we refer to the set of fibers common to all minimal Markov bases as the fibers of the
minimum fiber Markov basis.

Note that there exists no move of degree 1, since we are considering m-way contingency
tables with m ≥ 2. Suppose that a degree two fiber Fb contains more than one element
(|Fb| ≥ 2). Then no two elements n,n′ of the fiber share a support:

deg b = 2, |Fb| ≥ 2, n 6= n′ ∈ Fb ⇒ supp(n) ∩ supp(n′) = ∅.

It follows that each element of a degree two fiber with more than one element is an
indispensable monomial ([4]), i.e., each contingency table of sample size two is isolated
and has to be connected to some other tables in the same fiber by a degree two move of a
Markov basis. Hence each degree two fiber with more than one element has to be a fiber
of the minimum fiber Markov basis. This fact holds for any hierarchical model. Note
however that for some hierarchical models, such as no-three factor interaction models
([2]), every degree two fiber has only one element.

On the other hand for decomposable models, Dobra[6] and Hoşten and Sullivant[11]
have shown that there exists a Markov basis consisting of primitive moves, i.e. square-
free moves of degree two. It implies that for decomposable models it suffices to study
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degree two fibers. In particular the fibers of the minimum fiber Markov bases are exactly
the degree two fibers with more than one element. Furthermore by the characterization
of the uniqueness of minimal Markov bases in Takemura and Aoki [16], it follows that
minimal Markov basis for a decomposable model is unique if and only if all degree two
fibers contain at most two elements. Based on this result we will give a necessary and
sufficient condition for the uniqueness of minimal Markov bases for decomposable models
(Theorem 3 below) in terms of the properties of their chordal graphs.

3 Structure of degree two fibers

In this section we study the structure of degree two fibers. Let D = {D1, . . . , Dr} be
the generating class of a hierarchical model. Let b be the set of marginal frequencies
of a contingency table with sample size two. We are interested in the structure of the
degree two fiber Fb. Because the sample size is two, for each D ∈ D, there exists at
most two marginal cells iD with positive marginal frequency nD(iD) > 0. The same
reasoning holds for each variable δ ∈ ∆, namely in the one-dimensional marginal table
{n{δ}(iδ), iδ ∈ {0, 1, . . . , Iδ−1}} there exist at most two levels iδ such that n{δ}(iδ) > 0. For
a given b we say that the variable δ is degenerate if there exists a unique level iδ such that
n{δ}(iδ) = 2. Otherwise, if there exist two levels iδ 6= i′δ such that n{δ}(iδ) = n{δ}(i

′
δ) = 1,

then we say that the variable δ is nondegenerate.
If a variable δ is degenerate, then the level of the variable δ is uniquely determined

from the marginal and it is common for all contingency tables n ∈ Fb. In particular if all
the variables δ ∈ ∆ are degenerate, then Fb = {n} is a one-element fiber with frequency
n(i) = 2 at a particular cell i. Since this case is trivial, below we consider the case that
at least one variable is nondegenerate.

From the fact that there exist at most two levels with positive one-dimensional marginals
for each variable, it follows that we only need to consider 2 × · · · × 2 tables for studying
degree two fibers. Therefore for our purposes we let I1 = · · · = Im = 2, I = {0, 1}k,
without loss of generality.

For a given b of degree two let ∆̄b denote the set of nondegenerate variables. As noted
above we assume that ∆̄b 6= ∅. Each n ∈ Fb has frequency one in two different cells
i = (i1, . . . , im) 6= i′ = (i′1, . . . , i

′
m), 1 = n(i) = n(i′). Furthermore for nondegenerate

δ ∈ ∆̄b the levels of the variable δ in i and i′ are different:

{iδ, i′δ} = {0, 1}, ∀δ ∈ ∆̄b,

or equivalently i′δ = 1 − iδ, ∀δ ∈ ∆̄b. In the following we use the notation i∗δ = 1 − iδ.
More generally for a subset D = {δ1, . . . , δk} of the variables and a marginal cell iD =
(iδ1 , . . . , iδk

) we write

i∗D ≡ (i∗δ1 , . . . , i
∗
δk

) = (1 − iδ1 , . . . , 1 − iδk
).

Let us identify n ∈ Fb with the set {i, i′} of its two cells of frequency one. Then we
see that the number of elements |Fb| of the fiber is at most 2|∆̄b |−1. However some choice
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of {i, i′} with
iδ, i

∗
δ ∈ {0, 1}, ∀δ ∈ ∆̄b,

may not be in the fiber Fb. This is because if δ and δ′ belong to a common D ∈ D, then
the values of iδ and iδ′ are tied together. For example let D = {1, 2} ∈ D and consider
the {1, 2}-marginal specified as

n{1,2}(0, 0) = n{1,2}(1, 1) = 1, n{1,2}(0, 1) = n{1,2}(1, 0) = 0.

Then if we choose i1 = 0, then we have to choose i2 = 0. In [18] we considered a very
similar problem in the framework of swapping of observations among two records in a
microdata set for the purpose of statistical disclosure control. As in [18] we make the
following definition.

Let G(∆̄b) be a graph with the set of vertices ∆̄b and an edge between δ ∈ ∆̄b and
δ′ ∈ ∆̄b if and only if there exists some D ∈ D such that δ, δ′ ∈ D. Namely there exists
an edge between two nondegenerate variables if and only if these two variables appear
together in some marginal tables of D. As discussed above in this case the values of iδ
and iδ′ are tied together and once the value of iδ is chosen, e.g. iδ = 0, then the value of
iδ′ becomes fixed, depending on the specifications of the marginals nD.

Another way of defining G(∆̄b) is as follows. Given a generating class D, we define a
graph GD generated by D with the vertex set ∆ and an edge between δ, δ′ ∈ ∆ if and only
if there exists D ∈ D such that δ, δ′ ∈ D. Note that the graphical model associated with
GD is the smallest graphical model containing the hierarchical model with the generating
class D. Then G(∆̄b) is the induced subgraph of GD with the vertices restricted to ∆̄b.

We summarize the above argument in the following lemma.

Lemma 1. Suppose that b is a set of consistent marginal frequencies of a contingency
table with sample size two. Let Γ be any subset of a connected component in G(∆̄b). Then
the marginal table nΓ = {nΓ(iΓ) | iΓ ∈ IΓ} is uniquely defined.

Proof. Let r(Γ) be the number of generating sets D ∈ D satisfying Γ ∩ D 6= ∅. We prove
this lemma by induction on r(Γ). When r(Γ) = 1, the lemma holds from the consistency
of b. Suppose that the lemma holds for all r(Γ) < r and we now assume that r(Γ) = r.
Let Γ1 ⊂ Γ and Γ2 ⊂ Γ satisfy

Γ1 ∪ Γ2 = Γ, Γ1 ∩ Γ2 6= ∅, r(Γ1) < r, r(Γ2) < r.

Since r(Γ1) < r and r(Γ2) < r both nΓ1 and nΓ2 are uniquely defined. Suppose that

nΓ1(iΓ1\Γ2 , iΓ1∩Γ2) = 1, nΓ1(i
∗
Γ1\Γ2

, i∗Γ1∩Γ2
) = 1. (1)

Then there uniquely exists iΓ2\Γ1 ∈ IΓ2\Γ1 such that

nΓ2(iΓ2\Γ1 , iΓ1∩Γ2) = 1, nΓ2(i
∗
Γ2\Γ1

, i∗Γ1∩Γ2
) = 1. (2)

Hence the table nΓ = {n(jΓ) | jΓ ∈ IΓ} such that

n(jΓ) =

{
1, if jΓ = (iΓ1\Γ2 , iΓ1∩Γ2 , iΓ2\Γ1) or jΓ = (i∗Γ1\Γ2

, i∗Γ1∩Γ2
, i∗Γ2\Γ1

),

0, otherwise,
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is consistent with the marginal b.
Suppose that there exists another marginal table n′

Γ which is consistent with b such
that nΓ(jΓ) = nΓ(j∗Γ) = 1 and jΓ 6= (iΓ1\Γ2 , iΓ1∩Γ2 , iΓ2\Γ1). Then we have at least

nΓ(iΓ1) = 0 or nΓ(iΓ2) = 0.

This contradicts (1) and (2).

By using the result of Lemma 1, we provide the following main theorem.

Theorem 1. Let Fb be a degree two fiber such that ∆̄b 6= ∅ and let c be the number of
connected components of G(∆̄b). Then

|Fb| = 2c−1.

Proof. Denote by Γ1, . . . , Γc the connected components of G(∆̄b). Define Γc+1 by Γc+1 =
∆ \ ∆̄b. Then there exists iΓc+1 such that

iΓc+1 = {iδ | δ ∈ Γc+1, n{δ}(iδ) = 2}.

From Lemma 1 the marginal cells iΓk
such that nΓk

(iΓk
) = nΓk

(i∗Γk
) = 1 uniquely exists

for k = 1, . . . , c. Now define Ib by

Ib = {iΓ1 , i
∗
Γ1
} × {iΓ2 , i

∗
Γ2
} × · · · × {iΓc , i

∗
Γc
} × {iΓc+1},

where × denotes the direct product of sets. Suppose that j ∈ Ib. Define nj = {nj(i) |
i ∈ I} by

nj(i) =

{
1, if i = j or i = j∗

0, otherwise.

Then we have F(Ib) = {nj | j ∈ Ib} ⊆ Fb and |F(Ib)| = 2c−1.
If there exists n′ = {n′(i) | i ∈ I} such that n′ ∈ Fb and n′ /∈ F(Ib), then there exists

a cell j ∈ I and 1 ≤ k ≤ c + 1 such that n(j) = 1 and jΓk
6= iΓk

. This implies that there
exists Dl ∈ D such that n′(iDl

) 6= n(iDl
). Hence we have |F(b)| = 2c−1.

In general for a consistent b such that deg b > 2, it is known that Fb is not necessarily
non-empty (e.g. [12]). However Theorem 1 shows that in the case of deg b = 2 if a
consistent b such that ∆̄b 6= ∅ is given, then Fb 6= ∅ for any hierarchical model.

It is helpful to consider permuting the labels 0 ↔ 1 for each variable and state Theorem
1 in a canonical form. This amounts to considering invariance of hierarchical models
with respect to permutation of levels of each variable as studied in [1]. Although we
have reduced our consideration to 2m tables in treating degree two fibers, we are really
considering general hierarchical models of I1 × · · · × Im tables. Note that hierarchical
models posses the symmetry with respect to relabeling the levels of each variable, i.e. it
is invariant under the action of the direct product of symmetric group SI1 × · · · × SIm

acting on the set of cells. If we again restrict our consideration to degree two fibers, we
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only need to consider the action of Sm
2 = S2×· · ·×S2. It is clear that structures of degree

two fibers are invariant under the action of Sm
2 .

In particular as a “representative fiber”, we can consider b such that the levels of
all degenerate variables are determined as 0. Also for such a b, let Γ ⊂ ∆̄b be the set
of vertices of a connected component of G(∆̄b). Then we can without loss of generality
assume that two Γ-marginal cells of frequency 1 is specified as

1 = nΓ(0, 0, . . . , 0) = nΓ(1, 1, . . . , 1). (3)

This can be achieved by interchanging the levels of each variable in ∆̄b. Under this
standardization the proof of Theorem 1 is easier to understand, because for each connected
component of G(∆̄b) we either choose all 0’s or all 1’s for the component.

This standardization is also useful in determining the setwise stabilizer of Fb in Sm
2

(Section 3.1 of [3]). If we standardize the levels as (3), then the setwise stabilizer of Fb is
isomorphic to c-fold direct product of S2’s:

Sc
2 = S2 × · · · × S2.

In the next section we use this fact in determining minimal invariant Markov bases for
decomposable models.

Finally we prove the following theorem on a sufficient condition for non-uniqueness of
minimal Markov bases.

Theorem 2. Let D = {D1, . . . , Dr} be the generating class of a hierarchical model. Sup-
pose that m ≥ 3 and there exist three variables k1, k2, k3 which are not connected to each
other in GD. Then minimal Markov bases for the hierarchical model with the generating
class D are not unique.

Proof. It suffices to find a degree two fiber with more than two elements. From the
condition of the theorem GD has at least three connected components. Therefore |Fb| ≥ 4.
This completes the proof.

4 Markov bases for decomposable models

4.1 Minimal and unique minimal Markov bases

In this section we investigate Markov bases of decomposable models in detail based on
Theorem 1. We also give a necessary and sufficient condition for the uniqueness of minimal
Markov bases.

As already discussed at the end of Section 1, for decomposable models there exists a
Markov basis with primitive moves and the set of fibers of the minimum fiber Markov
bases coincides with the set of degree two fibers with more than one element. Combined
with Theorem 1 of the previous section, this gives a complete description of minimal
Markov bases of decomposable models.
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Let deg b = 2. As mentioned in the previous section, b is in a one-to-one correspon-
dence to ∆̄b. Let Tb be any tree whose set of nodes is Fb. Denote the set of edges in Tb

by Mb. We note that we can identify each edge (n, n′) ∈ Mb with a move z = n − n′.
So we identity Mb with the set of moves for Fb. In considering Markov bases, we ignore
the sign of z and identify z = n − n′ with −z = n′ − n and consider the edges in Tb as
undirected. In contrast when we consider Gröbner basis, we distinguish z from −z and
correspondingly consider directed edges.

Let B denote the set of non-degenerate b. Then we define M as follows,

M =
⋃
b∈B

Mb. (4)

By following Dobra[6] and Takemura and Aoki[16], we easily obtain the following theorem.

Theorem 3. M is a minimal Markov basis and (4) is a disjoint union.

From Theorem 1 and 3, we can derive a necessary and sufficient condition on decom-
posable models to have the unique minimal Markov bases.

Lemma 2. There exists the unique minimal Markov basis for a decomposable model if
and only if the number of connected components in any induced subgraphs of GD is less
than three.

Proof. Suppose that G(∆̄b) has more than two connected components. Then since |Fb| ≥
4 from Theorem 1, Tb is not uniquely defined. If there exists another tree Tb = (Fb,M′

b),
Mb 6= M′

b. Hence the minimal Markov base is not unique either.
Conversely assume that the number of connected components of G(∆̄b) for all b ∈ B

is two. Then Tb for all b ∈ B is uniquely defined. Hence the minimal Markov basis is
unique.

For decomposable models GD is chordal. From the graph theoretical viewpoint the
above lemma can be rewritten as follows.

Theorem 4. There exists the unique minimal Markov basis for a decomposable model if
and only if GD has only two boundary cliques D and D′ and they satisfy D′′ ⊂ D∪D′ for
all D′′ ∈ D.

Proof. Suppose that GD has two boundary cliques D and D′ such that D′′ ⊂ D∪D′ for all
D′′ ∈ D. Then any vertex in D′′ is adjacent to D or D′. Hence the number of connected
components for any induced subgraphs of GD is two.

Conversely suppose that there exists D′′ ∈ D such that D′′ * D ∪ D′. Then the sub-
graph induced by the union of D′′ \ (D∪D′), Simp(D) and Simp(D′) has three connected
components.

The graphs with r = 2 always satisfy the conditions of the corollary. For r ≥ 3 the
graph with

D = {{1, . . . , r − 1}, {2, . . . , r}, . . . , {r, . . . , 2r − 2}} (5)
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satisfies the conditions of the corollary. Figure 1 presents the graphs satisfying (5) for
r = 3, 4. We can easily see that any induced subgraphs of the graphs in the figure has at
most two connected components.

1 2 3 4
1

2

3

4

5

6

r = 3 r = 4

Figure 1: Examples of the graphs satisfying the condition of Theorem 4

Let T = (D, E) be a clique tree for GD. Denote by T = (De, Ee) and T ′ = (D′
e, E ′

e) the
two induced subtrees of T obtained by removing the edge e ∈ D. Define Ve and V ′

e by

Ve =
⋃

D∈De

D, V ′
e =

⋃
D∈D′

e

D.

Let MT (Ve, V
′
e ) be the set of all primitive moves for the decomposable model determined

by the chordal graph whose set of cliques is {Ve, V
′
e}. Dobra[6] showed that

MT =
⋃
e∈E

MT (Ve, V
′
e ) (6)

is a Markov basis. We call MT a Dobra’s Markov basis. From a viewpoint of the
minimality of Markov bases, we have the following theorem.

Theorem 5. Dobra’s Markov basis MT is a minimal Markov basis if and only if the
decomposable model has the unique minimal Markov basis.

Proof. MT is a Markov basis. Hence if the decomposable model satisfy the condition of
Lemma 2, MT is minimal.

Next we suppose that there exist three vertices in G which are not adjacent to each
other. In the same way as the proof of Theorem 2, let 1, 2 and 3 be such three vertices
and assume that l ∈ Dl, Dl ∈ D, for l = 1, 2, 3. Define {1, 2, 3}c = ∆ \ {1, 2, 3}. Consider
a degree two fiber Fb such that ∆̄b = {1, 2, 3} and n{1,2,3}c(i{1,2,3}c) = 2. Then |Fb| = 4
from Theorem 1 and we can denote these four elements by

n1 = (000 i{1,2,3}c)(111 i{1,2,3}c),
n2 = (001 i{1,2,3}c)(110 i{1,2,3}c),
n3 = (010 i{1,2,3}c)(101 i{1,2,3}c),
n4 = (011 i{1,2,3}c)(100 i{1,2,3}c),

(7)
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where n = (i)(j) denotes a contingency table of sample size 2 having frequency 1 at the
cell i and j. Let T = (D, E) be a clique tree for GD and T ′ = (D′, E ′) be the smallest
subtree of T satisfying Dl ∈ D′ for l = 1, 2 and 3. Then we can assume that T ′ satisfies
either of the following two conditions,

(i) D2 is an interior point and D1 and D3 are endpoints on the path ;

(ii) all of D1, D2 and D3 are endpoints of T ′.

In both cases there exists e ∈ E such that D1, D2 ⊂ Ve and D3 ⊂ V ′
e . Then MT (Ve, V

′
e )

includes the following two moves,

z1 = n1 − n2, z2 = n3 − n4.

On the other hand there also exists e′ ∈ E such that D1 ⊂ Ve′ and D2, D3 ⊂ Ve′ . In
this case MT (Ve′ , V

′
e′) includes the following two moves,

z3 = n1 − n4, z4 = n2 − n3.

Thus MT includes at least four moves for the fiber Fb, which implies that MD is not
minimal for the model which does not have the unique minimal Markov basis.

4.2 Minimal invariant Markov bases

We here consider Markov bases from a viewpoint of the invariance under the action of
the symmetric group G = SI1 × · · · × SIm on the labels of variables.

According to [1], we first give a brief review on the invariance of the set of moves. B
is called G-invariant if

∀g ∈ G, ∀z ∈ B ⇒ gz ∈ B or − gz ∈ B.

B is called a G-invariant Markov basis for D if it is a Markov basis and also G-invariant.
An invariant Markov basis is minimal invariant if no proper G-invariant subset of B is a
Markov basis.

Let Fb be a representative fiber, i.e. n0 = (0 · · · 0)(1 · · · 1) ∈ Fb. Define B0 = {b′ |
n0 ∈ Fb}. Denote by Bb a set of moves in Fb. Then any n ∈ Fb is expressed as follows,

n = (

|Γ1|︷ ︸︸ ︷
0 · · · 0 iΓ2 · · · iΓc

|∆\∆̄b |︷ ︸︸ ︷
0 · · · 0)(

|Γ1|︷ ︸︸ ︷
1 · · · 1 i∗Γ2

· · · i∗Γc

|∆\∆̄b |︷ ︸︸ ︷
0 · · · 0)

Let Gb be the group which acts on the set of cells such that

g ∈ Gb, g(n) = (

|Γ1|︷ ︸︸ ︷
0 · · · 0, g∗

2(iΓ2) · · · g∗
c (iΓc)

|∆\∆̄b |︷ ︸︸ ︷
0 · · · 0)(

|Γ1|︷ ︸︸ ︷
1 · · · 1, g∗

2(i
∗
Γ2

) · · · g∗
c (i

∗
Γc

)

|∆\∆̄b |︷ ︸︸ ︷
0 · · · 0),

g∗
l (iΓl

) = {gl(iδ) | gl ∈ SIl
, δ ∈ Γl}, l = 2, . . . , c.
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Then we note that for any n ∈ Fb, there exists g ∈ Gb such that n = G(n0). Suppose
that Bb is Gb-invariant. Then as representative moves in Gb - orbits in Bb we can consider
zb = n0 − n ∈ Bb. Let κ(b) be the minimum number of orbits required to connect Fb.
Suppose that Bb contain κ(b) representative moves and connects Fb for all b ∈ B0. Denote
the set of representative moves in Bb by M0

b = {zb
1 , . . . , z

b
κ(b)}. Then

M =
⋃

b∈B0

κ(b)⋃
k=1

G(zb
k) (8)

is a minimal G-invariant Markov basis. Hence in order to clarify the structure of the
minimal G-invariant Markov basis, it suffices to investigate κ(b) and M0

b for each Fb.
Since we consider the case where degb = 2, we can restrict our consideration to 2×· · ·×2
tables.

By following the argument in Lemma 1, the structure of Fb is equivalent to the one of
the fiber with ∆̄b = ∆ = {1, . . . , c}. We first consider the structure of such fibers. Then
Fb is

Fb = {(0 i2 · · · ic)(1 i∗2 · · · i∗c) | (i2 · · · ic) = i∆\{1} ∈ I∆\{1}}. (9)

Hence a representative move is expressed by

zb = (0 · · · 0)(1 · · · 1) − (0 i∆\{1})(1 i∗∆\{1}), ik ∈ Ik, k = 1, . . . , c.

Then we note that we can identify Gb with Sc−1
2 . We first consider to derive κ(b) and M0

b

for this fiber. Let Vc−1 = {0, 1}c−1 denote the (c − 1)-dimensional vector space over the
finite field GF(2), where the addition of two vectors is defined to be the exclusive OR of
the elements. Let ◦ denote the operator of composition defined on Sc−1

2 . Then we obtain
the following lemma.

Lemma 3. Sc−1
2 is isomorphic to Vc−1 ;

Proof. Consider the map φ : Sc−1
2 → Vc−1 such that φ(g) = v = (v2, . . . , vc), g =

〈g2, . . . , gc〉 ∈ Sc−1
2 , gl ∈ S2, v ∈ Vc−1, where

vl =

{
0, if gl(il) = il,
1, if gl(il) = i∗l ,

for l = 2, . . . , c and {il, i∗l } = {0, 1}. For g′ = 〈g′
2, . . . , g

′
c〉 ∈ Sc−1

2 , g′
l ∈ S2, and v′ ∈ Vc−1,

define φ(g′) = v′ = (v′
2, . . . , v

′
c), Then we have φ(g ◦ g′) = ṽ = (ṽ2, . . . , ṽc), ṽ ∈ Vc−1,

where

ṽl =

{
0, if gl ◦ g′

l(il) = il,
1, if gl ◦ g′

l(il) = i′l,

for l = 2, . . . , c. Hence we have

ṽl = vl ⊕ v′
l, k = 1, . . . , c

and therefore φ is homomorphism. It is obvious that φ is a bijection. Therefore Sc−1
2 is

isomorphic to Vc−1.
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Based on this lemma, we can obtain the following theorem.

Theorem 6. Let V0 = {vk = (vk2, . . . , vkc), k = 2, . . . , c} be any basis of Vc−1. Define
n0,nvk

∈ Fb by

n0 = (00 · · · 0)(11 · · · 1), nvk
= (0 vk2 · · · vkc)(1 v∗

k2 · · · v∗
kc),

where v∗
kl = 1 ⊕ vkl and ⊕ denotes the XOR operation. Then κ(b) = c − 1 and the

represetntative moves in the orbits are expressed by zb
l = n0 − nvl

, l = 2, . . . , c.

Proof. Suppose that Bb is minimal Sc−1
2 -invariant set of moves which connects Fb and

that Bb includes κ(b) orbits as Sc−1
2 (z1), . . . , S

c−1
2 (zκ(b)), where

zk = (0 · · · 0)(1 · · · 1) − (0 ik2 · · · ikc)(1 i∗k2 · · · i∗kc),

for some ikl ∈ Il, k = 1, . . . , κ(b), l = 2, . . . , c. Denote nk = (0 ik2 · · · ikc)(0 i∗k2 · · · i∗kc).
Let gk ∈ Sc

2 satisfy gk(n0) = nk for k = 1, . . . , κ(b). Define G = {g1, . . . , gκ(b)} ⊆ Sc−1
2 .

As mentioned above, Fb can be expressed as in (9). Hence for any n,n′ ∈ Fb there exists
g ∈ Sc−1

2 satisfying n′ = g(n). Then G satisfies

∀g ∈ Sc−1
2 , ∃p ≤ κ(b), ∃g1

∗ ∈ G, . . . , ∃gp
∗ ∈ G s.t. g = gp

∗ ◦ · · · ◦ g1
∗. (10)

and no proper subset of G satisfies (10). Denote V ′ = φ(G) ⊆ V . Then the minimality of
Bb is equivalent to

∀v ∈ V , ∃v1 ∈ V ′, . . . , ∃vp ∈ V ′ s.t. v = v1 ⊕ · · · ⊕ vp (11)

and no proper subset of V ′ satisfies (11). This implies that V ′ is a basis of V and hence
κ(b) = c − 1. Let gk be gk = 〈gk2, . . . , gkc〉 = φ−1(vk), where gkl(0) = vkl. Then
gk(n0) = nk. Hence the representative moves of the orbits are z0

k, k = 2, . . . , c.

For example we can set V = {v2, . . . , vc} as

v2 = (11 · · · 11), v3 = (01 · · · 11), . . . vc−1 = (00 · · · 011), vc = (00 · · · 01),

and the representative moves in a minimal G-invariant Markov basis is

z0
2 = (00 · · · 0)(11 · · · 1) − (011 · · · 11)(100 · · · 00)

z0
3 = (00 · · · 0)(11 · · · 1) − (001 · · · 11)(110 · · · 00)
...

...
...

z0
c = (00 · · · 0)(11 · · · 1) − (000 · · · 01)(111 · · · 10).

(12)

So far we focus on Fb such that ∆̄b = {1, . . . , c}. Now we consider the fiber for a
general b. Let gk ∈ Sc−1

2 be gk = 〈gk2, . . . , gkc〉 = φ−1(vk) for k = 2, . . . , c and define
Gb = {g̃1, . . . , g̃κ(b)} by

g̃k(n) = (

|Γ1|︷ ︸︸ ︷
0 · · · 0, g∗

k2(iΓ2) · · · g∗
kc(iΓc)

|∆\∆̄b |︷ ︸︸ ︷
0 · · · 0)(

|Γ1|︷ ︸︸ ︷
1 · · · 1, g∗

k2(i
∗
Γ2

) · · · g∗
kc(i

∗
Γc

)

|∆\∆̄b |︷ ︸︸ ︷
0 · · · 0),
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g∗
kl(iΓl

) = {gkl(iδ) | gkl ∈ S2, δ ∈ Γl}, l = 2, . . . , c,

Denote nvk
= g̃k(n0) and zb

l = n0 −nvk
. Based on (8) and the results of Theorem 6, we

can easily obtain the following result.

Theorem 7. For any b ∈ B0, κ(b) = c − 1 and the represetntative moves in the orbits
are expressed by zb

k = n0 − nvl
, k = 2, . . . , c. Then

M =
⋃

b∈B0

c⋃
k=2

G(zb
k)

is a minimal G-invariant Markov basis.

Next we consider Dobra’s Markov basis MT from a viewpoint of invariance. Since
MT does not depend on labels, MT is Sm

2 -invariant. Based on the result of Theorem 6,
we can show that MT is not always a minimal invariant Markov bases.

Theorem 8. MT is minimal invariant if and only if T has only two endpoints.

Proof. Suppose that T = (D, E) has more than two endpoints. Let D1, D2 and D3 be
three of them. Then they are boundary cliques. Suppose 1, 2, 3 ∈ ∆ are simply separated
vertices in D1, D2 and D3, respectively. In the same way as the argument in the proof of
Theorem 5, there exist e, e′, e′′ ∈ E such that

D1, D2 ∈ Ve, D3 ∈ V ′
e ,

D2, D3 ∈ Ve′ , D1 ∈ V ′
e′ ,

D3, D1 ∈ Ve′′ , D2 ∈ V ′
e′′ .

Consider the moves for the fiber Fb for b such that ∆̄b = {1, 2, 3}. Define z5 and z6 by

z5 = n1 − n3, z6 = n2 − n4,

where n1, . . . , n4 are defined in (7). Then we have

z1,z2 ∈ MT (Ve, V
′
e ), z3, z4 ∈ MT (Ve′ , V

′
e′), z5,z6 ∈ MT (Ve′′ , V

′
e′′).

We note that {z1,z2}, {z3, z4} and {z5,z6} are Sc−1
2 -orbits in the moves for Fb. Since

c = 3, MT is not minimal invariant.
Suppose that T has only two endpoints. Then T is expressed as in Figure 2. Let

Γ1(b), . . . , Γc(b) be c connected components of G(∆̄b). Suppose that vi ∈ Γi(b). Then
the structure of Fb is equivalent to the one of Fb′ such that ∆̄b′ = {v1, . . . , vc−1}. Hence
we consider the moves in Fb′ . Let Bb′ denote the set of all moves in Fb′ . Without
loss of generality we can assume that vi ∈ Dπ(i), where π(1) < · · · < π(c). Define
ei = (Di−1, Di) ∈ E for i = 2, . . . , c, Si = Di−1 ∩Di, Vi = Vei

\ Si and V ′
i = V ′

ei
\ Si. Then

the moves in MT (Vi, V
′
i ) are expressed by

z = (iVi
, iV ′

i
, iSi

)(jVi
, jV ′

i
, iSi

) − (iVi
, jV ′

i
, iSi

)(jVi
, iV ′

i
, iSi

), (13)
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iVi
, jVi

∈ IVi
, iV ′

i
, jV ′

i
∈ IV ′

i
, iSi

∈ ISi
.

If Vei
∩ ∆b = ∅ or V ′

ei
∩ ∆b = ∅, then we have MT (Vei

, V ′
ei
) ∩ Bb = ∅. If Vei

∩ ∆b 6= ∅
and V ′

ei
∩ ∆b 6= ∅, there exists 2 ≤ k(ei) ≤ c satisfying vk ∈ Vi for all k < k(ei) and

vk ∈ V ′
i for all k ≥ k(ei). Then

MT (Vei
, V ′

ei
) ∩ Bb = Sc−1

2 (zk(ei)),

where zk(ei) is defined as in (12). Hence we have

MT ∩ Bb =
⋃
ei∈E

MT (Vei
, V ′

ei
) ∩ Bb

=
c−1⋃
i=1

Sc−1
2 (zk). (14)

Hence MT ∩ Bb is minimal invariant.

· · ·
D1 D2 DK

Figure 2: The clique tree with two endpoints

As an example consider the 4-way independence model D = {Di = {i}, i = 1, . . . , 4}.
Then both of T1 and T2 in Figure 3 are clique trees for D. From Theorem 8, MT1 is a
minimal Sc−1

2 -invariant Markov bases and MT2 is not a minimal Sc−1
2 -invariant Markov

bases. Hence in general the minimality of MT depends on clique trees T .

D1 D2 D3 D4

D1

D2

D3 D4

T1 T2

Figure 3: The clique trees for the 4-way independence model
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5 Gröbner bases for decomposable models

So far we have been discussing Markov bases. In this section we briefly discuss Gröbner ba-
sis. For decomposable models, Theorem 4.17 of Hoşten and Sullivant[11] gives a recursive
method for determining the term order and the corresponding Gröbner basis consisting
of primitive moves only. It gives a Gröbner basis version of Dobra’s Markov basis in (6).
In Theorem 5 we saw that Dobra’s construction gives a minimal Markov basis only in a
special case. The same phenomenon can be observed with respect to the reducedness of
Gröbner basis if we simply apply Theorem 4.17 of Hoşten and Sullivant recursively, i.e.,
the operation of Theorem 4.17 of Hoşten and Sullivant does not preserve reducedness in
general. Here we are interested in explicit description of appropriate term order and the
reduced Gröbner basis for decomposable models. We prove that for decomposable models,
there exists a term order such that the reduced Gröbner basis is explicitly described and
furthermore it is minimal as a Markov basis.

In obtaining a nice Gröbner basis, the term order has to be carefully chosen. For
example consider the simple case of 3×3 two-way contingency tables with fixed row sums
and columns sums. Proposition 5.4 of Sturmfels [15] shows that the set of 9 primitive
moves of the form

± +1 −1
−1 +1

form a reduced Gröbner basis when the cells are lexicographically ordered and the term
order is chosen to be the reverse lexicographic term order. However if we order the 9 cells
as

1 8 6
4 2 9
7 5 3

and use the lexicographic order, then the reduced Gröbner contains the following degree
3 move

0 −1 1
1 0 −1
−1 1 0

in addition to 9 primitive moves. This example shows that the existence of a reduced
Gröbner basis consisting of primitive moves depends on the choice of term order.

We need several steps in constructing a nice term order for a decomposable model
of an m-way contingency table. First, we order m variables. Choose a boundary clique
of the chordal graph corresponding to the decomposable model and order the variables
in the boundary cliques as lowest variables. Then remove the boundary clique from the
chordal graph, choose a boundary clique from the smaller graph and order the variables
from the boundary clique as the next lowest variables. By recursively removing boundary
cliques we obtain an ordering of variables. The resulting order is a perfect elimination
scheme but has a stronger property. Second, we order the cells of an m-way contingency
table lexicographically. Finally, as the term order Â we use the reverse lexicographic term
order.
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As in Section 4.1 let B denote the set of non-degenerate b. In each fiber Fb there
exists the lowest element n∗

b with respect to the above term order Â. Define

MGB =
⋃
b∈B

⋃
n∈Fb
n 6=n∗

b

{n − n∗
b}

Then we have the following theorem.

Theorem 9. MGB is a reduced Gröbner basis and it is minimal as a Markov basis.

We omit the details of the proof. By generalizing the proof of Proposition 5.4 of
Sturmfels [15] we can show that MGB is indeed a Gröbner basis. Reducedness is obvious.
Minimality is also obvious from Theorem 3.

6 Concluding remarks

In this paper we investigated the structure of degree two fibers of a general hierarchical
model and clarified the structure of minimal Markov bases and minimal invariant Markov
bases for decomposable models. We have also shown that decomposable models posses
Gröbner basis which is at the same time a minimal Markov basis.

For future research it is important to investigate structures of degree three fibers,
degree four fibers etc. In Takemura and Aoki [16] we gave a characterization of minimal
Markov bases. It shows that minimal Markov bases can be constructed “from below”, i.e.,
combining moves from fibers of degree 1,2,3,. . . . Although at the moment the construction
can not be implemented as an algorithm, it shows the importance of studying fibers of low
degrees. We see that the study of degree two fibers in this paper led to some interesting
results.
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