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Abstract

Differential-algebraic equations (DAEs) naturally arise in many applications, but present
numerical and analytical difficulties. The index of a DAE is a measure of the degree of numerical
difficulty. In general, the higher the index is, the more difficult it is to solve the DAE. Therefore,
it is desirable to transform the original DAE into an equivalent DAE with lower index.

In this paper, we propose an index reduction method for linear DAEs with constant coeffi-
cients. This is applicable to all DAEs having at most one derivative per equality, and always
reduces the index exactly by one. Our method is different from other existing methods in that
it does not introduce any additional variables.

1 Introduction

Dynamical systems such as electric circuits, mechanical systems, and chemical plants are often
described by differential-algebraic equations (DAEs), which consist of algebraic equations and
differential operations. DAEs present numerical and analytical difficulties which do not occur
with ordinary differential equations (ODEs).

Several numerical methods have been developed for solving DAEs. For example, Gear [6]
proposed the backward difference formulae (BDF), which were implemented in the DASSL code
by Petzold (cf. [1]). Hairer and Wanner [9] implemented an implicit Runge-Kutta method in their
RADAU5 code.

The index concept plays an important role in the analysis of DAEs. The index is a measure
of the degree of difficulty in the numerical solution. In general, the higher the index is, the more
difficult it is to solve the DAE. While many different concepts exist to assign an index to a DAE
such as the differentiation index [1, 3, 9], the perturbation index [2], and the tractability index [14],
we focus on the nilpotency index in this paper. In the case of linear DAEs with constant coefficients,
all these indices are equal [2, 13].
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In order to transform a DAE into an alternative form easier to solve, some index reduction
methods have been developed [7, 10, 11]. These methods introduce additional variables, which
leads to a drawback that the resulting DAE is a larger system than the original one.

This paper presents a new index reduction method, called the substitution method, for linear
DAEs with constant coefficients

P
dx(t)

dt
+ Qx(t) = f(t), (1)

where P and Q are constant matrices. The method is shown to reduce the index of DAEs by one
without introducing any additional variables, provided that P has at most one nonzero entry in
each row. This class of DAEs includes the semi-explicit form and circuit equations of most linear
time-invariant circuits free from mutual inductances.

The organization of this paper is as follows. In Section 2, we explain a matrix pencil and the
definition of the nilpotency index. Section 3 introduces the substitution method. We describe the
proposed method for index reduction in Section 4. Numerical examples are given in Section 5.
Section 6 concludes this paper.

2 DAEs and Matrix Pencils

For a polynomial a(s), we denote the degree of a(s) by deg a, where deg 0 = −∞ by convention. A
polynomial matrix A(s) = (aij(s)) with deg aij ≤ 1 for all (i, j) is called a matrix pencil. Obviously,
a matrix pencil A(s) can be represented as A(s) = sP +Q in terms of a pair of constant matrices P

and Q. A matrix pencil A(s) is said to be regular if A(s) is square and detA(s) is a nonvanishing
polynomial.

With the use of the Laplace transformation, the DAE in the form of (1) is expressed by the
matrix pencil A(s) = sP +Q as A(s)x̃(s) = f̃(s), where s is the variable for the Laplace transform
that corresponds to d/dt, the differentiation with respect to time.

Theorem 2.1 ([1, Theorem 2.3.1]). The linear DAE with constant coefficients (1) is solvable if
and only if A(s) is a regular matrix pencil.

The reader is referred to [1, Definition 2.2.1] for the precise definition of solvability. By Theo-
rem 2.1, we assume that A(s) is a regular matrix pencil throughout this paper. It is known that
a regular matrix pencil can be brought into the Kronecker canonical form, which determines the
nilpotency index. Let Nµ denote a µ× µ matrix pencil defined by

Nµ =




1 s 0 · · · 0

0 1 s
. . .

...

0 0
. . . . . . 0

...
. . . . . . 1 s

0 · · · 0 0 1




.
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Theorem 2.2 ([5, Chapter XII, Theorem 3]). For an n×n regular matrix pencil A(s), there exist
nonsingular constant matrices U and V which transform A(s) into the Kronecker canonical form:

UA(s)V =




sIµ0 + H O O · · · O

O Nµ1 O · · · O

O O Nµ2

. . .
...

...
...

. . . . . . O

O O · · · O Nµb




,

where
µ1 ≥ µ2 ≥ · · · ≥ µb, µ0 + µ1 + µ2 + · · ·+ µb = n,

and H is a µ0 × µ0 constant matrix.

The matrices Nµi (i = 1, . . . , b) are called the nilpotent blocks. The maximum size µ1 of them
is the nilpotency index, denoted by ν(A). It is obvious that ODEs have index zero, and algebraic
equations have index one.

We denote by A[I, J ] the submatrix of A(s) with row set I ⊆ R and column set J ⊆ C,
where R and C are the row set and the column set of A(s), respectively. Furthermore, we denote
w(I, J) = deg detA[I, J ], where w(∅, ∅) = 0 by convention. Then w enjoys the following property.

Lemma 2.3 ([12, pp. 287–289]). Let A(s) be a matrix pencil with row set R and column set C.
For any (I, J) ∈ Λ and (I ′, J ′) ∈ Λ, where Λ = {(I, J) | |I| = |J |, I ⊆ R, J ⊆ C}, both (VB-1) and
(VB-2) below hold:

(VB-1) For any i ∈ I \ I ′, at least one of the following two assertions holds:

(1a) ∃j ∈ J \ J ′ : w(I, J) + w(I ′, J ′) ≤ w(I \ {i}, J \ {j}) + w(I ′ ∪ {i}, J ′ ∪ {j}),
(1b) ∃h ∈ I ′ \ I : w(I, J) + w(I ′, J ′) ≤ w(I \ {i} ∪ {h}, J) + w(I ′ \ {h} ∪ {i}, J ′).

(VB-2) For any j ∈ J \ J ′, at least one of the following two assertions holds:

(2a) ∃i ∈ I \ I ′ : w(I, J) + w(I ′, J ′) ≤ w(I \ {i}, J \ {j}) + w(I ′ ∪ {i}, J ′ ∪ {j}),
(2b) ∃l ∈ J ′ \ J : w(I, J) + w(I ′, J ′) ≤ w(I, J \ {j} ∪ {l}) + w(I ′, J ′ \ {l} ∪ {j}).

Let δk(A) denote the highest degree of a minor of order k in A(s):

δk(A) = max
I,J

{w(I, J) | |I| = |J | = k, I ⊆ R, J ⊆ C}.

The index ν(A) can be determined from δk(A) as follows.

Theorem 2.4 ([12, Theorem 5.1.8]). Let A(s) be an n× n regular matrix pencil. The nilpotency
index ν(A) is given by

ν(A) = δn−1(A)− δn(A) + 1.
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3 Substitution Method

In this section, we introduce the substitution method for solving linear DAEs with constant co-
efficients. The substitution method eliminates some variables by replacement to obtain a smaller
system than the original one. This is familiar as the solution method for simultaneous equations.

Let A(s) be an n × n regular matrix pencil with row set R and column set C, and B be a
nonsingular constant submatrix of A with row set X ⊂ R and column set Y ⊂ C. We transform
A into Ã by row operations:

A =

(
B K

L M

)
→ Ã =

(
I O

−LB−1 I

)(
B K

L M

)
=

(
B K

O M − LB−1K

)
, (2)

where K = A[X, C \ Y ], L = A[R \X, Y ], and M = A[R \X,C \ Y ]. We denote M − LB−1K by
D, which is not necessarily a matrix pencil.

Let K̂, L̂, M̂ , and D̂ denote the matrices obtained by replacing s with d/dt in K, L, M , and
D, respectively. Consider the DAE

Bx1(t) + K̂x2(t) = f1(t), (3)

L̂x1(t) + M̂x2(t) = f2(t). (4)

By applying the transformation shown in (2), we obtain

Bx1(t) = f1(t)− K̂x2(t), (5)

D̂x2(t) = f2(t)− L̂B−1f1(t). (6)

The outline of the substitution method is as follows.

Phase 1: Solve the DAE (6) for x2(t).

Phase 2: Solve the system of linear equations (5) for x1(t).

In the substitution method, the numerical difficulty is determined by the index ν(D) of the DAE
(6). We show that ν(D) can be expressed in terms of the degrees of minors in A.

For each i ∈ R and j ∈ C, let dij denote the degree of detA[R \ {i}, C \ {j}]. Then we have

dij = deg det Ã[R \ {i}, C \ {j}], ∀i ∈ R \X, ∀j ∈ C, (7)

because we can transform Ã[R \ {i}, C \ {j}] into A[R \ {i}, C \ {j}] by row operations for each
i ∈ R \X and j ∈ C. The index ν(D) can be rewritten as follows.

Theorem 3.1. For an n× n regular matrix pencil A(s), the index of D is given by

ν(D) = max
i,j
{dij | i ∈ R \X, j ∈ C \ Y } − δn(A) + 1. (8)
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Proof. We denote the size of D by m. By Theorem 2.4, we have ν(D) = δm−1(D) − δm(D) + 1.

Recall that Ã =

(
B K

O D

)
and that B is a constant matrix. It follows from detA = det Ã that

δm(D) = deg detD = deg det Ã− deg detB = deg detA.

Moreover, we have

δm−1(D) = max
I,J

{deg det D[I, J ] | |I| = |J | = m− 1}

= max
I,J

{deg det Ã[I, J ] | |I| = |J | = n− 1, I ⊇ X, J ⊇ Y } − deg detB

= max
i,j
{dij | i ∈ R \X, j ∈ C \ Y },

where the last step is due to (7). Thus we obtain (8).

4 Index Reduction

Let A(s) = sP + Q be an n× n regular matrix pencil such that P has at most one nonzero entry
in each row. We denote the row set of A(s) by R, and the column set by C. Moreover, we assume
that ν(A) is positive. Let Y ⊆ C be the set of indices such that their column vectors in P are
zero vectors. Since A[R, Y ] has full column rank by the regularity of A(s), we can find X ⊆ R

such that A[X, Y ] is regular. Note that because B = A[X, Y ] and L = A[R \X, Y ] are constant
matrices, D = Ã[R \X, C \ Y ] is a matrix pencil. We prove that the index of D is one lower than
that of A.

Lemma 4.1. For each i ∈ R and each j ∈ C \ Y , we have dij < δn−1(A).

Proof. Suppose to the contrary that there exist i ∈ R and j ∈ C \ Y such that dij = δn−1(A).
Let h be a row such that the (h, j) entry of P is nonzero. We put (I, J) = ({h}, {j}) and
(I ′, J ′) = (R \ {i}, C \ {j}). By (VB-2) in Lemma 2.3, at least one of the following two assertions
holds:

(2a) h = i, w({h}, {j}) + w(R \ {i}, C \ {j}) ≤ w(∅, ∅) + w(R, C),

(2b) ∃l ∈ C \ {j} : w({h}, {j}) + w(R \ {i}, C \ {j}) ≤ w({h}, {l}) + w(R \ {i}, C \ {l}).

Note that w({h}, {j}) = 1 and w(R \ {i}, C \ {j}) = dij = δn−1(A).
If (2a) holds, then it follows from w(∅, ∅) = 0 and w(R,C) = δn(A) that 1 + δn−1(A) ≤ δn(A),

which implies ν(A) ≤ 0 by Theorem 2.4. This contradicts ν(A) > 0.
On the other hand, if (2b) holds, we have 1+δn−1(A) ≤ w({h}, {l})+dil. Since P has at most

one nonzero entry in each row, we have w({h}, {l}) = 0. Thus we obtain 1 + δn−1(A) ≤ dil, which
contradicts the definition of δn−1(A).
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Theorem 4.2. The index of D = Ã[R \X, C \ Y ] is exactly one lower than that of A.

Proof. By Theorems 2.4 and 3.1 and Lemma 4.1,

ν(A)− ν(D) = δn−1(A)−max
i,j
{dij | i ∈ R \X, j ∈ C \ Y } > 0.

We now prove ν(D) ≥ ν(A)− 1. It follows from Lemma 4.1 that there exist i ∈ R and j ∈ Y such
that dij = δn−1(A).

Suppose that there exist i ∈ R \X and j ∈ Y such that dij = δn−1(A). By applying (VB-2) in
Lemma 2.3 to (X, Y ) and (R \ {i}, C \ {j}), we have

∃l ∈ C \ Y : w(X,Y ) + w(R \ {i}, C \ {j}) ≤ w(X, Y \ {j} ∪ {l}) + w(R \ {i}, C \ {l}).

Note that w(X,Y ) = 0, because A[R, Y ] is a constant matrix. Since A is a matrix pencil and
A[X, Y ] is a constant matrix, w(X, Y \ {j} ∪ {l}) ≤ 1. Therefore, we have dij ≤ dil + 1, which
implies ν(D) ≥ dil − δn(A) + 1 ≥ dij − δn(A) = ν(A)− 1 by Theorems 2.4 and 3.1.

We now consider the other case, which means that there exist i ∈ X and j ∈ Y such that
dij = δn−1(A), and dpq < δn−1(A) for any p ∈ R\X and q ∈ Y . By applying (VB-1) in Lemma 2.3
to (X, Y ) and (R \ {i}, C \ {j}), at least one of the following assertions holds:

(1a) w(X, Y ) + w(R \ {i}, C \ {j}) ≤ w(X \ {i}, Y \ {j}) + w(R, C),

(1b) ∃h ∈ R \X : w(X, Y ) + w(R \ {i}, C \ {j}) ≤ w(X \ {i} ∪ {h}, Y ) + w(R \ {h}, C \ {j}).

Since A[R, Y ] is a constant matrix, we have w(X, Y ) = w(X\{i}, Y \{j}) = w(X\{i}∪{h}, Y ) = 0.
If (1a) holds, then we have dij ≤ δn(A). Therefore, ν(A) = dij−δn(A)+1 ≤ 1 by Theorem 2.4.

It follows from the nonnegativity of ν(D) that ν(D) ≥ ν(A)− 1.
On the other hand, if (1b) holds, we have dij ≤ dhj . This contradicts the assumption that

dpq < δn−1(A) for any p ∈ R \X and q ∈ Y .

Theorem 4.2 implies that the index of D is the same for any X with A[X,Y ] being a nonsingular
constant matrix.

5 Numerical Examples

In this section, we demonstrate the proposed method in numerical examples. We use RADAU5 [9]
in Matlab as the DAE solver. RADAU5 is an implementation of a fifth order implicit Runge-Kutta
method with three stages (RADAU IIA). This is applicable to ODEs and DAEs with index at
most three.
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Figure 1: Linear circuit described by
circuit equations with index two.

C aV I L

Figure 2: Linear circuit described by
circuit equations with index three.

Example 5.1 (Electric circuit with index two [4, 12]). Consider a circuit given in Figure 1, which
is described by the circuit equations with index two:




c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

r1 1 −1 0 0 −1 0 0 0 0 0
r2 −1 0 1 1 1 0 0 0 0 0
r3 0 0 0 0 0 −1 0 0 0 −1
r4 0 0 0 0 0 0 1 1 0 −1
r5 0 0 0 0 0 0 0 −1 1 0
r6 0 0 0 0 0 −1 0 0 0 0
r7 0 R1 0 0 0 0 −1 0 0 0
r8 0 0 R2 0 0 0 0 −1 0 0
r9 0 0 0 sL 0 0 0 0 −1 0
r10 0 0 0 0 −1 0 0 0 0 sC







ĩV
ĩR1

ĩR2

ĩL
ĩC
ṽV

ṽR1

ṽR2

ṽL

ṽC




=




0
0
0
0
0

Ṽ (s)
0
0
0
0




. (9)

The modified nodal analysis results in a DAE with index two. However, our method finds

X = {r1, r4, r5, r6, r7, r8, r9, r10} and Y = {c1, c2, c3, c5, c6, c7, c8, c9},

and the coefficient matrix pencil of the resulting DAE is

D =


 1 + sL

(
1

R1
+

1
R2

)
− 1

R1

0 −1


 ,

which has index one.

Example 5.2 (Electric circuit with index three [8]). Consider another circuit depicted in Figure 2,
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Figure 3: The current through the inductance:
numerical solutions of the original DAE (dash-
dotted line), the substitution method (solid
line), and the exact solution (dotted line).
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Figure 4: The error in the current through
the inductance: the original DAE (dash-dotted
line) and the substitution method (solid line).

which is described by the circuit equations with index three:




c1 c2 c3 c4 c5 c6 c7 c8

r1 1 1 0 0 0 0 0 0
r2 0 0 1 1 0 0 0 0
r3 0 0 0 0 1 −1 0 0
r4 0 0 0 0 0 0 1 −1
r5 0 0 0 0 1 0 0 0
r6 0 −1 0 0 0 sC 0 0
r7 0 0 0 sL 0 0 0 −1
r8 a 0 1 0 0 0 0 0







ĩV
ĩC
ĩI
ĩL
ṽV

ṽC

ṽI

ṽL




=




0
0
0
0

Ṽ (s)
0
0
0




.

The modified nodal analysis results in a DAE with index three [8]. However, our method finds

X = {r1, r4, r5, r6, r7, r8} and Y = {c1, c2, c3, c5, c7, c8},

and we obtain

D =

(
1 saC

0 −1

)
,

which has index two.
Setting C = 5[µF], L = 8[mH], a = 0.99, and V (t) = 10 sin(200t)[V], we numerically solve both

the original and the resulting DAEs. Figure 3 presents these two numerical solutions and the exact
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solution, which can be obtained analytically. In Figure 3, the exact solution coincides with the
solution of the substitution method. Figure 4 shows the discrepancy between the two numerical
solutions and the exact solution. It is observed that the index reduction effectively improves the
accuracy of the numerical solution.

6 Conclusion

For linear DAEs with constant coefficients, we have proposed a new index reduction method. This
method is applicable to all DAEs with at most one derivative per equality, and always reduces
the index by one without introducing any additional variables. This class of DAEs includes the
semi-explicit form and circuit equations of most linear time-invariant circuits.
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