
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

Hybrid Metaheuristics for Packing Problems

Toshihide IBARAKI, Shinji IMAHORI
and Mutsunori YAGIURA

METR 2007–01 January 2007

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.i.u-tokyo.ac.jp/mi/mi-e.htm

The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.

Hybrid Metaheuristics for Packing Problems

Toshihide Ibaraki1, Shinji Imahori2 and Mutsunori Yagiura3

1 Kwansei Gakuin University ibaraki@ksc.kwansei.ac.jp
2 University of Tokyo imahori@simplex.t.u-tokyo.ac.jp
3 Nagoya University yagiura@nagoya-u.jp

1 Introduction

We consider in this chapter the two-dimensional packing problem that asks
to pack a given set of items into a given container without mutual overlap.
There are many variants of this problem depending upon whether the items
are rectangles or have irregular shapes, and how minimization of the container
is defined.

Most of these variants are NP-hard, since they contain as a special case
the bin packing problem, which is already known to be NP-hard. Local search
and metaheuristic algorithms have been playing major roles in obtaining good
approximate solutions for practical uses. We observe that many of such algo-
rithms contain subproblems that ask to pack given items in an optimal manner
under certain constraints, and such subproblems are solvable by techniques
known as dynamic, linear and nonlinear programming. Thanks to the recent
progress of mathematical programming, efficient softwares are available for
the cases of linear and nonlinear programming. The resulting algorithms are
hybrid metaheuristics in the sense that they are combinations of metaheuris-
tics and mathematical programming.

In this chapter, we deal with the following types of the packing problem:

(a) Items are rectangles, where the size (i.e., width and height) of each
rectangle is fixed in advance.

(b) Items are soft rectangles, whose sizes can be adjusted.
(c) Items have irregular shapes, which may be neither rectangular

nor convex.

In all these problems, the container is assumed to be a rectangle with width
W and height H , and its size is minimized in the sense of WH (area), W +H
(perimeter) or H (height) while fixing its width to W = W ∗. The last type is
called the problem of strip packing.

We describe that dynamic programming can be effectively used for solving
(a), and nonlinear and linear programming techniques for solving (b) and (c).

2 Toshihide Ibaraki, Shinji Imahori and Mutsunori Yagiura

We also touch upon the problem of packing rectangles with weights under
the constraints on the location of the center of gravity and their moment.
Nonlinear programming is also useful for such a variant.

The organization of this chapter is as follows. Section 2 gives basic defini-
tions and presents metaheuristic frameworks for the above packing problems.
It then specifically discusses problem (a), in which dynamic programming
techniques are employed. Section 3 considers problem (b), in which linear
programming and nonlinear programming are used. Section 4 briefly mentions
that a similar method can be used to pack rectangles with weights. Finally,
Section 5 deals with problem (c), where linear programming and nonlinear
programming are again used. All sections are concluded with some computa-
tional results.

2 Rectangle Packing Problem

Packing a number of rectangles, each having a fixed size, is perhaps most
popular among packing problems. It is encountered in many industrial appli-
cations, such as wood, glass and steel manufactures, LSI and VLSI design,
and newspaper paging. As the problem is NP-hard, various approximation al-
gorithms have been proposed [17, 36]. Metaheuristics have also been utilized
[14, 28, 31, 42].

We mainly treat the strip packing problem in this section. It may have
additional constraints concerning orientation of rectangles and guillotine cut
restriction [20, 58]. As for the orientation of rectangles, the following three
situations have been considered in the literature: (1) each rectangle can be
rotated by any angle, (2) each rectangle can be rotated by 90 degrees, and
(3) each rectangle has a fixed orientation. Rotation of rectangles is not al-
lowed in newspaper paging or when the rectangles to be cut are decorated
or corrugated, whereas orientation is allowed in the case of plain materials.
The guillotine cut constraint signifies that the rectangles must be obtained
through a sequence of edge-to-edge cuts parallel to the edges of the container,
which is usually imposed by technical limitations of the automated cutting
machines. In this section, we mainly focus on case (3) without the guillotine
cut constraint.

2.1 Problem formulation

We are given n items I = {I1, I2, . . . , In} of rectangular shape, where each
rectangle Ii ∈ I has fixed width wi and height hi. We are asked to pack all
items orthogonally into the strip (container) of a fixed width W = W ∗ and a
variable height H so as to minimize H . “Orthogonally” means that an edge
of each item is parallel to an edge of the strip.

We describe the location of an item Ii by the coordinate (xi, yi) of its
bottom-left corner. The problem is formally described as follows.

Hybrid Metaheuristics for Packing Problems 3

Fig. 1. An example of strip packing (rp100 with W ∗ = 450)

minimize H

subject to 0 ≤ xi ≤ W ∗ − wi, 1 ≤ i ≤ n (1)
0 ≤ yi ≤ H − hi, 1 ≤ i ≤ n (2)
At least one of the next four inequalities
holds for every pair Ii and Ij of rectangles:
xi + wi ≤ xj , xj + wj ≤ xi,

yi + hi ≤ yj , yj + hj ≤ yi. (3)

The constraints (1) and (2) mean that every rectangle must be placed into the
strip. The constraint (3) means that no two rectangles overlap; that is, each
inequality signifies one of the four relative locations required to avoid mutual
overlap: right-of, left-of, above and below.

We call a solution of the above problem (i.e., locations of all rectangles)
as a placement. Figure 1 shows a placement obtained by the algorithm of this
section, for the benchmark known as rp100.4

2.2 Coding schemes and decoding algorithms

In order to design algorithms for the rectangle packing problem, coding
schemes and decoding algorithms should be discussed first.

In the rectangle packing problem, if we search the x and y coordinates of
each rectangle directly, an effective search will be difficult because the number

4 Available from http://www.simplex.t.u-tokyo.ac.jp/~ imahori/packing/ins

tance.html

4 Toshihide Ibaraki, Shinji Imahori and Mutsunori Yagiura

of solutions is uncountably many and elimination of mutual overlap is not
easy. To overcome this difficulty, most algorithms for the rectangle packing
problem are based on some coding schemes. A coding scheme consists of a set
of coded solutions and a mapping from coded solutions to placements, and
a decoding algorithm computes for a given coded solution the corresponding
placement defined by the mapping. Desirable properties of a coding scheme
and a decoding algorithm are summarized as follows.

1. There is a coded solution that corresponds to an optimal placement.
2. The number of all possible coded solutions is finite, where a smaller num-

ber is preferable provided that property 1 holds.
3. Every coded solution corresponds to a feasible placement.
4. A fast algorithm (running in polynomial time) for decoding is available.

A standard coding scheme is to represent a solution by a permutation of
n rectangles, where the permutation specifies an order of placing rectangles
one by one. The number of all permutations is n!, and every permutation
corresponds to a placement without mutual overlap. In order to find a good
permutation among them, heuristics and metaheuristics are used in almost all
cases. A typical heuristics is just sorting the rectangles by some criteria; e.g.,
decreasing width, decreasing height, decreasing perimeter and decreasing area.
In other cases, we search good permutations by local search or metaheuristics.
The corresponding placements are computed by various decoding algorithms,
which are also called placement rules; e.g., first fit [17], bottom left [6], and
best fit [14] algorithms. We should note that, for a given permutation, different
decoding algorithms may give different placements. In order to design a good
packing algorithm using a permutation coding scheme, it is very important to
choose a good decoding algorithm.

There are other types of coding schemes. All the schemes we explain here-
after specify relative positions between each pair of rectangles Ii and Ij (i.e.,
one of the four inequalities of (3)). The placement corresponding to a coded
solution is the best one among those satisfying the relative positions specified
by the coded solution.

Seqence pair Most well-known in this category is perhaps the sequence pair
coding scheme [44]. A sequence pair is a pair of permutations σ = (σ+, σ−) of
{1, 2, . . . , n}, where σ+(l) = i (equivalently σ−1

+ (i) = l) means that rectangle
Ii is the lth rectangle in permutation σ+. Permutation σ− is similarly defined.
A sequence pair σ = (σ+, σ−) specifies which of the four conditions in (3) holds
for each pair of Ii and Ij , based on the partial orders �x

σ and �y
σ defined by

σ−1
+ (i) ≤ σ−1

+ (j) and σ−1
− (i) ≤ σ−1

− (j) ⇐⇒ i �x
σ j,

σ−1
+ (i) ≥ σ−1

+ (j) and σ−1
− (i) ≤ σ−1

− (j) ⇐⇒ i �y
σ j.

This says that, if i appears before j in both σ+ and σ−, then i �x
σ j, i.e.,

Ii is placed to the left of Ij , while if i appears after j in σ+, but before j in
σ−, then i �y

σ j, i.e., Ii is placed under Ij . Since exactly one of i �x
σ j, j �x

σ

Hybrid Metaheuristics for Packing Problems 5

 : 1 2 3 4 5 6

 : 4 5 1 3 6 2

1
2

3

4 5
6

σ+

σ−

Fig. 2. A sequence pair σ = (σ+, σ−) and its placement

i, i �y
σ j, j �y

σ i always holds for a given pair of Ii and Ij , the constraints in
(3) can be given by the following inequalities:

xi + wi ≤ xj if i �x
σ j, xj + wj ≤ xi if j �x

σ i,

yi + hi ≤ yj if i �y
σ j, yj + hj ≤ yi if j �y

σ i. (4)

Decoding algorithms Once we are given a sequence pair, we can compute
a best placement satisfying the constraints (1), (2) and (4) in polynomial
time using appropriate decoding algorithms; e.g., Murata et al. [44] proposed
an O(n2) time decoding algorithm, Takahashi [55] improved it to O(n log n),
Tang et al. [56] further improved it to O(n log log n). Here, we briefly explain
basic ideas in these algorithms. From the definition, we can obtain a feasible
placement even if we compute the x and y coordinates separately; thus, we
explain only the x direction. Let us define a set Ji for each rectangle Ii as
follows:

Ji = {j | σ−1
+ (j) < σ−1

+ (i) and σ−1
− (j) < σ−1

− (i)}.
Then, the horizontal coordinates of each rectangle Ii can be computed by

xi =
{
0, if Ji = ∅
maxj∈Ji{xj + wj}, otherwise. (5)

If we compute (5) naively for all i, it takes O(n2) time. But we can reduce
this to O(n log n) by using a binary search tree as data structure.

Other coding schemes There are other coding schemes to specify one of
the four relative locations for each pair of rectangles. We briefly explain some
of them. One traditional coding scheme is to represent a solution by a binary
tree of n leaves [52]. This coding scheme can represent only slicing structures;
in other words, each placement obtained by this representation always satis-
fies the guillotine cut constraint. The leaves of a binary tree correspond to
rectangles, and each internal node has a label ‘h’ or ‘v’, where h stands for
horizontal and v stands for vertical. In this scheme, one of the four relative
locations in (3) is assigned for each pair of rectangles as follows: Let u be the
least common ancestor of Ii and Ij . If u has label ‘h’ and Ii is a left descendant
of u (equivalently Ij is a right descendant of u), then we place Ii to the left
of Ij . If the label of u is ‘v’, then we place Ii below Ij . When we are given

6 Toshihide Ibaraki, Shinji Imahori and Mutsunori Yagiura

a binary tree, natural decoding algorithms can compute the best placement
satisfying the above constraints in O(n) time.

Guo et al. [26] and Chang et al. [15] also proposed coding schemes based on
tree structures called O-tree and B*-tree, respectively. Their coding schemes
can represent both of slicing and non-slicing structures, and compute a place-
ment in O(n) time.

Nakatake et al. [47] proposed another coding scheme called bounded slice-
line grid (BSG in short). BSG has a grid structure and each pair of rooms in
the grid represent one of the four relative positions. We assign all the rectan-
gles to rooms, where at most one rectangle can be assigned to each room. It
is argued that O(n) number of rooms are sufficient in practice. Thus, given a
coded solution (i.e., an assignment of rectangles to rooms), we can determine
the corresponding placement in O(n) time. A hybrid metaheuristic algorithm
using BSG coding scheme was proposed by Imahori et al. [32].

2.3 Local search and simple metaheuristics

In this section, we explain the general idea of local search (LS in short). LS
starts from an initial solution and repeats replacing the current solution with
a better solution in its neighborhood until no better solution is found in the
neighborhood. Here we focus on the LS for the strip packing problem of rect-
angles, which is based on sequence pairs, though it can be easily generalized
to other settings.

Algorithm LS
Input: Data of widths wi and heights hi, i = 1, 2, . . . , n, of rectangles and
the width W ∗ of the container.
Output: A placement of all rectangles.

Step 1 (initialization): Construct an initial sequence pair σ = (σ+, σ−).
Compute the placement v(σ) and its objective value z(σ) corre-
sponding to σ, and let v := v(σ) and z := z(σ), where v and z
denote the incumbent solution and its value, respectively.

Step 2 (local search): Repeat the following procedure until all se-
quence pairs in N(σ) have been tested, where N(σ) denotes the
neighborhood of σ.

Select a new σ′ ∈ N(σ) and compute v(σ′) and z(σ′). If
z(σ′) < z holds, then let v := v(σ′), z := z(σ′), σ := σ′

and return to Step 2.
If there is no new sequence pair left in N(σ), go to Step 3.

Step 3 (termination): Output v, and halt.

The search space of LS is the set of sequence pairs, whose size is (n!)2. An
initial solution is often generated randomly; we generate two random permu-
tations and use them as an initial solution. It is also possible to generate an
initial solution using some heuristic algorithm. The quality of each solution

Hybrid Metaheuristics for Packing Problems 7

generated during search is evaluated by a given evaluation function z(σ). It
may be equal to the objective function or may be modified from it to make
the search more effective.

Standard neighborhoods The solution output in Step 3 is locally optimal
in neighborhood N(σ). The performance of LS critically depends on how the
neighborhood is designed. N(σ) is commonly defined as the set of sequence
pairs obtained from σ by applying certain local operations. Typical operations
are shift, swap and swap* [30, 31, 44], defined as follows.

1. Shift: This operation moves an element i in σ+ (or σ−) to the first
position or to the next position of an element j. The shift neighborhood is
defined by applying this to all pairs of i and j. If only one of σ+ and σ− is
considered, it is the single-shift neighborhood, while if each shift operation is
applied to both σ+ and σ−, then it is the double-shift neighborhood. The size
of single-shift neighborhood is O(n2) since we consider all pairs of i and j.
The size of double-shift neighborhood is O(n3) if we consider the j in σ+ and
σ− independently. On the other hand, if we always select the same j in both
σ+ and σ−, then the size becomes O(n2). In this case, we insert i before and
after j, respectively, thereby examining four positions for each j. We call this
the limited double-shift neighborhood.

2. Swap: This operation exchanges the positions of i and j in σ+ (or
in σ−). The single-swap neighborhood and double-swap neighborhood are de-
fined similarly to the case of shift neighborhood. The sizes of the resulting
neighborhoods are O(n2).

3. Swap*: Let i and j in σ+ satisfy σ+(α) = i and σ+(β) = j, with
α < β. Then for each γ with α ≤ γ < β we move i and j to location γ in
the manner σ′

+(γ) = j and σ′
+(γ + 1) = i, while keeping the same relative

positions of other elements. This swap* operation can also be defined for σ−.
We usually apply swap* operations to only one of σ+ and σ−, yielding the
swap* neighborhood. If we consider all combinations of i, j, γ, its size becomes
O(n3).

The effects of these operations may be intuitively explained as follows,
where we assume for simplicity that Ii is constrained to the left of Ij by σ.
A shift operation applied to σ+ changes the relative positions of Ii and Ij to
“Ij above Ii”, causing side effects on relative positions between Ii and other
rectangles. A single-swap operation on σ+ (resp., σ−) changes the relative
position “Ii to the left of Ij” to “Ij above Ii” (resp., “Ii above Ij”). On the
other hand, a double-swap operation exchanges only the locations of Ii and Ij ,
without changing the relative positions of other rectangles. A swap* operation
brings Ii and Ij together to their middle locations specified by γ.

Evaluation function In order to obtain z(σ), we compute the placement
of all rectangles by a decoding algorithm and use its objective value as z(σ),
for example. Here, we should note the following.

8 Toshihide Ibaraki, Shinji Imahori and Mutsunori Yagiura

1. We denote

xmax = max
Ii∈I

{xi + wi} and ymax = max
Ii∈I

{yi + hi}.

For some sequence pair, it may happen that xmax > W ∗ holds, that is,
there exists a rectangle that protrudes from the strip width. In order to
evaluate such infeasible solutions, we employ the following:

z(σ) = ymax + M × max{0, xmax − W ∗}, (6)

where M is a large constant.
2. It may frequently happen that z(σ′) = z holds in Step 2 of LS. For an

effective local search, we need some mechanisms to break such ties.

Metaheuristics In general, if LS is applied only once, many solutions of
better quality may remain unvisited in the search space. Such phenomenon
may be remedied by employing ideas of metaheuristics. We describe here two
simple metaheuristic algorithms.

(1) The random multi-start local search (MLS). MLS randomly generates
many initial solutions and apply LS to each initial solution independently.
Then, the best of the obtained locally optimal solutions is output.

(2) The iterated local search (ILS) [35]. ILS is a variant of MLS, in which
initial solutions are generated by slightly perturbing a good solution obtained
during the search so far. In order to improve the performance of ILS, it is
important to generate initial solutions which retain some features of good
solutions and to avoid a cycling of solutions.

2.4 Hybrid metaheuristics for rectangle packing

We now describe a hybrid metaheuristic algorithm proposed by [31] for the
rectangle packing problem, which is based on the sequence pair coding scheme.
We first explain some ideas to decrease the neighborhood size, and then show
efficient evaluation algorithms of dynamic programming.

Critical paths and neighborhood reductions As noted in Section 2.3,
the size of the shift neighborhood is O(n2) or O(n3). In order to reduce this
size without sacrificing its effectiveness, we restrict (1) the choice of element i
that will be shifted in σ, and (2) the positions of j to where the i is inserted.

In order to restrict the rectangle Ii, we utilize critical paths. Critical paths
are defined for both of the x (horizontal) and y (vertical) directions. We
first consider the y direction. Given a placement, we define a directed graph
G = (V, E) and subsets S, T ⊆ V as follows:

V = {1, 2, . . . , n},
(i, j) ∈ E ⇐⇒ i �y

σ j and yi + hi = yj ,

S = {i | yi = 0}, T = {i | yi + hi = ymax}.

Hybrid Metaheuristics for Packing Problems 9

Then, we define a critical path as a directed path in G, whose initial vertex s
is in S and final vertex t is in T . For any placement obtained from a sequence
pair σ, S and T are nonempty and there is at least one critical path. It is
possible to find all rectangles on critical paths in O(n) time. The definition
for the x direction is similar except for the following situation: If xmax ≤ W ∗,
we need not to reduce xmax, and hence we do not consider critical paths
of x direction. To reduce the size of shift neighborhood, we shift only those
rectangles Ii on critical paths. It is easy to show that a solution is locally
optimal in the original shift neighborhood if no improved solution is found in
the reduced neighborhood.

In order to reduce the size of neighborhood further, we consider only the
following three types of neighborhoods with some restrictions.

(1) The single-shift neighborhood, whose size is O(n2).
(2) The limited double-shift neighborhood, whose size is O(n2).
(3) As another reduced double-shift neighborhood, we insert i only

to the positions close to the current position of i in σ+ and σ−,
respectively. To control its size, we restrict the distance from the
original position to the new positions within a

√
n, where a is a

parameter. The size of this neighborhood is O(a2n) for each i. We
call this the proximal double-shift neighborhood.

Fast decoding by dynamic programming First we describe an algorithm
to compute the xmax for all solutions in the double-shift neighborhood N(σ).
Assume that a rectangle Ii will be shifted. Here, we regard a shift operation
as consecutive two operations: Deleting i from σ (we denote the resulting
sequence pair by σ̃), and inserting i into other positions in σ̃+ and σ̃− of σ̃. For
the sequence pair σ̃, we compute the corresponding placement in O(n log n)
time by a decoding algorithm noted in Section 2.2. Let x̃j be the x coordinate
of rectangle Ij and x̃max = maxIj∈I\{Ii}{x̃j + wj}.

Now we insert i to the αth position in σ+ and to the βth position in σ−,
respectively, and denote the resulting length of the critical path by x̃max(α, β).
It is important to know whether Ii is on the horizontal critical path or not. If
it is not on the critical path, then x̃max(α, β) is equal to x̃max. Otherwise we
compute the length of the critical path that includes rectangle Ii by dynamic
programming. Let us define J̃ f

α,β, J̃b
α,β , f̃(α, β) and b̃(α, β) for each pair of α

and β such that 1 ≤ α, β ≤ n as follows:

J̃ f
α,β = {j | σ̃−1

+ (j) < α, σ̃−1
− (j) < β},

J̃b
α,β = {j | σ̃−1

+ (j) ≥ α, σ̃−1
− (j) ≥ β},

f̃(α, β): length of the critical path for the set {Ij | j ∈ J̃ f
α,β},

b̃(α, β): length of the critical path for the set {Ij | j ∈ J̃b
α,β}.

Based on the idea of dynamic programming, f̃(α, β) (respectively, b̃(α, β)) can
be computed by

10 Toshihide Ibaraki, Shinji Imahori and Mutsunori Yagiura

0 0 0 0 0 0 0

0

0

0

0

000000

0

0

0

0

0

1 2 3 4 65 1 2 3 4 5 6

1

2

3

4

5

6

1

2

3

4

5

6

α α

β β

(a) computation of f̃(α, β) (b) computation of b̃(α, β)

(σ̃+ : 1, 2, 3, 4, 5, σ̃− : 3, 1, 5, 4, 2.)

Fig. 3. An example of computing f̃(α, β) and b̃(α, β)

f̃(α, β) =

⎧⎨
⎩

0, if α = 1 or β = 1
max{f̃(α − 1, β), f̃(α, β − 1)}, if σ̃+(α − 1) �= σ̃−(β − 1)
f̃(α − 1, β − 1) + wj , if σ̃+(α − 1) = σ̃−(β − 1) = j,

(7)

b̃(α, β) =

⎧⎨
⎩

0, if α = n or β = n

max{b̃(α + 1, β), b̃(α, β + 1)}, if σ̃+(α) �= σ̃−(β)
b̃(α + 1, β + 1) + wj , if σ̃+(α) = σ̃−(β) = j,

(8)

for all pairs of α = 1, 2, . . . , n and β = 1, 2, . . . , n (resp., for all pairs of
α = n, n − 1, . . . , 1 and β = n, n − 1, . . . , 1). See Figure 3 as an example of
showing the computation order of f̃(α, β) and b̃(α, β). Each box in this figure
corresponds to f̃(α, β) (resp., b̃(α, β)) for each pair of α and β, and arrows
show how to compute each value. For the σ̃+ and σ̃− given in the figure, the
value of each shaded box is computed by the third formula of (7) (resp., (8)).
For the new placement after inserting Ii into the αth position of σ̃+ and the
βth position of σ̃−, we can compute the critical path length that includes
rectangle Ii by f̃(α, β) + wi + b̃(α, β). Thus,

x̃max(α, β) = max{x̃max, f̃(α, β) + wi + b̃(α, β)}. (9)

This algorithm takes O(n log n) time for the original decoding algorithm
applied to Ĩ and σ̃. Time to compute f̃(α, β) and b̃(α, β) for all pairs of α
and β by (7) and (8) is O(n2). Time to compute x̃max(α, β) by (9) is O(1)
for each pair of α and β, and it becomes O(n2) for all pairs of α and β. In
summary, the total computation time of this algorithm, i.e., time to evaluate
all solutions when rectangle Ii is shifted in the double-shift neighborhood is
O(n2). This implies that it takes O(1) amortized time to evaluate one coded
solution in the double-shift neighborhood.

Hybrid Metaheuristics for Packing Problems 11

We then consider the limited double-shift neighborhood. As in the above
algorithm, we first delete i from σ and compute the placement for σ̃. In this
case, we compute f̃(α, β) and b̃(α, β) only for necessary pairs of α and β. That
is, when we insert i before or after j = σ̃+(α− 1) = σ̃−(β − 1) in σ̃+ and σ̃−,
respectively, we only need to compute f̃(α− 1, β− 1), f̃(α− 1, β), f̃(α, β − 1)
or f̃(α, β). However, these can be immediately given by f̃(α − 1, β − 1) =
f̃(α − 1, β) = f̃(α, β − 1) = x̃j and f̃(α, β) = x̃j + wj . Thus the computation
time for each solution is O(1). The case of b̃(α, β) is similar.

To evaluate solutions obtainable in the single-shift neighborhood, where i
is shifted in σ+, we compute f̃(α, β) for all 1 ≤ α ≤ n and β = σ−1

− (i) by

f̃(α, β) =

⎧⎨
⎩

max{f̃(α − 1, β), x̃j′ + wj′}, if σ̃−1
− (j′) ≤ β − 2

x̃j′ + wj′ , if σ̃−1
− (j′) = β − 1

f̃(α − 1, β), otherwise,
(10)

where j′ = σ̃+(α − 1). Similar formula can be derived if i is shifted in σ−. In
both cases, time to compute f̃(α, β) for all necessary α and β is O(n).

To evaluate solutions in the proximal double shift neighborhood, we com-
pute f̃(α, β) for all αl ≤ α ≤ αu and βl ≤ β ≤ βu, where αu − αl ≤ 2a

√
n

and βu − βl ≤ 2a
√

n hold. We first compute f̃(α, βl) for 1 ≤ α ≤ αu by (10)
and f̃(αl, β) for 1 ≤ β ≤ βu by the σ− version of (10). Then, we use (7) to
compute f̃(α, β) for all αl + 1 ≤ α ≤ αu and βl + 1 ≤ β ≤ βu. Therefore, we
can compute f̃(α, β) for all necessary α and β in O(a2n) time.

In summary, we can evaluate all solutions in the limited and proximal
double-shift neighborhoods in O(n log n)+O(a2n) time for each shifted i. Thus
the amortized computation time for one coded solution becomes O(log n).

2.5 Computational results

We give some computational results of heuristic, metaheuristic, and hybrid
metaheuristic algorithms on test instances given by Hopper and Turton [28].
There are seven different categories called C1, C2, . . . , C7 with the number
of rectangles ranging from 17 to 197, where each category has three instances.
We compare the following three algorithms: (1) A heuristic algorithm BLF-
DW (bottom left fill with decreasing width) proposed by Baker et al. [6] and
implemented by Hopper and Turton [28] (denoted BLFDW), (2) a simulated
annealing algorithm with BLF algorithm by Hopper and Turton [28] (de-
noted SA-BLF) and (3) a hybrid metaheuristic algorithm based on ILS and
dynamic programming by Imahori et al. [31] (denoted HM-SP). The results
of algorithms BLFDW and SA-BLF are taken from [28], where these algo-
rithms were coded in C++ language and run on a PC (Intel Pentium Pro
200 MHz, 65 MB memory). The results of HM-SP are taken from [31], which
was coded in C language and run on a PC (Intel Pentium III 1 GHz, 1 GB
memory). Based on the benchmark results of SPECint from SPEC web page
(http://www.specbench.org/), the latter CPU is about six times faster than

12 Toshihide Ibaraki, Shinji Imahori and Mutsunori Yagiura

Table 1. Comparison of three algorithms for the rectangle packing problem

BLFDW SA-BLF HM-SP
category n ratio time ratio time ratio time

C1 17 89 < 0.1 96 42 97.56 10.0
C2 25 84 < 0.1 94 144 93.75 15.0
C3 29 88 < 0.1 95 240 96.67 20.0
C4 49 95 < 0.1 97 1980 96.88 150.0
C5 73 95 < 0.1 97 6900 97.02 500.0
C6 97 95 < 0.1 97 22920 96.85 1000.0
C7 197 95 0.64 96 250860 96.55 3600.0

the former. Results are shown in Table 1. Column “ratio” shows the average
of the following ratio,

100 × (total area of rectangles)
(output value of H) × W ∗ ,

(i.e., the larger the better). Column “time” shows the computation time in
seconds for one instance.

From the table, we observe that BLFDW is much faster than others, but
the quality of output solutions is slightly worse. The solution quality of two
metaheuristics are similar, but HM-SP is superior to SA-BLF in the compu-
tation time.

3 Packing Soft Rectangles

In this section we assume that all rectangles are soft. Namely, the width wi

and the height hi of rectangle Ii can be adjusted within given constraints. For
example, the constraints may specify their lower and upper bounds:

wL
i ≤ wi ≤ wU

i ,

hL
i ≤ hi ≤ hU

i . (11)

We may also add the constraint that the aspect ratio hi/wi is bounded between
its lower bound rL

i and upper bound rU
i :

rL
i wi ≤ hi ≤ rU

i wi. (12)

Another type of constraint common in applications is that each rectangle Ii

must have either a given perimeter Li or a given area Ai (or both):

wi + hi ≥ Li, (13)
wihi ≥ Ai. (14)

Hybrid Metaheuristics for Packing Problems 13

In addition, we may consider that the locations (xi, yi) of rectangles Ii are
pre-determined in some intervals:

xL
i ≤ xi ≤ xU

i ,

yL
i ≤ yi ≤ yU

i . (15)

To our knowledge, there is not much literature on the problem using soft
rectangles, except such papers as [16, 34, 45, 59] containing algorithms and
[46] containing a theoretical analysis, even though the problem has wide ap-
plications.

Applications can be found, for example, in VLSI floorplan design [16, 34,
44, 45, 59] and in resource constrained scheduling. In the VLSI design, each
rectangle represents a block of logic circuits consisting of a certain number of
transistors, which occupy certain area, and must have at least some perimeter
length to accommodate connection lines to other blocks. The shape of each
rectangle is adjustable, but required to satisfy the constraints as stated above.
In a scheduling application, each rectangle may represent a job, to be assigned
to an appropriate position on the time axis (horizontal), where its width
gives the processing time of the job and its height represents the amount of
resource (per unit time) invested to process the job. In this case, the area of
the rectangle represents the total amount of resource consumed by the job,
which is again required to satisfy the above constraints.

In the following, we focus on the local search algorithm proposed by [29],
which is based on the sequence pair (defined in Section 2.2). Given a se-
quence pair, the problem of computing the sizes and placement of rectangles
is formulated as a linear programming problem or nonlinear programming
problem (more exactly, convex programming problem) depending on the con-
straints and objective functions. Although these mathematical programming
algorithms are quite efficient, it still consumes some amount of time, and it is
carefully considered how to reduce the neighborhood sizes.

3.1 Problem statement

As the objective function, we may choose to minimize the perimeter of the
container, i.e.,

minimize W + H (16)

or to minimize its area,
minimize WH, (17)

where W and H are the variables that satisfy

xi + wi ≤ W for all i,

yi + hi ≤ H for all i. (18)

In the strip packing problem, the width of the container is fixed to W = W ∗,
and its height H is minimized:

14 Toshihide Ibaraki, Shinji Imahori and Mutsunori Yagiura

minimize H, (19)

under the constraint

xi + wi ≤ W ∗ for all i,

yi + hi ≤ H for all i. (20)

Therefore, if a sequence pair σ is specified, we are required to solve the
mathematical programming problem P (σ) to minimize objective function
(16), (17) or (19) under the constraints:

(11), (12), (13) (and/or (14)), (15), (18) (or (20)) for all i,

(4) for all i and j, (21)
xi, yi ≥ 0 for all i.

It is important to note that the feasible region defined by constraints
(21) is convex, as illustrated in Figure 4. Therefore, if the objective function
is convex, we obtain a convex programming problem, and can solve it by
existing efficient algorithms (e.g., [11, 48]). This is the case when we want
to minimize (16) or (19). The problem with objective function (17) is not a
convex programming problem, but is a so-called multiplicative programming
problem for which some efficient approaches are also known (e.g., [38]).

Fig. 4. Feasible region for the wi and hi of rectangle Ii

Two test problems From the above varieties, two simple problems will
be discussed in the following. The first type minimizes the perimeter of the
container under the perimeter constraints (13) of rectangles.

Hybrid Metaheuristics for Packing Problems 15

Pperi(σ) : minimize W + H

subject to (11), (13), (18) for all i

(4) for all i and j (22)
xi, yi ≥ 0 for all i.

This gives rise to a linear programming problem for each given sequence pair
σ, and is called the perimeter minimization problem.

The second type is the strip packing problem under the area constraints
(14) of rectangles, which is formulated as a convex programming problem.

Parea(σ) : minimize H + Ms

subject to (11), (14) for all i

xi + wi ≤ W ∗ + s for all i

yi + hi ≤ H for all i

(4) for all i and j (23)
s ≥ 0
xi, yi ≥ 0 for all i.

Here the variable s is introduced to keep the problem feasible, by adding
penalty term Ms to the objective function (19) with a large positive constant
M . This is called the area minimization problem.

3.2 Neighborhood reductions

Starting from the standard neighborhoods as described in Section 2.3, we
consider how to reduce their sizes further.

Critical paths Given a placement v(σ), we consider horizontal and vertical
critical paths as described in Section 2.4. It is often attempted (e.g., see Section
2.4 and [30]) to restrict Ii to be in a critical path, while Ij can be any. We
call the resulting neighborhoods like single-swap critical neighborhood, swap*
critical neighborhood and so forth.

In handling soft rectangles, a placement v(σ) tends to have many critical
paths, since each rectangle is adjusted so that it directly touches horizon-
tally adjacent rectangles or vertically adjacent rectangles. As a result, the
restriction to critical paths is not very effective in reducing the neighborhood
size. To remedy this to some extent, we define the single-swap lower-bounding
critical neighborhood by restricting Ii to be in a critical path and to satisfy
wi = wL

i if the critical path is horizontal (or hi = hL
i if vertical), since such

a rectangle Ii cannot be shrunk any further. Similar argument applies also
to other types of neighborhoods, resulting in the single-shift lower-bounding
critical neighborhood and others.

Computational comparison of neighborhoods To evaluate the power
of the above neighborhoods, preliminary computational experiment was con-
ducted in [29] for the following neighborhoods, abbreviated as

16 Toshihide Ibaraki, Shinji Imahori and Mutsunori Yagiura

Sg-shift: single-shift neighborhood,
Db-shift: double-shift neighborhood,
Sg-swap: singel-swap neighborhood,
Db-swap: double-swap neighborhood,
SgCr-shift: single-shift critical neighborhood (similarly for DbCr-shift,

SgCr-swap, DbCr-swap),
swap*: swap* neighborhood,
SgLb-shift: single-shift lower-bounding critical neighborhood (simi-

larly for SgLb-swap and Lb-swap*),
SgAd-swap: single-swap adjacent lower-bounding critical neighbor-

hood.

According to the computational results, SgLb-swap appears to be reason-
ably stable and gives good results in most cases. However, it still requires
rather large computation time. To shorten its time, we further restrict rectan-
gles Ii and Ij to be swapped to those which are lower bounding (i.e., wi = wL

i

or hi = hL
i holds depending on the direction of the critical path) and are ad-

jacent in some critical path. The resulting neighborhood is denoted as SgAd-
swap. The quality of the solutions obtained by SgAd-swap is not good, but it
consumes very little time compared with others.

Further elaborations To reduce the neighborhood sizes further while
maintaining high searching power, three more modifications were added.

The first idea is to look at a rectangle which belongs to both horizontal
and vertical critical paths. We call such a rectangle as a junction rectangle.
It is expected that removing a junction rectangle will break both the hori-
zontal and vertical critical paths, and will have a large effect of changing the
current placement. Thus we apply single-shift or double-swap operations to
a junction rectangle Ii with any other rectangles Ij which are not junctions
(in the case of double-swap we further restrict Ij to have a smaller area than
Ii). We then apply these operations to all junction rectangles Ii. If an im-
provement is attained in this process, we immediately move to local search
with SgLb-swap neighborhood for attaining further improvement. This cycle
of “junction removals” and “local search with SgLb-swap” is repeated un-
til no further improvement is attained. The resulting algorithms are denoted
Jc(Sg-shift)+SgLb-swap or Jc(Db-swap)+SgLb-swap, respectively, depending
on which operation is used to move the junction rectangle.

To improve the efficiency further, it was tried to replace the SgLb-swap
neighborhood in the above iterations with SgAd-swap, which was defined at
the end of the previous subsection. Using this neighborhood in place of SgLb-
swap, we obtain algorithms Jc(Sg-shift)+SgAd-swap or Jc(Db-swap)+SgAd-
swap.

Experiment shows that these four attain similar quality, but the last one
Jc(Db-swap)+SgAd-swap consumes much less computation time than others.

The last idea is to make use of vacant areas existing in a given placement.
To find some of such vacant areas by a simple computation, we use the fol-

Hybrid Metaheuristics for Packing Problems 17

lowing property. Let the current sequence pair σ satisfy i �x
σ j and there is no

k such that i �x
σ k �k

σ j (i.e., i is immediately to the left of j). In this case, if
xi +wi < xj holds, there is some vacant area between i and j. We pick up the
largest one among such vacant areas, in the sense of maximizing xj−(xi+wi).
Let i∗ and j∗ be the resulting pair. Then we apply Sg-swap operations on σ+

between those i and j such that i ∈ σ+ is located in distance at most 5 from
i∗ (forward or backward, i.e., |σ−1

+ (i) − σ−1
+ (i∗)| ≤ 5), and j ∈ σ+ is located

in distance at most 5 from j∗ (forward or backward).
This neighborhood is derived by horizontal argument. Analogous argument

can also be applied vertically, and we consider the local search based on the
resulting two types of neighborhoods, denoted SgVc-swap.

As a conclusion of preliminary experiment, the following combined neigh-
borhood was chosen.

Neighborhood A: Neighborhood Jc(Db-swap)+SgAd-swap with the
addition of neighborhood SgVc-swap.

In the experiment of the next section, the two neighborhoods in A are
combined in the following manner: First apply local search with Jc(Db-
swap)+SgAd-swap until a locally optimal solution is obtained, and then im-
prove it by local search with SgVc-swap. The best solution obtained is then
output.

3.3 Computational results

Benchmarks and experiment The benchmarks5 known as ami49 and
rp100 were used. They involve 49 and 100 hard rectangles, respectively, whose
widths and heights are denoted w0

i and h0
i . In the case of the perimeter mini-

mization problem, we set the lower and upper bounds on widths and heights
as follows.

wL
i = (1 − e)w0

i , wU
i = (1 + e)w0

i

hL
i = (1 − e)h0

i , hU
i = (1 + e)h0

i , (24)

where e is a constant like 0.1, 0.2, etc. The perimeter Li in (13) of each rect-
angle Ii is set to Li = w0

i + h0
i .

For the area minimization problem, we first set the areas Ai in constraint
(14) by Ai = w0

i h0
i for all i, the bounds on hi as in (24), and then the bounds

on wi by
wL

i = Ai/hU
i and wU

i = Ai/hL
i . (25)

The algorithm was coded in C language, and run on a PC using Pentium
4 CPU, whose clock is 2.60 GHz and memory size is 780 MB. The linear and
convex programming problems are solved by a proprietary software package

5 See the footnote in Section 2.1

18 Toshihide Ibaraki, Shinji Imahori and Mutsunori Yagiura

NUOPT6 of Mathematical Systems Inc., where the linear programming is
based on the simplex method and the convex programming is based on the
line search method.

Perimeter minimization The first set of instances of the perimeter min-
imization problem (22) are generated from ami49 by setting constants e in
(24) to e = 0.0, 0.1, 0.2, 0.3, respectively. For each e, five runs are conducted
from independent random initial solutions and average data are given in Ta-
ble 2. The meaning of rows is as follows: Candidates: The number of solutions
σ tested, Improvements: The number of improvements attained in LS, Time:
CPU time in seconds, Density: Total area of rectangles over the area of con-
tainer, W + H and H : Objective values. Note that Density and H are given
both the average and best values in five runs.

From these results we see that the local search could obtain reasonably
good solutions, except for the case of e = 0.0 (i.e., all rectangles are hard).
As we reduced the neighborhood size to a great extent, in order to make the
whole computation time acceptable, the resulting size appears not sufficient
for handling hard rectangles.

Table 2. Perimeter minimization problem with different e

Benchmarks e = 0.0 e = 0.1 e = 0.2 e = 0.3

Candidates 413.8 7877.6 12400.0 11472.2
Improvements 34.6 153.0 218.8 236.2
Time (secs) 28.0 641.8 1142.4 897.4

ami49 Density(avg.) 61.3 92.6 97.1 97.6
W+H(avg.) 15268.4 12346.3 11719.9 11401.9

Density(best) 66.3 97.7 98.5 98.7
W+H(best) 14644.0 11903.5 11686.8 11677.9

Table 3. Area minimization problem with fixed widths W ∗

Benchmarks W ∗ = 800 W ∗ = 1000 W ∗ = 1200

Candidates 4156.2 3200.6 2195.0
Improvements 241.2 184.2 140.4
Time (secs) 967.2 743.2 511.6

ami49 Density(avg.) 98.8 95.9 91.9
H (avg.) 8152.5 6744.5 5868.5

Density(best) 99.5 99.5 98.5
H (best) 8097.6 6479.5 5454.4

Area minimization The area minimization problem (23) was solved for
three different W ∗ and e = 0.2, where five runs from random initial solutions
were again carried out. The results are shown in Table 3. Although, in this

6 http://www.msi.co.jp/english/

Hybrid Metaheuristics for Packing Problems 19

case, the convex programming problems Parea(σ) are used instead of the linear
programming problems, the computation time does not increase much, and
very dense placements are obtained in most of the tested instances.

Finally, a large benchmark rp100 with 100 rectangles was tested. Table 4
gives the results of problems (22) and (23) with e = 0.2 and W ∗ = 450 (in
the case of (23)). The obtained result for the area minimization is shown in
Figure 5. Considering that 2–3 hours were consumed for each run, it appears
difficult to handle larger instances than these with this approach.

Fig. 5. Area minimization with rp100 (W ∗ = 450)

Table 4. Results with 100 rectangles

Benchmarks Perimeter Area

Candidates 35012 15933
Improvements 536 500

rp100 Time (secs) 7268.5 10101.5
Density(%) 97.6 98.8

H 888.8 461.4

4 Rectangles with Weights

The packing problem of rectangles with weights is also found in some appli-
cations, where each rectangle has weight di. In this case, the center of each
rectangle is given by (xi + wi/2, yi + hi/2), and constraints involving their
center of gravity

20 Toshihide Ibaraki, Shinji Imahori and Mutsunori Yagiura

(xc, yc) =

(
1
D

∑
i

di(xi + wi/2),
1
D

∑
i

di(yi + hi/2)

)
,

where D =
∑

i di, may be added. The objective function to minimize may be
their kth moment (e.g., k = 1 or 2) around the center of gravity,

∑
i

di

(√
(xi + wi/2 − xc)2 + (yi + hi/2 − yc)2

)k

.

This type of problem can also be handled in the local search framework as
described in the previous section, in which the placement corresponding to a
given sequence pair can be computed by nonlinear programming. An attempt
in this direction is being made by [39]. Figure 6 shows a solution obtained in
their preliminary experiment, where the center of gravity is constrained to be
the middle and the first moment is minimized. Note that darker rectangles
represent heavier items.

Fig. 6. Minimization of the first moment of rectangles with weights

5 Irregular Packing

In this section, we assume that given items are general polygons or arbitrary
shapes that are not necessarily rectangular nor convex. Such problems are
called irregular packing or nesting problems (or sometimes called marker mak-
ing). Figure 7 shows an example of packing nonconvex items for the benchmark
known as “swim” (see Section 5.7). There are many practical applications,
e.g., in the garment, shoe and ship building industries, and many variants
have been considered in the literature. Among them, the irregular strip pack-
ing problem has been extensively studied. Given n polygons and a rectangular

Hybrid Metaheuristics for Packing Problems 21

Fig. 7. An example of packing nonconvex polygons

container (i.e., a strip) with constant width W ∗ and variable height H , this
problem asks to find a feasible placement of the given polygons into the strip
so as to minimize the height H of the strip. As in the case of the rectangle
packing problem, a placement is feasible if no polygon overlaps with any other
polygon or protrudes from the strip. It has three variations with respect to
the rotations of polygons: (1) rotations of any angles are allowed, (2) finite
number of angles are allowed, and (3) no rotation is allowed. (Note that case
(3) is a special case of (2) in which the number of given orientations of each
polygon is one.) In this section, we mainly focus on case (3) for simplicity.
In many practical applications such as textile industry, rotations are usually
restricted to 180 degrees because textiles have the grain and may have a draw-
ing pattern, while in such applications as glass, plastic etc., rotations of any
angles are allowed. As mentioned in [27, 43], small rotations of any angles
(e.g., a few degrees) in addition to 180 degrees are sometimes considered even
for textiles in order to make the placement efficient.

A big difference of irregular packing from rectangle packing is that the in-
tersection test between polygons is considerably more complex. Some heuristic
algorithms use approximation of the given shapes, while many of the recent
algorithms use a geometric technique called no-fit polygons, whose details will
be explained in Section 5.2.

A standard way of designing heuristics is to put polygons one by one into
the container according to a sequence of the given polygons. Most of the con-
struction heuristics are based on this scheme, e.g., [3, 12, 51], which can be
viewed as the irregular counterpart of the bottom-left heuristics for the rect-
angular case. A recent heuristic algorithm by Burke et al. [13] is quick and
its solution quality is promising. It is also effective to apply local search (or
metaheuristics) to find good sequences of polygons that lead to good place-
ments when a construction algorithm is applied (i.e., a sequence is a coded
solution and the construction algorithm is a decoding algorithm) [24].

22 Toshihide Ibaraki, Shinji Imahori and Mutsunori Yagiura

Among many heuristic and metaheuristic algorithms, we focus our atten-
tion on hybrid approaches with mathematical programming. Such approaches
seem to be effective in obtaining solutions of high quality especially when we
have sufficient computation time.

In the following, we first define the irregular strip packing problem in Sec-
tion 5.1, and then explain the idea of no-fit polygons in Section 5.2. In Sec-
tion 5.3 we define some important subproblems, which are useful to solve the
original packing problem efficiently. Then in Sections 5.4 and 5.5 we describe
how mathematical programming techniques are utilized for the irregular pack-
ing problems. In Section 5.6 we briefly summarize metaheuristic algorithms
incorporated with mathematical programming techniques, and finally in Sec-
tion 5.7 we give some computational results of recent hybrid metaheuristics.

5.1 Irregular strip packing problem

We are given a set P = {P1, P2, . . . , Pn} of polygons, and a rectangular con-
tainer (i.e., strip) C = C(W ∗, H) with a width W ∗ ≥ 0 and a height H , where
W ∗ is a constant and H is a nonnegative variable. We describe the location
of a polygon Pi by the coordinate vi = (xi, yi) of its reference point, where
the reference point is any point of the polygon (e.g., a vertex of the polygon
or the center of gravity; in the rectangular case, we set the bottom-left corner
to be the reference point). The vector vi = (xi, yi) is called the translation
vector for Pi. For convenience, we regard each polygon Pi and the container
C as the set of points inside it including the points on the boundary when its
reference point is put at the origin O = (0, 0). Then, we describe the polygon
Pi placed at vi by the Minkowski sum Pi ⊕ vi = {p + vi | p ∈ Pi}. For a
polygon S, let int(S) be the interior of S, ∂S be the boundary of S, S̄ be
the complement of S, and cl(S) be the closure of S. Then the irregular strip
packing problem (ISP) is formally described as follows.

(ISP) minimize H
subject to int(Pi ⊕ vi) ∩ (Pj ⊕ vj) = ∅, 1 ≤ i < j ≤ n

(Pi ⊕ vi) ⊆ C(W ∗, H), 1 ≤ i ≤ n
H ≥ 0,

vi ∈ R2, 1 ≤ i ≤ n.

We represent a solution of problem (ISP) by an n-tuple v = (v1, v2, . . . , vn),
which is the essential part of the decision variables because the minimum
height H of the container is determined by

Hmin(v) = max{y | (x, y) ∈ Pi ⊕ vi, Pi ∈ P}
−min{y | (x, y) ∈ Pi ⊕ vi, Pi ∈ P}

and (Pi ⊕ vi) ⊆ C(W ∗, Hmin(v)) holds for all Pi ∈ P if and only if

W ∗ ≥ max{x | (x, y) ∈ Pi ⊕ vi, Pi ∈ P}
−min{x | (x, y) ∈ Pi ⊕ vi, Pi ∈ P}.

Hybrid Metaheuristics for Packing Problems 23

5.2 Intersection test and no-fit polygon

We consider in this section how to test the intersection between polygons.
One popular idea for speeding up this test is to represent the polygons ap-
proximately. Some heuristic algorithms [5, 50] are based on raster (or bitmap)
representation of the given polygons. Main drawback of this approach is that
an appropriate choice of raster size is not easy. If the raster is rough, the
intersection test is quick, but it will suffer from inaccuracy caused by the ap-
proximation inherent in the raster representation. On the other hand, if the
raster is minute, the intersection test becomes expensive, and the memory
space to keep the raster representation of polygons becomes huge.

Okano [49] proposed a technique that approximates polygons by a set of
parallel line segments, which is called scanline representation. (His algorithm
was designed for the two-dimensional bin packing problem, but it is appli-
cable to various irregular packing problems including (ISP).) The number of
scanlines is usually much smaller than that of pixels in a raster representation
when the same resolution is required.

One of the most popular geometric techniques used for the intersection
test is no-fit polygon. This concept was introduced by Art [4] in 1966, who
used the term “shape envelope” to describe the positions where two polygons
can be placed without intersection. This technique is used in many algorithms
for (ISP) [1, 3, 9, 24, 25, 51], where Albano and Sapuppo [3] seems to be the
first who used the term “no-fit polygon.” This concept is also used for other
problems such as robot motion planning and image analysis, and is called
in various names such as Minkowski sums and configuration-space obstacle.
Practical algorithms to calculate the no-fit polygon of two non-convex poly-
gons have been proposed, e.g., by Bennell et al. [10] and Ramkumar [53].

The no-fit polygon NFP(Pi, Pj) of an ordered pair of two polygons Pi and
Pj is defined by

NFP(Pi, Pj) = int(Pi) ⊕ (−int(Pj)) = {u − w | u ∈ int(Pi), w ∈ int(Pj)}.
When the two polygons are clear from the context, we may simply use NFP
instead of NFP(Pi, Pj). The no-fit polygon has the following important prop-
erties:

• Pj ⊕ vj overlaps with Pi ⊕ vi if and only if vj − vi ∈ NFP(Pi, Pj).
• Pj ⊕ vj touches Pi ⊕ vi if and only if vj − vi ∈ ∂NFP(Pi, Pj).
• Pi ⊕vi and Pj ⊕vj are separated if and only if vj −vi �∈ cl(NFP(Pi, Pj)).

Hence the problem of checking whether two polygons overlap or not becomes
an easier problem of checking whether a point is in a polygon or not. Figure 8
shows an example of NFP(Pi, Pj).

When Pi and Pj are both convex, ∂NFP(Pi, Pj) can be computed by the
following simple procedure: We first place the reference point of Pi at the
origin O = (0, 0), and slide Pj around Pi having it keep touching with Pi.
Then the trace of the reference point of Pj is ∂NFP(Pi, Pj).

24 Toshihide Ibaraki, Shinji Imahori and Mutsunori Yagiura

O

PiPi

Pj

NFP(Pi, Pj)

vi

vj

Fig. 8. An example of NFP(Pi, Pj), where O is the origin

We can also check whether a polygon Pi protrudes from the container C
or not similarly by using NFP(C̄, Pi), which is the complement of a rectangle
whose boundary is the trajectory of the reference point of Pi when we slide
Pi inside C having it keep touching with C. (Gomes and Oliveira [24, 25] call
NFP(C̄, Pi) inner-fit rectangle.)

5.3 Overlap minimization, compaction and separation

In this section, we introduce three important subproblems of (ISP), overlap
minimization, translational compaction and separation problems [33, 40]. Al-
gorithms for these problems will be discussed in the next section.

Overlap minimization problem For this problem, infeasible placements
that have overlap and/or protrusion are allowed, and the height H of the
container C is a given constant (e.g., temporarily fixed in a heuristic algo-
rithm). For a given placement v = (v1, v2, . . . , vn), let fij(v) be a function
that measures the amount of overlap of Pi ⊕ vi and Pj ⊕ vj , and gi(v) be a
function that measures the amount of protrusion of Pi⊕vi from the container
C(W ∗, H). Then the objective of this problem is to find a placement v ∈ R2n

that minimizes the total amount of overlap and protrusion

F (v) =
∑

1≤i<j≤n

fij(v) +
∑

1≤i≤n

gi(v).

It is not hard to see that this problem is NP-hard.

Translational compaction problem This problem is formulated as a
two-dimensional motion planning problem. We are given a feasible placement
v (i.e., v has no overlap or protrusion). The polygons and the container can
move (translate) simultaneously, and the height H of the container can change.
During a legal motion, the polygons cannot overlap each other nor protrude
from the container. The objective is to minimize the height H of the container.
See an example in Figure 9.

Li and Milenkovic [40] showed that this problem is PSPACE-hard. They
also considered more general formulation, and mentioned different possibilities

Hybrid Metaheuristics for Packing Problems 25

H

H

Fig. 9. An example of translational compaction

of utilizing this problem; e.g., to make a big hole in the given placement by
moving polygons away from a given point.

Translational separation problem We are given an infeasible placement v
(i.e., some polygons overlap and/or protrude from the container). The problem
is to find a set of translations of the polygons that eliminates all overlaps and
protrusion while minimizing the total amount of translation.

Li and Milenkovic [40] showed that simple special cases of this problem
are NP-hard.

5.4 Nonlinear programming approach to overlap minimization

Imamichi et al. [33] considered the overlap minimization problem as an un-
constrained nonlinear program, and incorporated a nonlinear programming
technique in their heuristic algorithm. They defined the amount of overlap
fij(v) and protrusion gi(v) based on the concept of penetration depth so that
they are smooth. Then they showed that differential coefficients ∇fij(v) and
∇gi(v) can be computed efficiently, as they are needed in nonlinear program-
ming algorithms.

The penetration depth (also known as the intersection depth) is an im-
portant notion used in robotics, computer vision and so on [2, 18, 37]. The
penetration depth δ(Pi ⊕ vi, Pj ⊕ vj) of two overlapping polygons Pi and Pj

placed at vi and vj , respectively, is defined to be the minimum translational
distance to separate them. If two polygons do not overlap, their penetration
depth is zero. The formal definition of the penetration depth is given by

δ(Pi ⊕ vi, Pj ⊕ vj) = min{||u|| | int(Pi ⊕ vi) ∩ (Pj ⊕ vj ⊕ u) = ∅, u ∈ R2},
where || · || denotes the Euclidean norm.

The penetration depth δ(Pi ⊕ vi, Pj ⊕ vj) is the minimum distance from
vj − vi to the boundary ∂NFP(Pi, Pj) of the no-fit polygon. See an example
in Figure 10, where arrow u is the minimum translation vector that separates
the two polygons. Then the amounts of overlap and protrusion are defined by

fij(v) = δ(Pi ⊕ vi, Pj ⊕ vj)a, 1 ≤ i < j ≤ n

gi(v) = δ(cl(C̄), Pi ⊕ vi)a, 1 ≤ i ≤ n,

26 Toshihide Ibaraki, Shinji Imahori and Mutsunori Yagiura

O
NFP(Pi, Pj)

vi

vj vj − vi

u
u

Pi

Pj

Fig. 10. The computation of penetration depth via no-fit polygon

where a > 0 is a parameter. Under this definition, for any placement v,
the function values fij(v) and gi(v) as well as ∇fij(v) and ∇gi(v) can be
computed efficiently by using no-fit polygons. They set a = 2 for the following
two reasons:

• At the boundary of no-fit polygons (i.e., when two polygons touch each
other), fij(v) and gi(v) are differentiable if and only if a > 1.

• The formulae of ∇fij(v) and ∇gi(v) become the simplest when a = 2.

Then the problem becomes an unconstrained quadratic programming
problem (e.g., [11]), for which many efficient algorithms for finding locally op-
timal solutions exist; e.g., quasi-Newton method, conjugate gradient method,
etc.

5.5 Linear programming approach to translational compaction and
separation

Li and Milenkovic [40] proposed linear programming (LP) approaches for
translational compaction and separation problems, which are called the com-
paction and separation algorithms, respectively. Similar ideas are also used
in [9, 25, 54]. We first explain their method for compaction.

The main idea is to restrict the search to a convex subregion of the origi-
nal problem, which is realized by adding artificial linear constraints, in order
to apply linear programming methods. They call the heuristic rules to add
such constraints locality heuristics. The subregion should contain the given
placement, and a larger region is preferable.

Let v(0) be the given placement and Δv be the translation added to v(0)

(i.e., v(0) is the given constant, Δv is the decision variable, and v(0) + Δv
gives the modified placement). Among the constraints of problem (ISP), only
the first one

int(Pi ⊕ (v(0)
i + Δvi)) ∩ (Pj ⊕ (v(0)

j + Δvj)) = ∅, 1 ≤ i < j ≤ n,

which is equivalent to

(v(0)
j + Δvj) − (v(0)

i + Δvi) �∈ NFP(Pi, Pj), 1 ≤ i < j ≤ n,

Hybrid Metaheuristics for Packing Problems 27

is nonconvex, and others are convex linear. The objective of the locality heuris-
tics is to define, for each pair of Pi and Pj , a subset Sij(v(0)) ⊆ NFP(Pi, Pj)
that has the following properties: (1) convex, (2) large, and (3) contains
v

(0)
j − v

(0)
i . Then, for such subsets Sij(v(0)), it is not hard to see that the

following problem is a linear programming problem:

minimize H

subject to (v(0)
j + Δvj) − (v(0)

i + Δvi) ∈ Sij(v(0)), 1 ≤ i < j ≤ n

(Pi ⊕ (v(0)
i + Δvi)) ⊆ C(W ∗, H), 1 ≤ i ≤ n

H ≥ 0,
Δvi ∈ R2, 1 ≤ i ≤ n.

Note that Li and Milenkovic [40] used a different objective function
∑

Pi∈P divi

in their LP formulation, where di is a desirable direction to move each polygon
Pi, and the above formulation is due to [9, 25].

Figure 11 is an example of a subregion outside a no-fit polygon. The left
figure shows the given placement v

(0)
i and v

(0)
j of two polygons Pi and Pj ,

while the right figure shows the corresponding position of v
(0)
j − v

(0)
i against

no-fit polygon NFP(Pi, Pj), and a convex set Sij(v(0)) ⊆ NFP(Pi, Pj) that
satisfies v

(0)
j − v

(0)
i ∈ Sij(v(0)).

O

Pi

Pj

NFP(Pi, Pj)

vi
(0)

vj
(0)

vi
(0)−vj

(0)

Sij(v)i
(0)

Fig. 11. A convex subregion Sij(v
(0)) outside NFP(Pi, Pj)

The locality heuristic procedure in [40] defines the boundary of Sij(v(0))
as follows. Starting from an edge of NFP(Pi, Pj) close to7 v

(0)
j −v

(0)
i , it walks

along ∂NFP(Pi, Pj) in both clockwise and counterclockwise directions, and the
trace of the walk becomes the boundary ∂Sij(v(0)). When walking clockwise,
∂Sij(v(0)) should make only left turns to keep Sij(v(0)) convex. If the next
edge of NFP turns to the left (i.e., a concave vertex of NFP), the walk follows

7 Li and Milenkovic [40] consider a special type of polygons called star-shaped, and
define the origins of no-fit polygons accordingly. Then the edge that crosses with
the line segment from the origin to the point v

(0)
j − v

(0)
i is chosen. This is not

necessarily the closest edge.

28 Toshihide Ibaraki, Shinji Imahori and Mutsunori Yagiura

it; otherwise, the walk extends the current edge until it intersects with NFP.
This procedure continues until it can extend the current edge infinitely. The
walk to the counterclockwise direction is similar. The resulting Sij(v(0)) can
be different if the starting edge is different. Gomes and Oliveira [25] suggest to
choose a convex subregion whose closest edge from v

(0)
j −v

(0)
i is most distant.

Intuitively, this rule has an effect of making more margin for compaction.
Given an optimal solution Δv∗ to the above LP problem, we can repeat

the same procedure from the new placement v(1) = v(0) + Δv∗. Hence we
can generate a sequence of improved placements v(0), v(1), v(2), . . . until the
objective values of v(k) and v(k+1) become the same for some k. It is not
hard to observe that any convex combination of two consecutive placements
tv(l) + (1 − t)v(l+1) (0 ≤ t ≤ 1, l = 0, 1, . . . , k) is feasible. Hence such a
sequence of placements gives a (piecewise linear) legal motion to the transla-
tional compaction problem.

Here it should be noted that having the constraints (v(0)
j +Δvj)− (v(0)

i +
Δvi) ∈ Sij(v(0)) for all pairs of polygons is not necessary in practice, and is
time consuming. Hence such constraints are usually imposed only for relatively
close pairs in the current placement [9, 40].

Similar technique is applicable to the translational separation problem. For
a given infeasible placement v(0), we can define a convex subregion Sij(v(0))
similarly even for overlapping polygons; e.g., by making a walk starting from
an edge close to v

(0)
j − v

(0)
i , where the constraint v

(0)
j − v

(0)
i ∈ Sij(v(0))

cannot hold in this case. Then the objective of the resulting LP problem,
whose constraints are the same as the LP model for compaction, is to find a
feasible placement that is close to v(0).

If the above LP problem is infeasible, then no feasible placement is found.
To deal with such situations, Bennell and Dowsland [9] relax the violated
constraints slightly and solve the modified LP problem again; then repeat a
limited number of such steps. Gomes and Oliveira [25] consider a modified
formulation in which the objective is the sum of the penalty for violating
constraints (v(0)

j + Δvj) − (v(0)
i + Δvi) ∈ Sij(v(0)). This can be regarded as

an algorithm for a variant of the overlap minimization problem.

5.6 Hybrid approaches

In this section, we summarize hybrid metaheuristic approaches for the irreg-
ular strip packing problem.

Imamichi et al. [33] proposed an iterated local search (ILS) algorithm, in
which the nonlinear programming technique in Section 5.4 is incorporated.
(The framework of ILS was explained in Section 2.3.) The core part of their
ILS is the algorithm for the overlap minimization problem. They fix the height
H of the container temporarily, and solve the overlap minimization problem.
If a feasible placement is found (resp., not found), they reduce (resp., in-
crease) H slightly, and solve the overlap minimization problem again. Such

Hybrid Metaheuristics for Packing Problems 29

iterations are repeated until some stopping criterion is met. They used the
quasi-Newton method for the nonlinear programming formulation of the over-
lap minimization problem, explained in Section 5.4. Given an initial solution
(to the overlap minimization problem), the quasi-Newton method is applied,
which can be viewed as local search since it iteratively improves the current
solution by applying slight modifications to it until a locally optimal solution
is found. This local search is iterated from different initial solutions, and the
entire algorithm is regarded as ILS. The perturbation for generating the next
initial solution is realized by a swap of the positions of two polygons, which
are found by a sophisticated algorithm based on no-fit polygons under the
condition that other polygons do not move.

There are other metaheuristic algorithms based on different formulations
of the overlap minimization problem. Umetani et al. [57] defines the penalty
of two overlapping polygons to be the minimum translational distance in a
specified direction (e.g., horizontal or vertical direction) to separate them.
Egeblad et al. [21] defines the penalty of two overlapping polygons to be
their overlapping area. In these papers, they devise efficient algorithms to find
the best position of a polygon when it is translated to a specified direction,
and use them to define neighborhood operations. Such efficient neighborhood
search algorithms are then incorporated in guided local search framework in
both papers. They can be regarded as hybridization of metaheuristics and
algorithmic techniques for computational geometry.

Compaction approaches can modify given feasible placements to more ef-
ficient ones, but cannot perform wider search. This limitation is shown in [7],
which finds that the compaction of randomly generated solutions cannot com-
pete with local search. Thus, it seems meaningful to combine metaheuristics
with compaction/separation algorithms.

Bennell and Dowsland [9] proposed a hybrid approach of separation/com-
paction and tabu thresholding algorithm, whose original version without hy-
bridization was proposed in [8]. Their algorithm basically deals with the over-
lap minimization problem whose objective function is similar to [57]. Their
neighborhood operation is to move a polygon to another position in the con-
tainer. Tabu thresholding, proposed in [22], is a variant of tabu search. It
consists of two phases called the improving phase and the mixed phase, and
these phases are alternately repeated. The improving phase is a standard lo-
cal search, while non-improving moves are allowed in the mixed phase. In the
mixed phase, the neighborhood is divided into subareas, and for each move
one of them is chosen and the best neighbor in it is chosen even if it is worse
than the current solution. They apply separation and compaction for the lo-
cally optimal solutions obtained after improving phases, but they limit the
application of separation/compaction only for promising solutions because it
is computationally expensive.

Gomes and Oliveira [25] proposed a hybrid approach of separation/com-
paction with simulated annealing. They limit the search space to feasible
placements, and allow infeasible placements only when trial solutions are gen-

30 Toshihide Ibaraki, Shinji Imahori and Mutsunori Yagiura

erated by the neighborhood operation, where they adopt the swap neighbor-
hood (i.e., the positions of the two polygons are exchanged). Whenever a trial
solution is generated, separation and compaction algorithms are applied, and
the new placement is evaluated by the height H of the container if it is feasible,
and is discarded if separation fails.

5.7 Computational results

We briefly report some computational results of algorithms which give high
quality solutions. They are (1) the iterated local search incorporated with
quasi-Newton method (denoted as ILSQN) proposed in [33], (2) the simulated
annealing incorporated with separation and compaction (denoted as SAHA)
proposed in [25], and (3) the guided local search (denoted as 2DNest) proposed
in [21]. The instances are available from the ESICUP web site.8 For these
instances, rotations of fixed degrees are allowed.

Table 5 shows their efficiency in % and computation time in seconds, where
the efficiency of a solution is measured by the ratio

∑
Pi∈P(area of Pi)/W ∗H ,

which is shown in column “EF.” The results were taken from their original
papers unless otherwise stated. (The results of ILSQN are those reported in
the full paper version of [33], which was submitted for publication.) Note
that the stopping criteria of these algorithms are different; column “time”
shows the time limit of each run for ILSQN and 2DNest, while it shows the
average computation time of all runs for SAHA. Column NDP, TNP and
ANV show the number of different polygons, the total number of polygons,
and the average number of vertices of different polygons, respectively. The
value with “†” has been corrected from the one reported in [25] according
to the information sent from the authors. The best results among the three
algorithms are marked with “∗.” From the table, we can observe that ILSQN
is somewhat better than the others.

References

1. Adamowicz M, Albano A (1976) Nesting two-dimensional shapes in rectangular
modules, Computer-Aided Design 8:27-33

2. Agarwal PK, Guibas LJ, Har-Peled S, Rabinovitch A, Sharir M (2000) Penetra-
tion depth of two convex polytopes in 3D, Nordic Journal of Computing 7:227–
240

3. Albano A, Sapuppo G (1980) Optimal allocation of two-dimensional irregular
shapes using heuristic search methods, IEEE Transactions on Systems, Man
and Cybernetics 10:242–248

4. Art Jr. RC (1966) An approach to the two-dimensional irregular cutting stock
problem, Technical Report 36-Y08, IBM Cambridge Science Center

8 http://www.fe.up.pt/esicup/

Hybrid Metaheuristics for Packing Problems 31

Table 5. Comparison of three algorithms for the irregular strip packing problem

instance NDP TNP ANV ILSQN SAHA 2DNest
EF(%) time(s) EF(%) time(s) EF(%) time(s)

ALBANO 8 24 7.25 *88.16 1200 87.43 2257 87.44 600
DAGLI 10 30 6.30 *87.40 1200 87.15 5110 85.98 600
DIGHE1 16 16 3.87 99.89 600 *100.00 83 99.86 600
DIGHE2 10 10 4.70 99.99 600 *100.00 22 99.95 600
FU 12 12 3.58 90.67 600 90.96 296 *91.84 600
JAKOBS1 25 25 5.60 86.89 600 †78.89 332 *89.07 600
JAKOBS2 25 25 5.36 *82.51 600 77.28 454 80.41 600
MAO 9 20 9.22 83.44 1200 82.54 8245 *85.15 600
MARQUES 8 24 7.37 89.03 1200 88.14 7507 *89.17 600
SHAPES0 4 43 8.75 *68.44 1200 66.50 3914 67.09 600
SHAPES1 4 43 8.75 *73.84 1200 71.25 10314 *73.84 600
SHAPES2 7 28 6.29 *84.25 1200 83.60 2136 81.21 600
SHIRTS 8 99 6.63 *88.78 1200 86.79 10391 86.33 600
SWIM 10 48 21.90 *75.29 1200 74.37 6937 71.53 600
TROUSERS 17 64 5.06 89.79 1200 *89.96 8588 89.84 600

CPU Xeon Pentium4 Pentium4
clock freq. 2.8 GHz 2.4 GHz 3.0 GHz
#runs 10 20 20

5. Babu AR, Babu NR (2001) A genetic approach for nesting of 2-D parts in 2-D
sheets using genetic and heuristic algorithms, Computer-Aided Design 33:879–
891

6. Baker BS, Coffman Jr. EG, Rivest RL (1980) Orthogonal packing in two di-
mensions, SIAM Journal on Computing 9:846–855

7. Bennell JA (1998) Incorporating problem specific knowledge into a local search
framework for the irregular shape packing problem, Ph.D. thesis, European
Business Management School, University of Wales, Swansea

8. Bennell JA, Dowsland KA (1999) A tabu thresholding implementation for
the irregular stock cutting problem, International Journal of Production Re-
search 37:4259–4275

9. Bennell JA, Dowsland KA (2001) Hybridising tabu search with optimisation
techniques for irregular stock cutting, Management Science 47:1160–1172

10. Bennell JA, Dowsland KA, Dowsland WB (2001) The irregular cutting-stock
problem—a new procedure for deriving the no-fit polygon, Computers & Op-
erations Research 28:271–287

11. Bertsekas DP (1999) Nonlinear Programming (2nd Edition), Athena Scientific.
12. B�lażewicz J, Hawryluk P, Walkowiak R (1993) Using a tabu search for solv-

ing the two-dimensional irregular cutting problem, Annals of Operations Re-
search 41:313–325

13. Burke E, Hellier R, Kendall G, Whitwell G (2006) A new bottom-left-fill heuris-
tic algorithm for the two-dimensional irregular packing problem, Operations
Research 54:587–601

14. Burke EK, Kendall G, Whitwell G (2004) A new placement heuristic for the
orthogonal stock-cutting problem, Operations Research 52: 655–671

32 Toshihide Ibaraki, Shinji Imahori and Mutsunori Yagiura

15. Chang YC, Chang YW, Wu GM, Wu SW (2000) B*-trees: a new representa-
tion for non-slicing floorplans, In: Proceedings of the 37th Design Automation
Conference, 458–463

16. Chu CCN, Young EFY (2004) Nonrectangular shaping and sizing of soft mod-
ules for floorplan-design improvement, IEEE Transactions Computer Aided De-
sign of Integrated Circuits and Systems 23:71–79

17. Coffman Jr. EG, Garey MR, Johnson DS, Tarjan RE (1980) Performance
bounds for level-oriented two-dimensional packing algorithms, SIAM Journal
on Computing 9:801–826

18. Dobkin D, Hershberger J, Kirkpatrick D, Suri S (1993) Computing the
intersection-depth of polyhedra, Algorithmica 9:518–533

19. Dréo J, Pétrowski JDA, Siarry P, Taillard E (2006) Metaheuristics for Hard
Optimization, Springer.

20. Dyckhoff H (1990) A typology of cutting and packing problems, European
Journal of Operational Research 44:145–159

21. Egeblad J, Nielsen BK, Odgaard A (to appear) Fast neighborhood search for
two- and three-dimensional nesting problems, European Journal of Operational
Research

22. Glover F (1992) Simple tabu thresholding in optimization, Internal report, Uni-
versity of Colorado, Boulder, CO

23. Glover FW, Kochenberge GA (eds) (2003) Handbook of Metaheuristics,
Springer.

24. Gomes AM, Oliveira JF (2002) A 2-exchange heuristic for nesting problems,
European Journal of Operational Research 141:359–370

25. Gomes AM, Oliveira JF (2006) Solving irregular strip packing problems by
hybridising simulated annealing and linear programming, European Journal of
Operational Research 171:811–829

26. Guo PN, Takahashi T, Cheng CK, Yoshimura T (2001) Floorplanning using
a tree representation, IEEE Transactions on Computer Aided Design of Inte-
grated Circuits and Systems 20:281–289

27. Heckmann R, Lengauer T (1995) A simulated annealing approach to the nest-
ing problem in the textile manufacturing industry, Annals of Operations Re-
search 57:103–133

28. Hopper E, Turton BCH (2001) An empirical investigation of meta-heuristic and
heuristic algorithms for a 2D packing problem, European Journal of Operational
Research 128:34–57

29. Ibaraki T, Nakamura K (2006) Packing problems with soft rectangles, In:
Almeida F, Aguilera MJB, Blum C, Vega JMM, Pérez MP, Roli A, Sampels
M (eds) Hybrid Metaheuristics, Springer Lecture Notes on Computer Science
4030:13–27

30. Imahori S, Yagiura M, Ibaraki T (2003) Local search algorithms for the rect-
angle packing problem with general spatial costs, Mathematical Programming
97:543–569

31. Imahori S, Yagiura M, Ibaraki T (2005) Improved local search algorithms for
the rectangle packing problem with general spatial costs, European Journal of
Operational Research 167:48–67

32. Imahori S, Yagiura M, Ibaraki T (2005) Variable neighborhood search for the
rectangle packing problem, In: Proceedings of the 6th Metaheuristics Interna-
tional Conference

Hybrid Metaheuristics for Packing Problems 33

33. Imamichi T, Yagiura M, Nagamochi H (2006) An iterated local search algo-
rithm based on nonlinear programming for the irregular strip packing prob-
lem, In: Proceedings of the Third International Symposium on Scheduling
(ISS06) 132–137

34. Itoga H, Kodama C, Fujiyoshi K (2005) A graph based soft module handling
in floorplan, IEICE Transactions Fundamentals E88-A:3390–3397

35. Johnson DS (1990) Local optimization and the traveling salesman problem, In:
Peterson MS (ed) Automata, Languages and Programming, Lecture Notes in
Computer Science 443:446–461

36. Kenyon C, Rémila E (2000) A near-optimal solution to a two-dimensional cut-
ting stock problem, Mathematics of Operations Research 25:645–656

37. Kim YJ, Lin MC, Manocha D (2004) Incremental penetration depth estimation
between convex polytopes using dual-space expansion, IEEE Transactions on
Visualization and Computer Graphics 10:152–163

38. Konno H, Kuno T (1995) Multiplicative programming problems, In: Horst R,
Pardalos PM (eds) Handbook of Global Optimization, Kluwer Academic Pub-
lishers, 369–406

39. Kurebe Y, Miwa H, Ibaraki T (2006) Weighted module placement based on
rectangle packing, submitted to an international conference.

40. Li Z, Milenkovic V (1995) Compaction and separation algorithms for non-
convex polygons and their applications, European Journal of Operational Re-
search 84:539–561

41. Lodi A, Martello S, Monaci M (2002) Two-dimensional packing problems: A
survey, European Journal of Operational Research 141:241–252

42. Lodi A, Martello S, Vigo D (1999) Heuristic and metaheuristic approaches
for a class of two-dimensional bin packing problems, INFORMS Journal on
Computing 11:345–357

43. Milenkovic VJ (1998) Rotational polygon overlap minimization and com-
paction, Computational Geometry 10:305–318

44. Murata H, Fujiyoshi K, Nakatake S, Kajitani Y (1996) VLSI module place-
ment based on rectangle-packing by the sequence-pair, IEEE Transactions on
Computer Aided Design 15:1518–1524

45. Murata H, Kuh ES (1998) Sequence-pair based placement method for
hard/soft/preplaced modules, In: Proceedings of International Symposium on
Physical Design, 167–172

46. Nagamochi H (2005) Packing soft rectangles, International Journal of Founda-
tions of Computer Science 17:1165–1178

47. Nakatake S, Fujiyoshi K, Murata H, Kajitani Y (1998) Module packing based on
the BSG-structure and IC layout applications, IEEE Transactions on Computer
Aided Design of Integrated Circuits and Systems 17:519–530

48. Nesterov Y, Nemirovskii A (1994) Interior Point Polynomial Algorithms in
Convex Programming, SIAM Pub.

49. Okano H (2002) A scanline-based algorithm for the 2D free-form bin packing
problem, Journal of the Operations Research Society of Japan 45:145–161

50. Oliveira JF, Ferreira JS (1993) Algorithms for nesting problems, In: Vidal RVV
(ed) Applied Simulated Annealing. Lecture Notes in Economics and Mathemat-
ical Systems 396, Springer-Verlag, 255–274

51. Oliveira JF, Gomes AM, Ferreira JS (2000) TOPOS—a new constructive algo-
rithm for nesting problems, OR Spektrum 22:263–284

34 Toshihide Ibaraki, Shinji Imahori and Mutsunori Yagiura

52. Preas BT, van Cleemput WM (1979) Placement algorithms for arbitrarily
shaped blocks, In: Proceedings of the ACM/IEEE Design Automation Con-
ference, 474–480

53. Ramkumar GD (1996) An algorithm to compute the Minkowski sum outer-face
of two simple polygons, In: Proceedings of the Twelfth Annual Symposium on
Computational Geometry (SCG96), 234–241

54. Stoyan YG, Novozhilova MV, Kartashov AV (1996) Mathematical model and
method of searching for a local extremum for the non-convex oriented polygons
allocation problem, European Journal of Operational Research 92:193–210

55. Takahashi T (1996) An algorithm for finding a maximum-weight decreas-
ing sequence in a permutation, motivated by rectangle packing problem (in
Japanese), Technical Report of IEICE VLD96-30, 31–35

56. Tang X, Tian R, Wong DF (2001) Fast evaluation of sequence pair in block
placement by longest common subsequence computation, IEEE Transactions
on Computer Aided Design of Integrated Circuits and Systems 20:1406–1413

57. Umetani S, Yagiura M, Imamichi T, Imahori S, Nonobe K, Ibaraki T (2006)
A guided local search algorithm based on a fast neighborhood search for the
irregular strip packing problem, In: Proceedings of the Third International Sym-
posium on Scheduling (ISS06), 126–131

58. Wäscher G, Haußner H, Schumann H (2004) An improved typology of cutting
and packing problems, Working Paper 24, Faculty of Economics and Manage-
ment, Guericke University Magdeburg

59. Young FY, Chu CCN, Luk WL, Wong YC (2001) Handling soft modules in
general nonslicing floorplan using Lagrangean relaxation, IEEE Transactions
on Computer-Aided Design of Integrated Circuit and Systetems 20: 687–692

	METR-001-cover.ps
	METR-001-body.ps

