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Abstract

Given a complete k-partite graph G = (V1, V2, . . . , Vk; E) satisfying |V1| = |V2| =
· · · = |Vk| = n and weights of all k-cliques of G, the k-dimensional assignment problem
finds a partition of vertices of G into a set of (pairwise disjoint) n k-cliques that
minimizes the sum total of weights of the chosen cliques. In this paper, we consider
a case in which the weight of a clique is defined by the sum of given weights of edges
induced by the clique. Additionally, we assume that vertices of G are embedded
in the d-dimensional space Qd and a weight of an edge is defined by the square of
the Euclidean distance between its two endpoints. We describe that these problem
instances arise from a multidimensional Gaussian model of a data association problem.

We show the NP-hardness of the problem when k = 3 and d ≥ 2. Futhermore, we
propose a second-order cone programming relaxation of the problem and a polynomial
time randomized rounding procedure. We show that the expected objective value
obtained by our algorithm is bounded by (5/2 − 3/k) times the optimal value. Our
result improves the previously known bound (4 − 6/k) of the approximation ratio.

Key words: multidimensional assignment problem, approximation algorithm,
second-order cone programming, data association problem, data fusion, statistical
matching
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1. Introduction

Let F = {V1, V2, . . . , Vk} be a family of vertex sets satisfying |V1| = |V2| = · · · =
|Vk| = n. A complete k-partite graph G = (V1, V2, . . . , Vk;E) is defined by vertex
sets V1, V2, . . . , Vk, and an edge set E =

⋃
{U,V }∈(F2)

{{u, v} | u ∈ U, v ∈ V }. A
vertex subset Q is called a clique (q-clique) of G if and only if the complete graph
induced by Q is a subgraph of G (and q = |Q|). Given weights of all k-cliques of
G, the k-dimensional assignment problem finds a partition of vertices of G into a
set of (pairwise disjoint) n k-cliques that minimizes the sum total of weights of the
chosen n k-cliques.

We introduce the following definitions and assumptions. For any clique Q of G,
every edge connecting two vertices in Q is called a clique edge of Q. Given an edge
weight vector w ∈ RE , we define the weight of a clique Q by the sum of weights
of clique edges of Q. Additionally, we assume that vertices of G are embedded in
the d-dimensional space and that the weight of an edge is defined by the squares
of the Euclidean distance between its two endpoints. For the remainder of this
paper, we assume that the input of the problem is k n-sets V1, V2, . . . , Vk of rational
d-dimensional vectors (i.e., V1, V2, . . . , Vk ⊆ Qd and |V1| = |V2| = · · · = |Vk| = n).
Under that assumption, our problem finds n clusters that minimize the sum of
squared errors (the sum of squares of all the distances between points in the same
cluster), subject to the constraint that each cluster meets every Vi ∈ F in exactly
one vertex. The n-clustering problem minimizing the sum of squared errors is
discussed in many papers (e.g., [4, 7]). The multidimensional assignment problem
for minimizing the sum of squared errors arises from a multidimensional Gaussian
model of a data association problem described in Appendix A.

In this paper, we show the NP-hardness of the problem when k = 3 and d ≥ 2
(see Appendix B). Furthermore, we propose a second-order cone programming re-
laxation of the problem and a polynomial time randomized rounding procedure. We
show that the expected objective value obtained by our algorithm is bounded by
(5/2 − 3/k) times the optimal value. Our result improves the previously known
bound (4 − 6/k) of the approximation ratio obtained by Bandelt, Crama and
Spieksma in [2].

When k = 2, the k-dimensional assignment problem is a well-known assignment
problem and is solvable using the Hungarian method. The 3-dimensional assign-
ment problem has been actively investigated. When weights of all 3-cliques are
arbitrary, the problem is a generalization of 3-dimensional matching (3DM) and is
therefore NP-hard [12]. The NP-hardness of some subclasses has been addressed in
the literature [5, 9, 23]. When edge weights satisfy triangle inequalities, Crama and
Spieksma [9] showed that a simple heuristic gives a (4/3)-approximation algorithm.
For values k ≥ 4, the k-dimensional assignment problem has been less studied. Early
mention of the problem can be found in Haley [13] and Pierskalla [17]. Bandelt,
Crama and Spieksma [2] considered cases in which the weights of cliques are not arbi-
trary, but are instead given as a function of edge weights. When edge weights satisfy
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triangle inequalities and the weight of a clique is defined by the sum of weights of
edges induced by the clique, they showed that there exists a (2−2/k)-approximation
algorithm. We briefly describe (a modified version of) their algorithm and its ap-
proximation ratio in Section 2.1. For more detailed references, see recent survey
papers [6] by Burkard and Çela and [24] by Spieksma.

Multidimensional assignment problems arise from many application areas. Pier-
skalla [16, 17] described some application settings: capital investment, dynamic fa-
cility location, and satellite launching. Other applications are enumerated in Frieze
and Yadegar [11] and Crama et al. [8]. Recently, multidimensional assignment
problems have been revealed for applications as techniques to solve data associa-
tion problems. For example, in multitarget multisensor surveillance systems, we
must associate reports from multisensors to enhance target identification and state
estimation. General classes of these problems can be formulated as multidimen-
sional assignment problems [18, 19]. Another example is the integration of market
databases. When there is no single source database available for all the information
of interest, techniques of integrating different databases are often applied. By inte-
grating multiple source market survey data, the obtained single data-set will have
answers to all questions in original surveys. One class of integration methods is
known as that of data-fusion procedures or statistical matching [20]. In [22], Soong
and de Montigny examined a problem instance of fusing three databases.

2. Formulations and Relaxations

In this section, we formulate the multidimensional assignment problem as an in-
teger linear programming problem and (integer) quadratic programming problems.
Finally, we combine our formulations and give a second-order cone programming
relaxation.

For the remainder of this paper, we denote the vertex set V1 ∪ V2 ∪ · · · ∪ Vk by
V̂ . For any vertex subset V ⊆ V̂ , δ(V ) denotes the set of edges in E between V
and V̂ \ V . For any disjoint pair of vertex subsets U, V ⊆ V̂ , we denote the edge
subset δ(U)∩ δ(V ) by E(U, V ) and/or E(V,U). We denote a singleton {v} by v for
simplicity, when no ambiguity exists. A sequence (e1, e2, e3) of edges of G is called
a triangle of G if the graph induced by edges {e1, e2, e3} is a 3-cycle in G. For any
vector x ∈ RE and an edge {u, v} ∈ E, we denote the element x({u, v}) by x(u, v)
and/or x(v, u) for short.

2.1. Integer Linear Programming

We introduce a 0-1 valued variable vector x ∈ {0, 1}E . For an arbitrary edge weight
vector w ∈ RE , we can formulate the multidimensional assignment problem as

ILP: min.
∑

e∈E w(e)x(e)

s. t.
∑

u∈U x(u, v) = 1 (∀U ∈ F , ∀v ∈ V̂ \ U), (1)
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x(e1) ≥ x(e2) + x(e3)− 1 (for each triangle (e1, e2, e3) of G), (2)
x(e) ∈ {0, 1} (∀e ∈ E).

We next demonstrate the correctness of the above formulation. For any x ∈
{0, 1}E , we define an edge subset E(x) by {e ∈ E | x(e) = 1}. Let x be a feasible
solution of ILP. Then, for any pair {U, V } ∈

(F
2

)
, constraints (1) imply that the edge

subset E(x)∩E(U, V ) is a perfect matching of the bipartite graph (U, V ;E(U, V )).
Constraints (2) mean that if [x(e2) = 1 and x(e3) = 1], then x(e1) = 1. Thus
constraints (1) and (2) yield that each connected component of (V̂ , E(x)) contains
k-clique. Because E(x) contains n(1/2)k(k − 1) edges, the subgraph (V̂ , E(x))
consists of pairwise disjoint n k-cliques. The inverse implication is clear.

When we drop constraints (2), we can decompose the obtained problem, de-
noted by LP, into (1/2)k(k−1) subproblems, each of which is a classical assignment
problem defined on a bipartite graph (U, V ;E(U, V )) for a pair {U, V } ∈

(F
2

)
. Con-

sequently, we can solve LP by applying the Hungarian method to each subproblem.
In the following, we briefly describe a randomized version of multiple-hub heuristic
proposed by Bandelt, Crama and Spieksma in [2]. First, we solve the relaxation
problem LP and obtain a 0-1 valued optimal solution xLP. Next, we choose a ver-
tex subset U ∈ F randomly. Lastly, we construct a graph G′ = (V̂ , δ(U)∩E(xLP))
and output a family of vertex subsets {Q1, Q2, . . . , Qn} of connected components
in G′. Each connected component in G′ is a complete bipartite graph K1,k−1 and
meets every V ∈ F in exactly one vertex. Therefore, the obtained vertex subsets
Q1, Q2, . . . , Qn are pairwise disjoint k-cliques of G. The obtained solution corre-
sponds to a feasible solution XLPR of ILP defined by

XLPR(e) =

{
xLP(e) (∀e ∈ δ(U)),∑

u∈U xLP(u, v)xLP(u, v′) (∀e = {v, v′} ∈ E \ δ(U)).

Results of Bandelt, Crama and Spieksma [2] imply the following. Under the as-
sumptions that (i) edge weights are non-negative and

(ii) ∃τ ≥ 1/2, for each triangle (e1, e2, e3) of G, w(e1) + w(e2) ≥ (1/τ)w(e3), (3)

the expectation of the objective function value of XLPR satisfies that

E
[∑

e∈E w(e)XLPR(e)
]
≤ (2/k)((k − 2)τ + 1)z∗(ILP)

where z∗(ILP) is the optimal value of ILP. We deal with the case in which the
weight of an edge is defined by the square of the Euclidean distance between its
two endpoints. Therefore, property (3) is satisfied by setting τ = 2. Thus, the
approximation ratio of the above algorithm is bounded by (4− 6/k) for our case.

2.2. Non-Convex Quadratic Programming

We transform the problem ILP to a non-convex quadratic programming problem.
In this subsection, we fix a vertex subset U ∈ F .
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Every feasible solution x ∈ {0, 1}E of ILP satisfies that the graph G′ = (V̂ , δ(U)∩
E(x)) has n connected components and each component meets every vertex subset
in F in exactly one vertex. Consequently, the variables indexed by edges E \ δ(U)
satisfy that

∀e = {v, v′} ∈ E \ δ(U), x(v, v′) =
∑

u∈U x(u, v)x(u, v′). (4)

Using the above equalities, we eliminate variables indexed by E \ δ(U) from the
objective function of ILP and obtain the following function:∑

e∈E w(e)x(e) =
∑

e∈δ(U) w(e)x(e) +
∑

e∈E\δ(U) w(e)x(e)

=
∑

e∈δ(U) w(e)x(e) +
∑

{v,v′}∈E\δ(U)

(
w(v, v′)

∑
u∈U x(u, v)x(u, v′)

)
.

Because the remaining variables are indexed by δ(U) and the graph (V̂ , δ(U))
does not include any 3-cycle, we require no constraints (2). By substituting non-
negativity constraints for 0-1 constraints, we obtain the following problem:

NQP(U): min.
∑

e∈δ(U)

w(e)x(e) +
∑

{v,v′}∈E\δ(U)

(
w(v, v′)

∑
u∈U

x(u, v)x(u, v′)

)
s. t.

∑
u∈U x(u, v) = 1 (∀v ∈ V̂ \ U),∑
v∈V x(u, v) = 1 (∀u ∈ U, ∀V ∈ F \ {U}),

x(e) ≥ 0 (∀e ∈ δ(U)).

We show that NQP(U) has a 0-1 valued optimal solution by employing the
following randomized rounding procedure, which serves an important role in a later
section. Let x ∈ Rδ(U) be a feasible solution of NQP(U). For each vertex subset
V ∈ F \ {U}, the subvector x|E(U,V ) of x indexed by E(U, V ) is contained in the
set {

x̃ ∈ RE(U,V )
+

∣∣∣ ∑u∈U x̃(u, v) = 1 (∀v ∈ V ),
∑

v∈V x̃(u, v) = 1 (∀u ∈ U)
}

.

Thus, the subvector x|E(U,V ) is contained in the assignment polytope defined on the
complete bipartite graph (U, V ;E(U, V )). Birkhoff–von Neumann’s theorem [3, 15]
and/or integrality of assignment polytopes yield that we can represent the subvector
x|E(U,V ) by a convex combination of characteristic vectors of perfect matchings
in the bipartite graph (U, V ;E(U, V )). We then obtain the following randomized
rounding procedure.

Procedure 1.

Input: A feasible solution x ∈ Rδ(U) of NQP(U).
Output: A 0-1 valued feasible solution X of NQP(U).
For each vertex subset V ∈ F \ {U}, execute the following.
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Step 1: Represent the subvector x|E(U,V ) by a convex combination of characteristic
vectors of perfect matchings of the bipartite graph (U, V ;E(U, V )). We denote
the coefficient of convex combination with respect to a perfect matching M
by λ(M).

Step 2: Choose a perfect matching of (U, V ;E(U, V )) under the probability func-
tion that a perfect matching M is chosen with probability λ(M).

Step 3: Set the subvector X|E(U,V ) as the characteristic vector of the chosen perfect
matching.

Next assume that we applied Procedure 1 to an optimal solution x∗ of NQP(U) and
obtained a 0-1 valued feasible solution X of NQP(U). Then the expectation of the
corresponding objective function value satisfies that

E

 ∑
e∈δ(V )

w(e)X(e) +
∑

{v,v′}∈E\δ(U)

(
w(v, v′)

∑
u∈U

X(u, v)X(u, v′)

)
=
∑

e∈δ(U)

w(e)E[X(e)] +
∑

{v,v′}∈E\δ(U)

(
w(v, v′)

∑
u∈U

E[X(u, v)]E[X(u, v′)]

)

=
∑

e∈δ(U)

w(e)x∗(e) +
∑

{v,v′}
∈E\δ(U)

(
w(v, v′)

∑
u∈U

x∗(u, v)x∗(u, v′)

)
= z∗(NQP(U))

where z∗(NQP(U)) is the optimal value of NQP(U). The first equality is obtained
from the property that every cross term X(e1)X(e2) appearing in the objective
function satisfies that the pair of random variables X(e1) and X(e2) is independent.
Because NQP(U) has a 0-1 valued feasible solution whose objective value is less than
or equal to the above expectation, the above equalities imply that NQP(U) has a
0-1 valued optimal solution.

For any feasible solution x ∈ {0, 1}E of ILP, the subvector x|δ(U) is feasible to
NQP(U). Conversely, if we have a 0-1 valued feasible solution x ∈ {0, 1}δ(U) of
NQP(U), we can construct a feasible solution of ILP using equalities (4). These
transformations give a bijection between the feasible set of ILP and the set of 0-1
valued feasible solutions of NQP(U). The objective function values of corresponding
pair of solutions are equivalent. Therefore, we can construct an optimal solution of
ILP from a 0-1 valued optimal solution of NQP(U) using equalities (4).

2.3. Integer Quadratic Programming

In this subsection, we reformulate NQP(U) as an integer programming problem with
a convex quadratic objective function. We also fix a subset U ∈ F throughout this
subsection. In the remainder of this section, we use the assumption that vertices
in V̂ are embedded in Qd and the weight of an edge is defined by the square of the
Euclidean distance between its two endpoints. For any vertex v ∈ V̂ , we denote the
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position (in Qd) of v by v ∈ Qd. For any clique Q of G, we denote the weight of Q
by w(Q).

Let x ∈ {0, 1}δ(U) be a 0-1 valued feasible solution of NQP(U) and Q =
{Q1, Q2, . . . , Qn} be the set of corresponding n k-cliques. For any vertex u ∈ U ,
Q(u) denotes a unique clique in Q including u. The objective function value of
NQP(U) with respect to x is the sum total of clique weights and is therefore equal
to ∑

u∈U w(Q(u)) =
∑

e∈δ(U) w(e)x(e) +
∑

u∈U w(Q(u) \ u).

For any vertex u ∈ U , the clique Q(u) meets every subset V ∈ F\{U} in exactly one
vertex in the singleton Q(u)∩V , whose position (in Qd) is denoted by

∑
v∈V x(u, v)v,

because the equality
∑

v∈V x(u, v) = 1 holds. For any pair {V, V ′} ∈
(F\{U}

2

)
, the

clique Q(u) has a unique clique edge in E(V, V ′) connecting vertices in Q(u) ∩ V
and Q(u) ∩ V ′. Therefore, the weight of the edge is equal to∥∥∑

v∈V x(u, v)v −
∑

v′∈V ′ x(u, v′)v′
∥∥2

.

From the above, the sum total of clique weights,
∑

u∈U w(Q(u)), is given as

∑
e∈δ(U)

w(e)x(e) +
∑
u∈U

∑
{V,V ′}∈(F\{U}

2 )

∥∥∥∥∥∑
v∈V

x(u, v)v −
∑

v′∈V ′

x(u, v′)v′
∥∥∥∥∥

2

.

Employing the above function, we obtain the following integer quadratic program-
ming formulation of our problem:

IQP(U):

min.
∑

e∈δ(U)

w(e)x(e) +
∑
u∈U

∑
{V,V ′}∈(F\{U}

2 )

∥∥∥∥∥∑
v∈V

x(u, v)v −
∑

v′∈V ′

x(u, v′)v′
∥∥∥∥∥

2

s. t.
∑

u∈U x(u, v) = 1 (∀v ∈ V̂ \ U),∑
v∈V x(u, v) = 1 (∀u ∈ U, ∀V ∈ F \ {U}),

x(e) ∈ {0, 1} (∀e ∈ δ(U)).

Different from NQP(U), we cannot drop 0-1 constraints in IQP(U). An advan-
tage of this formulation is that the objective function is a convex quadratic func-
tion. For that reason, the continuous relaxation problem, obtained by substituting
non-negativity constraints for 0-1 constraints, is a convex quadratic programming
problem that is solvable efficiently.

2.4. Second-Order Cone Programming Relaxation

Lastly, we combine formulations ILP and IQP(U) and construct a second-order cone
programming (SOCP) relaxation, which, we hope, provides a better lower bound.
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Here we note that we do not fix a vertex subset U ∈ F in this subsection. By
introducing an artificial variable z, our relaxation problem is described as follows:

SOCPR:
min. z

s. t. z ≥
∑

{u,v}∈E ‖v − u‖2x(u, v),
z ≥

∑
{u,v}∈δ(U) ‖v − u‖2x(u, v)

+
∑
u∈U

∑
{V,V ′}∈(F\{U}

2 )

∥∥∥∥∥∑
v∈V

x(u, v)v −
∑

v′∈V ′

x(u, v′)v′
∥∥∥∥∥

2

(∀U ∈ F),

∑
u∈U x(u, v) = 1 (∀U ∈ F , ∀v ∈ V̂ \ U),

x(e) ≥ 0 (∀e ∈ E).

As is well-known, the above problem can be transformed to a second-order cone
programming problem, which is solvable within any given gap ε in polynomial time
using an interior point method (see a recent survey paper [1]).

3. Randomized Approximation Algorithm

In this section, we propose a randomized approximation algorithm.

Algorithm 2.

Input: Subsets V1, V2, . . . , Vk ⊆ Qd satisfying |V1| = |V2| = · · · = |Vk| = n.
Output: A feasible solution X of ILP.
Step 1: Solve SOCPR and obtain an optimal solution (z∗,x∗).
Step 2: Randomly choose a vertex set U ∈ F .
Step 3: Apply Procedure 1 to the subvector x∗|δ(U) and obtain 0-1 valued vector

XU indexed by δ(U).
Step 4: Output a 0-1 valued vector X ∈ {0, 1}E defined as

X(e) =

{
XU (e) (∀e ∈ δ(U)),∑

u∈U XU (u, v)XU (u, v′) (∀e = {v, v′} ∈ E \ δ(U)).

For executing Procedure 1 in Step 3, we need to represent the subvector x∗|E(U,V )

by a convex combination of characteristic vectors of perfect matchings in the bi-
partite graph (U, V ;E(U, V )) for each V ∈ F \ {U}. We can find coefficients for
convex combination by applying (an unweighted version of) the Hungarian method
O(n2) times. Therefore, employing an O(n2.5) algorithm for the assignment prob-
lem in [14], Step 3 requires O(kn4.5) computational time. Appendix C gives an
O(kn4) time algorithm for Step 3. Although Step 4 requires O(k2n3) time, we need
not execute Step 4 to output n k-cliques (vertex subsets of G), which requires only
O(kn) time.

The following theorem is our main result.
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Theorem 3. Algorithm 2 finds a feasible solution of ILP such that the expectation
of the corresponding objective function value is less than or equal to (5/2− 3/k)z∗∗

where z∗∗ is the optimal value of the multidimensional assignment problem defined
by subsets V1, . . . , Vk ⊆ Qd satisfying |V1| = · · · = |Vk| = n.

Proof. Let (z∗,x∗) be an optimal solution of SOCPR, and X be a solution obtained
by Algorithm 2. The feasibility of X is clear. The expectation of the corresponding
objective function value satisfies that

E
[∑

e∈E w(e)X(e)
]

=
1
k

∑
U∈F

E

 ∑
e∈δ(U)

w(e)XU (e) +
∑
{v,v′}
∈E\δ(U)

(
w(v, v′)

∑
u∈U

XU (u, v)XU (u, v′)

)

=
1
k

∑
U∈F

∑
e∈δ(U)

w(e)E[XU (e)] +
∑

{v,v′}
∈E\δ(U)

(
w(v, v′)

∑
u∈U

E[XU (u, v)]E[XU (u, v′)]

)
=

1
k

∑
U∈F

 ∑
e∈δ(U)

w(e)x∗(e) +
∑

{v,v′}∈E\δ(U)

(
w(v, v′)

∑
u∈U

x∗(u, v)x∗(u, v′)

)
=

1
k

∑
U∈F

∑
e∈δ(U)

w(e)x∗(e)

+
1
k

∑
U∈F

∑
{V,V ′}∈(F\{U}

2 )

∑
v∈V

∑
v′∈V ′

∑
u∈U

w(v, v′)x∗(u, v)x∗(u, v′).

The assumption related to edge weights implies that

∀U ∈ F ,∀u ∈ U,∀{v, v′} ∈ E \ δ(U),

w(v, v′) = ‖v′ − v‖2 = ‖(u− v)− (u− v′)‖2

= ‖u− v‖2 + ‖u− v′‖2 − 2(u− v)>(u− v′)

= (w(v, u) + w(v′, u))− 2(u− v)>(u− v′). (5)
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For dealing with the first term of (5), we use the equalities∑
v∈V

∑
v′∈V ′

(w(v, u) + w(v′, u))x∗(v, u)x∗(v′, u)

=
∑
v∈V

∑
v′∈V ′

w(v, u)x∗(v, u)x∗(v′, u) +
∑
v∈V

∑
v′∈V ′

w(v′, u)x∗(v, u)x∗(v′, u)

=
∑
v∈V

(
w(v, u)x∗(v, u)

∑
v′∈V ′

x∗(v′, u)

)
+
∑

v′∈V ′

(
w(v′, u)x∗(v′, u)

∑
v∈V

x∗(v, u)

)
=
∑
v∈V

w(v, u)x∗(v, u) +
∑

v′∈V ′

w(v′, u)x∗(v′, u)

and obtain that∑
u∈U

∑
{V,V ′}∈(F\{U}

2 )

∑
v∈V

∑
v′∈V ′

(w(v, u) + w(v′, u))x∗(v, u)x∗(v′, u)

=
∑
u∈U

∑
{V,V ′}∈(F\{U}

2 )

(∑
v∈V

w(v, u)x∗(v, u) +
∑

v′∈V ′

w(v′, u)x∗(v′, u)

)

= (k − 2)
∑
u∈U

∑
V ∈F\{U}

∑
v∈V

w(v, u)x∗(v, u) = (k − 2)
∑

e∈δ(U)

w(e)x∗(e). (6)

Next, we consider the last term in (5). It is easy to show that

− 2
∑
v∈V

∑
v′∈V ′

(u− v)>(u− v′)x∗(v, u)x∗(v′, u)

= −2

(∑
v∈V

x∗(v, u)(u− v)

)>(∑
v′∈V ′

x∗(v′, u)(u− v′)

)

= −2

(∑
v∈V

x∗(v, u)u−
∑
v∈V

x∗(v, u)v

)>(∑
v′∈V ′

x∗(v′, u)u−
∑

v′∈V ′

x∗(v′, u)v′
)

= −2

(
u−

∑
v∈V

x∗(v, u)v

)>(
u−

∑
v′∈V ′

x∗(v′, u)v′
)

≤ 1
2

∥∥∥∥∥
(

u−
∑
v∈V

x∗(v, u)v

)
−

(
u−

∑
v′∈V ′

x∗(v′, u)v′
)∥∥∥∥∥

2

=
1
2

∥∥∥∥∥∑
v∈V

x∗(v, u)v −
∑

v′∈V ′

x∗(v′, u)v′
∥∥∥∥∥

2

, (7)

where the above inequality is obtained from the fact that ∀p,∀q ∈ Rd, the inequality
−2p>q ≤ (1/2)‖p−q‖2 holds. Equality (6) and inequality (7) yield an upper bound
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of the expectation as follows:

E

[∑
e∈E

w(e)X(e)

]
=

1
k

∑
U∈F

∑
e∈δ(U)

w(e)x∗(e)

+
1
k

∑
U∈F

∑
u∈U

∑
{V,V ′}∈(F\{U}

2 )

∑
v∈V

∑
v′∈V ′

w(v, v′)x∗(v, u)x∗(v′, u)

≤ 1
k

∑
U∈F

∑
e∈δ(U)

w(e)x∗(e) +
k − 2

k

∑
U∈F

∑
e∈δ(U)

w(e)x∗(e)

+
1
2k

∑
U∈F

∑
u∈U

∑
{V,V ′}∈(F\{U}

2 )

∥∥∥∥∥∑
v∈V

x∗(v, u)v −
∑

v′∈V ′

x∗(v′, u)v′
∥∥∥∥∥

2

=
(

1
k

+
k − 2

k
− 1

2k

)∑
U∈F

∑
e∈δ(U)

w(e)x∗(e)

+
1
2k

∑
U∈F

 ∑
e∈δ(U)

w(e)x∗(e)

+
∑
u∈U

∑
{V,V ′}∈(F\{U}

2 )

∥∥∥∥∥∑
v∈V

x∗(v, u)v −
∑

v′∈V ′

x∗(v′, u)v′
∥∥∥∥∥

2


≤ 2k − 3
2k

2
∑
e∈E

w(e)x∗(e) +
1
2k

∑
U∈F

z∗ ≤ 2k − 3
k

z∗ +
1
2
z∗ ≤

(
5
2
− 3

k

)
z∗∗.

Therefrom, we obtained the desired result.

Appendix

A. A Multidimensional Gaussian Model of a Data As-
sociation Problem

In this section, we show that our model of a multidimensional assignment problem
arises from a simple probabilistic framework of the data association problem. As-
sume that there are n objects (targets, randomly chosen customers, etc.) and k
data-sets (observations obtained by radar or global positioning system, results of
questionnaires, etc.) such that each data-set consists of n reports (observations)
corresponding to n objects. For fusing k data-sets, we must find a partition of all
the reports into (pairwise disjoint) n k-sets such that each subset of reports meets
every data-set in exactly one report because we do not know the correspondence
(matching) between reports for any pair of data-sets. We assume that each report of
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object i might be independently and identically distributed from d-dimensional nor-
mal distribution N(θi, Σ). In the following, we assume that Σ is the d-dimensional
identity matrix for simplicity. When we have k reports Q = {v1,v2, . . . ,vk} ⊆ Rd

of object i, the maximum likelihood estimator (MLE) of θi is the center of gravity
(1/k)

∑
v∈Q v because Σ is the identity matrix and the corresponding log-likelihood

is

−(1/2)
∑

u∈Q ‖(1/k)
∑

v∈Q v − u‖2 + c = −(1/2k)
∑

{u,v}∈(Q
2)
‖v − u‖2 + c

where c = −(1/2)kd log(2π). Given a partition {Q1, Q2, . . . , Qn} of all the reports
such that each set corresponds to reports from a common potential object, the MLE
of the set of n parameters are

{(1/k)
∑

v∈Qi
v | i ∈ {1, 2, . . . , n}},

and the corresponding conditional log-likelihood is

−(1/2k)
∑n

i=1

∑
{u,v}∈(Qi

2 ) ‖v − u‖2 + nc. (8)

From the above, we can find the MLE of the set of n parameters using the following
two steps: first, solve the multidimensional assignment problem and find pairwise
disjoint n k-cliques {Q1, Q2, . . . , Qn} which maximizes the log-likelihood (8); sec-
ond, for each subset in {Q1, Q2, . . . , Qn}, output the center of gravity of contained
reports. For this model, we must solve a multidimensional assignment problem that
minimizes the sum total of weights of clique edges under the assumptions that ver-
tices of G are embedded in the d-dimensional space Rd and that the weight of an
edge is defined by the square of the Euclidean distance between its two endpoints.

B. Hardness Result

In this section, we will prove NP-hardness of the multidimensional assignment prob-
lem minimizing the sum of squared errors when k = 3 and d ≥ 2. A similar
discussion can be found in Spieksma–Woeginger [23], where it is shown that a ge-
ometric three-dimensional assignment problem (given three n-sets (⊆ Z2), find an
three-dimensional assignment minimizing the total circumference) is NP-hard.

We introduce an NP-complete problem to which we provide a reduction from
our problem.

Problem 4 (planar 3dm).

Instance: Three pairwise disjoint sets X, Y , and Z with |X| = |Y | = |Z| = q and
a set T ⊆ X × Y ×Z such that every element of X ∪ Y ∪Z occurs in at most
three triplets in T and such that a bipartite graph H = (T,X ∪ Y ∪ Z;F ),
where an edge connects a triplet and its element, is planar.

Question: Does there exist a subset T ′ of q triplets in T such that each element
of X ∪ Y ∪ Z is contained in precisely one triplet of T ′?

12



Example 5. Let us consider the following instance of planar 3dm:
X = {x1, x2, x3}, Y = {y1, y2, y3}, Z = {z1, z2, z3}, and T = {t1, t2, t3, t4, t5, t6, t7, t8}
where t1 = (x1, y1, z1), t2 = (x1, y1, z2), t3 = (x3, y1, z2), t4 = (x3, y3, z3), t5 =
(x2, y2, z3), t6 = (x2, y3, z1), t7 = (x1, y2, z1), and t8 = (x3, y2, z3). For this instance,
T ′ = {t2, t6, t8} is a feasible solution.

Proposition 6 (Dyer–Frieze [10]). Problem planar 3dm is NP-complete.

Next, we introduce planar grid embeddings of planar graphs. Given a planar
graph H with the maximum degree at most 4, a planar grid embedding of H maps
vertices to mutually distinct integer grid points in Z2 and edges to non-intersecting
integer grid paths. The following proposition says that we can construct a planar
grid embedding efficiently.

Proposition 7 (Tamassia–Tollis [25]). Given a planar graph H with h vertices and
maximum degree at most 4, a planar grid embedding of H can be computed in O(h)
time and the area of the embedding is O(h2).

Now, we will show the decision version of our problem is NP-complete.

Problem 8.

Instance: A complete tripartite graph C = (R,G,B;E) satisfying |R| = |G| =
|B| = n and R,G,B ⊆ Z2, and a positive integer θ.

Question: Does there exist a partition of vertices of C into a set of (pairwise
disjoint) n 3-cliques with total weights at most θ where total weights are
defined by the sum of the squared distances between two endpoints of all the
edges induced in C by the chosen n 3-cliques?

Proposition 9. Problem 8 is NP-complete.

Proof. It is easy to see that Problem 8 is in class NP since we can check in polynomial
time whether every point appears exactly one 3-clique and whether their weights
are at most θ.

We transform planar 3dm to Problem 8. Let X, Y and Z satisfying |X| =
|Y | = |Z| = q and T ⊆ X×Y ×Z constitute any instance of planar 3dm. We must
construct point sets R, G, and B with |R| = |G| = |B| = n and positive integer θ
such that the complete tripartite graph C = (R,G,B;E) has a partition of weights
at most θ if and only if there exists a subset T ′ ⊆ T of size q uses all points from
X ∪ Y ∪ Z exactly once. For the sake of convenience, we use color red, green, and
blue for R, G, and B respectively.

Consider the planar bipartite graph H constructed from the instance of planar
3dm. We denote by X-path the bipartite edge of H emanating from X, by Y -path
the edge from Y , and by Z-path the edge from Z.

First, we compute a planar grid embedding of H (see Proposition 7); we denote
this embedding by HE (e.g. Figure 1a). Let us call the points of HE corresponding
to X ∪Y ∪Z ground points, and corresponding to T tricolored points. Concurrently,
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we prepare colored vertex set VE ⊆ Z2 as follows: place a red vertex ( R) on each
ground point of X, green ( G) on each of Y , blue ( B) on each of Z, and place three
vertices, each of which is a red, a green, and a blue vertex ( ) on every tricolored
point together (cf. Figure 1b).

x1

x2

x3

y1

y2

y3

z1

z2

z3

t1

t2

t3

t4t5

t6

t7

t8

(a) HE.

R

R

R

G

G

G

B

B

B

(b) VE.

Figure 1. A planar grid embedding and a colored vertex set of the instance appearing
in Example 5 (yellow lines represent integer grids).

Second, we transform HE into HS by subdividing the integer grid paths into
integer unit segments (cf. Figure 2a). Let us name the newly inserted points of HS

monocolored points. We also transform VE into VS by adding some colored vertices
as follows: place a red vertex ( R) on every monocolored point along X-path, green
( G) along Y -path, and blue ( B) along Z-path (cf. Figure 2b).

x1

x2

x3

y1

y2

y3

z1

z2

z3

t1

t2

t3

t4t5

t6

t7

t8

(a) HS.

R

R

R

G

G

G

B

B

B

B

B

G G

G G

G G

(b) VS.

Figure 2. The subdivision of HE and the corresponding colored vertex set.

Thirdly, we multiply all coordinates of HS and VS by 2. Then, subdivide all
segments into integer unit segments again and obtain a new plane graph HD (cf.
Figure 3a). We denote the newly inserted points of HD by bicolored points. We also
construct VD from VS as follows: place a green vertex and a blue vertex together
( BG ) on each bicolored point along X-path, blue and red ( RB ) along Y -path, and
red and green ( GR ) along Z-path (cf. Figure 3b).

Finally, span edges appropriately among VD and obtain a complete tripartite
graph C = (R,G,B;E).

Due to the way of construction, n is defined as the sum of q and the number of
segments in HS. We define θ by 2(n− q).

14



x1

x2

x3
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(a) HD.
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R

G

B

R

R
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R

R

G

G
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R
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B

R

BR

GB

GB

BR

(b) VD.

Figure 3. The subdivision of HS and the corresponding colored vertex set.

Now, we must argue that a feasible solution of the planar 3dm corresponds to
a feasible solution of Problem 8 whose weight is at most θ and vice versa.

(planar 3dm → Problem 8). Let T ′ ⊆ T be a feasible solution of the planar
3dm.

For each triplet t′ in T ′, we choose a 3-clique with weight 0, i.e., we make
a 3-clique using the three colored vertices at the tricolored point t′. Then along
the paths emanating from t′, from the next point of t′ until the element of t′, we
construct 3-cliques with weights 2 using the next (unused) three colored vertices,
one after another (see Figure 4a).

On the other hand, for each t in T \ T ′, we construct three 3-cliques around t
using three colored vertices at t separately. Then along paths emanating from t,
until the point just in front of the element of t, we construct 3-cliques with weights
2 using the next (unused) three colored vertices, alternately (see Figure 4b).

t
′

(a) Around the tricolored point t′ ∈ T ′.

t

(b) Around the tricolored point t ∈ T \T ′.

Figure 4. How to choose 3-cliques (black narrow triangles represent 3-cliques).

Since the set T ′ is a feasible solution of planar 3dm, every element of X∪Y ∪Z
is contained in precisely one triplet of T ′. As a result of the above construction of 3-
cliques, only the 3-cliques along the paths emanating from T ′ can cover the colored
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vertices on the ground points. Moreover, total weight is equal to the number of
segments in HD, i.e., 2(n−q) = θ. Therefore, we can construct a positive certificate
for Problem 8 (cf. Figure 5).
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R
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Figure 5. How to construct 3-cliques for Figure 3b.

(planar 3dm ← Problem 8). Suppose a solution of Problem 8 with weights at
most θ exists.

We call edges with weight 0 internal edges and call the other edges external edges.
For example, an edge connecting between two colored vertices on a bicolored point
is an internal edge, and another edge adjacent to a colored vertex on a bicolored
point is an external edge. For a 3-clique, the induced subgraph of C by the 3-clique
is called a triangle, and an edge of triangle is called a triangle edge.

Now, we would like to show the following statement.

Claim 10. For any bicolored point, two colored vertices on the point are contained
in a unique 3-clique. Moreover, exactly one external edge with weight 1 leaves from
every colored vertex on any bicolored point as a triangle edge.

For every external edge, weight of the edge is 1 or more. Since there are only
two colored vertices on any bicolored point, each of them must adopt at least one
external edge as a triangle edge to construct a 3-clique. If we sum up the weights of
the external edges, then we obtain at least twice the number of bicolored points. In
this calculation, we may worry about counting edges more than once. Especially,
we need to consider edges connecting between a colored vertex on a bicolored point
and a colored vertex on another bicolored point. Since weights of such edges are at
least 2, we use the half of the weights for summation when we sum up the weights
of such edges. Because of the way of construction of VD, the number of colored
vertices on bicolored points is 2(n − q). From the above, we obtain the following

16



inequality:

[weight of any feasible solution of Problem 8] ≥ 2(n− q) = θ.

We have the solution of Problem 8 with weights at most θ, thus the weight of this
solution is equal to θ.

Therefore, from every colored vertex on any bicolored point, only one external
edge emanates as a triangle edge. The other triangle edges must be internal edges.
Thus, every two colored vertices on any bicolored point are contained in a unique
3-clique, and thus every edge is counted at most once. We can state Claim 10.

Hence, we have only two choices around bicolored points as shown in Figure 6.

(a) (b)

Figure 6. Only two choices to construct 3-cliques around bicolored points.

Thinking about remaining 3q vertices and using the mapping in Figure 4, we
obtain a feasible solution for planar 3dm.

Consequently, we obtain the following theorem.

Theorem 11. The 3-dimensional assignment problem minimizing the squared er-
rors defined by subsets V1, V2, V3 ⊆ Qd satisfying |V1| = |V2| = |V3| = n and d ≥ 2
is NP-hard.

C. A Decomposition Algorithm

In this section, we describe an efficient algorithm for representing a fractional solu-
tion of assignment problem (a doubly stochastic matrix) by a convex combination
of integer solutions (permutation matrices), which appears in Step 1 of Procedure 1
and Step 3 of Algorithm 2.

Given two n-sets U and V , G = (U, V ;E) denotes a complete bipartite graph
where E := {{u, v} | u ∈ U, v ∈ V }. For any vector x ∈ RE and an edge {u, v} ∈ E,
we denote the element x({u, v}) by x(u, v) for short. For any x ∈ RE

+, we define an
edge subset E(x) by {e ∈ E | x(e) > 0}. Also we denote the characteristic vector
of E′ ⊆ E as χ(E′), that is, χ(E′)(e) = 1 if e ∈ E′ and χ(E′)(e) = 0 if e /∈ E′. The
assignment polytope of G is defined as{

x̃ ∈ RE
+ |
∑

u∈U x̃(u, v) = 1 (∀v ∈ V ),
∑

v∈V x̃(u, v) = 1 (∀u ∈ U)
}

.

For any (fractional) vector x0 in the assignment polytope of G, Hall’s theorem
(e.g. [21: p. 379]) says that the bipartite graph (U, V ;E(x0)) has at least one perfect
matching. Besides, we can refer to more general statement.
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Proposition 12. For every constant c > 0, and for every vector x in the set{
x̃ ∈ RE

+ |
∑

u∈U x̃(u, v) = c (∀v ∈ V ),
∑

v∈V x̃(u, v) = c (∀u ∈ U)
}

,

the bipartite graph (U, V ;E(x)) has at least one perfect matching.

Not only we can find one perfect matching in the graph (U, V ;E(x0)), but also
we can represent the vector x0 by a convex combination of characteristic vectors of
perfect matchings in (U, V,E(x0)) according to Birkhoff–von Neumann’s theorem [3,
15] and/or integrality of assignment polytopes. Näıvely, we can obtain a convex-
combination representation by the following algorithm.

Algorithm 13.

t← 1;
while E(xt−1) 6= ∅ do

begin (comment: we call the following block as t-th iteration)
find a perfect matching Mt of the bipartite graph (U, V ;E(xt−1));
λ(Mt)← min{x(e) | e ∈Mt};
xt ← xt−1 − λ(Mt)χ(Mt);
t← t + 1

end;
T ← t− 1;
return the representation x0 =

∑T
t=1 λ(Mt)χ(Mt).

For each iteration, there is a perfect matching in (U, V ;E(xt−1)), according to
Proposition 12.

Initially the bipartite graph (U, V ;E(x0)) has |E(x0)| = O(n2) edges. At t-
th iteration, nonempty edge set {e ∈ Mt | x(e) = λ(Mt)} is removed. Thus the
total number of iterations is bounded by O(n2). In each iteration, Hopcroft–Karp’s
algorithm finds a perfect matching in O(n2.5) time [14] and other operations require
O(n2) time. Therefore, the time complexity of Algorithm 13 is bounded by O(n4.5).

The following algorithm reduces the computational time to O(n4).

Algorithm 14.

t← 1, M ′
0 ← ∅;

while E(xt−1) 6= ∅ do
begin (comment: we call the following block as t-th iteration)

using the bipartite graph (U, V ;E(xt−1)) and the matching M ′
t−1, find a

perfect matching Mt by the augmenting-path method;
λ(Mt)← min{x(e) | e ∈Mt};
xt ← xt−1 − λ(Mt)χ(Mt);
M ′

t ←Mt ∩ E(xt);
t← t + 1

end;
T ← t− 1;
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return the representation x0 =
∑T

t=1 λ(Mt)χ(Mt).

According to Proposition 12, (U, V ;E(xt−1)) has a perfect matching.
The augmenting-path method increases the cardinality of matching by exactly

one in O(n2) time (see [21: pp. 263–264], for example). We should estimate how
many times we execute the augmenting-path method totally. When t = 1, because
we need to produce a perfect matching from the empty set, we apply the augmenting-
path method n times. Between t = 2 and T , we need to supply edges at t-th iteration
as many as the edges lost on making M ′

t−1 from Mt−1. The number of lost edges is
equal to |{e ∈ Mt−1 | x(e) = λ(Mt−1)}| = |E(xt−2)| − |E(xt−1)|. By summing up
the required number of executions of the augmenting-path method from t = 2 to T ,
we obtain that

T∑
t=2

(|E(xt−2)| − |E(xt−1)|) = |E(x0)| − |E(xT−1)| ≤ |E(x0)| = O(n2).

From the above, we call the augmenting-path method O(n2) times through the
algorithm. Except for the augmenting-path method step, procedures require at
most O(n2) time for each iteration and the total number of iterations is bounded
by O(n2). Consequently, Algorithm 14 requires O(n4) time.
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