
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

Fractional Packing in Ideal Clutters

Yuji MATSUOKA

(Communicated by Satoru IWATA)

METR 2007–04 January 2007

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.i.u-tokyo.ac.jp/edu/course/mi/index e.shtml

The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.

Fractional Packing in Ideal Clutters ∗

Yuji MATSUOKA

Department of Mathematical Informatics
Graduate School of Information Science and Technology

The University of Tokyo
and

Research Institute for Mathematical Sciences
Kyoto University

yuji matsuoka@mist.i.u-tokyo.ac.jp

Abstract

This paper presents a generic scheme for fractional packing in ideal
clutters. Consider an ideal clutter with a nonnegative capacity function
on its vertices. It follows from ideality that for any nonnegative capac-
ity the total multiplicity of an optimal fractional packing is equal to
the minimum capacity of a vertex cover. Our scheme finds an optimal
packing using at most n edges with positive multiplicities, perform-
ing minimization for the clutter at most n times and minimization for
its blocker at most n2 times, where n denotes the cardinality of the
vertex set. Applied to the clutter of dijoins (directed cut covers), the
scheme provides the first combinatorial polynomial-time algorithm for
fractional packing of dijoins.

1 Introduction

Consider a hypergraph C = (V, E), where V is a finite set and E is a family of
subsets of V . An element of V is called a vertex of C and an set in E an edge
of C. Let n be the cardinality of the vertex set V . A hypergraph C = (V, E)
is called a clutter if no two sets in E are contained in each other. For a
clutter C = (V, E), the blocker of C is defined to be the clutter b(C) = (V,B)
whose edge set B is the collection of all inclusionwise minimal members of
{B ⊆ V | |B ∩ E| ≥ 1, ∀E ∈ E}. The term ‘clutter‘ was introduced by
Edmonds and Fulkerson [3]. They noticed the important duality relation
that b(b(C)) = C holds for any clutter C.

∗Preliminary version of this paper appeared in Proceedings of the 18th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), 2007, pp. 1181–1186.

1

For a clutter C = (V, E) and a nonnegative capacity function w on V , we
use τC(w) to denote the minimum capacity of a vertex cover:

τC(w) = min{w(B) |B ∈ B}.

We can characterize τC(w) by the following integer linear program:

τC(w) = min{z>w | z ∈ Zn
+, z>χE ≥ 1 for all E ∈ E},

where χE denotes the characteristic vector of E ⊆ V and Z+ denotes the
set of nonnegative integers. We use τ∗

C (w) to denote the optimal value of
the relaxed linear programming. Then we have

τ∗
C (w) = min{z>w | z ≥ 0, z>χE ≥ 1 for all E ∈ E}, (1)

where 0 denotes a vector whose components are all 0. A clutter C is called
ideal if τC(w) = τ∗

C (w) holds for any nonnegative vector w. This is equivalent
to the property that the relaxed linear program (1) has an integral optimal
solution for any nonnegative function w, or the integrality of the polyhedron

P = {z ≥ 0 | z>χE ≥ 1 for all E ∈ E}. (2)

The notion of ideality is also known as the width-length property [12] or
the Q+-max-flow min-cut property [15] (shortly the Q+-MFMC property).
Fulkerson [5, 6] showed that a clutter is ideal if and only if its blocker is
ideal.

For a clutter C = (V, E) and a nonnegative capacity function w on V , a
nonnegative vector y indexed by E ∈ E is called a packing if it satisfies the
capacity constraint: ∑

E∈E
{yE | v ∈ E} ≤ w(v),

for any vertex v ∈ V . The component yE for each edge E ∈ E is called a
multiplicity for E. A packing y is said to be integral when yE is integral for
each E ∈ E . A packing that is not necessarily integral is often refererd to as
a fractional packing. The total multiplicity of a packing y is defined by the
sum of all multiplicities:

∑
{yE |E ∈ E}. A maximum packing is a packing

with the maximum total multiplicity. The problem of finding a maximum
fractional packing can be described as

max{
∑
E∈E

yE |
∑
E∈E

yEχE ≤ w, yE ≥ 0 for all E ∈ E}, (3)

which is the dual linear program of (1). Therefore, for an ideal clutter C and
a nonnegative capacity function w, it follows from the linear programming
duality theorem that the total multiplicity of a maximum fractional packing

2

is equal to τC(w) (= τ∗
C (w)). Moreover, the ideality can be characterized by

the property that for any nonnegative capacity function the total multiplicity
of an optimal fractional packing is equal to τC(w), the minimum capacity of
a vertex cover.

We say that a clutter C has MFMC property if for any nonnegative inte-
gral capacity function the total multiplicity of an optimal integral packing
is equal to τC(w). This is equivalent to the property that the dual linear
program (3) has an integral optimal solution for any nonngative integral
vector w, or the totally dual integrality of the linear system that defines P
in (2). A clutter with MFMC property is also said to have the Z+-max-flow
min-cut property [15], shortly the Z+-MFMC property.

In this paper, we consider the fractional packing problem for ideal clut-
ters, which includes the maximum flow problem and the problem of finding
fractional packing of r-arborescences as special cases. Since our problem
can be formalized as the linear program (3), we can find an optinal solution
in polynomial time with the aid of the ellipsoid method [9], which is not
efficient in practice. For this problem, we present a combinatorial scheme,
where we assume that two oracles are given: one returns a minimum cost
edge of the clutter for a given nonnegative cost function on vertices, and
the other tells a minimum capacity edge of the blocker. Our scheme finds
an optimal packing using at most n edges with positive multiplicities, per-
forming minimization for the clutter at most n times and minimization for
its blocker at most n2 times, where n denotes the cardinality of the vertex
set. The scheme can be regarded as generalization of an algorithm for frac-
tional packing of r-arborescences proposed by Gabow and Manu [8], and an
algorithm for fractional packing of T -joins given by Barahona [1].

Applying the proposed scheme to the clutter of dijoins, we give the first
combinatorial polynomial–time algorithm for fractional packing of dijoins.
Consider a directed graph G = (N,A) with a nonnegative capacity function
w on arcs. A set of arcs K ⊆ A is called a dicut (directed cut) if K = δ−(U)
for some U with ∅ 6= U (N and δ+(U) = ∅, where δ−(U) (δ+(U)) denotes
arcs entering (leaving) U . A set of arcs J ⊆ A is called a dijoin (directed cut
cover) if it is an inclusionwise minimal arc set which intersects every dicut.

The theorem of Lucchesi–Younger [13] states that the clutter of dicuts
has MFMC property, implying that the clutter of dijoins is ideal. Hence the
capacity of a minimum dicut is equal to the total multiplicity of a maximum
fractional packing of dijoins, while Schrijver [14] showed a counterexample
where the capacity of a minimum dicut is strictly larger than the total multi-
plicity of a maximum integral packing of dijoins. By applying the algorithm
for minimum cuts proposed by Hao and Orlin [10], one can find a minimum
dicut in O(|A||N | log(|N |2/|A|)) time. Remark that this algorithm does not
yield a fractional packing of dijoins simultaneously. Efficient algorithms have

3

been developed for minimum dijoins. The first one is due to Frank [4], and
the current best complexity is O(|A||N |2) [7, 11, 17].

By applying our scheme to the clutter of dijoins, we obtain the first
polynomial-time algorithm for fractional packing of dijoins, which runs in
O(|A|3|N | log(|N |2/|A|)) time. This complexity can be further improved to
O(|A|2|N |2 + |A||N |3 log(|N |2/|A|)).

The paper is organized as follows. Section 2 provides a short review
on the theory of blocking polyhedra. Section 3 presents our scheme to
find fractional packing in ideal clutters. Section 4 gives an application of
the proposed scheme to the clutter of dijoins, and yields a combinatorial
polynomial–time algorithm for fractional packing of dijoins.

2 Preliminaries

This section provides a short review on the theory of blocking polyhedra.
See [16] for more details.

For a closed convex set P ⊆ Rn
+, we say P is of blocking type if P =

P + Rn
+. With a polyhedron P ⊆ Rn

+, we associate its blocking polyhedron

B(P) = {z ∈ Rn
+ | z>x ≥ 1 for all x ∈ P}.

Fulkerson [5, 6] showed the following important theorem.

Theorem 2.1. Let P ⊆ Rn
+ be a polyhedron of blocking type. Then B(P)

is again a polyhedron of blocking type, and B(B(P)) = P . Moreover, P =
conv{c1, . . . , cn} + Rn

+ if and only if B(P) = {z ≥ 0 | z>ci ≥ 1 for i =
1, . . . , n}.

Fulkerson [5, 6] also gave a characterization of ideal clutters in terms of
blocking polyhedra. A clutter C = (V, E), as well as its blocker b(C) = (V,B),
is ideal if and only if the polyhedra

P = {z ≥ 0 | z>χE ≥ 1 for all E ∈ E}

and
Q = {x ≥ 0 |χ>

Bx ≥ 1 for all B ∈ B}
form a pair of blocking polyhedra. Therefore, for an ideal clutter C, we have

Q = B(P) = conv+{χE |E ∈ E},

where conv+{χE |E ∈ E} denotes conv{χE |E ∈ E}+RV
+. Note that vectors

χE are exactly the extreme points of Q.
Lehman [12] gave another characterization of ideal clutters by introduc-

ing the width-length inequality. A clutter C = (V, E), as well as its blocker
b(C) = (V,B), is ideal if and only if

min{w(E) |E ∈ E} × min{l(B) |B ∈ B} ≤ l>w (4)

4

holds for any w ∈ RV
+ and any l ∈ RV

+.

We now introduce two oracles which are used as subroutines in our frac-
tional packing scheme. We use Oracle MINC (MINimization for the Clut-
ter) to denote an oracle which returns a minimum cost edge in E for a
given nonnegative cost vector l, and Oracle MINB (MINimization for the
Blocker) to denote an oracle which gives a minimum capacity edge in B
for a given nonnegative capacity vector w. Remark that Oracle MINC
corresponds to an optimization oracle for the polyhedron Q, because for a
given nonnegative cost vector l, it outputs a minimum cost edge E ∈ E
whose characteristic vector χE is a minimizer of the minimization problem
min{l>x |x ∈ Q}. On the other hand, Oracle MINB serves as a sepa-
ration oracle for the polyhedron Q. Suppose that it returns a minimum
capacity edge D ∈ B for a given nonnegative capacity vector w. If its op-
timal value w(D) is greater than or equal to 1, then w is in Q, because we
have χ>

Bw = w(B) ≥ w(D) ≥ 1 for any B ∈ B. Otherwise, {x |χ>
Dx ≥ 1} is

the hyperplane which separates w and Q, because we have χ>
Dx ≥ 1 for any

x ∈ Q while χ>
Dw = w(D) < 1 holds.

From the above observation, it is easy to see that the following lemma
holds for an ideal clutter C.

Lemma 2.2. For any nonnegative vector w with τC(w) > 0, we have

w

τC(w)
∈ Q,

where τC(w) = min{w(B) |B ∈ B}.

Note that w
τC(w) is, in fact, in some facet of Q, because we have χ>

Dw =
τC(w) for a minimum capacity edge D ∈ B. In the remainder we use τ(w),
instead of τC(w), for convenience.

3 A Fractional Packing Scheme

In this section we present a generic scheme for fractional packing in ideal
clutters.

Consider an ideal clutter C = (V, E) and a nonnegative capacity function
w on the vertex set V . Let b(C) = (V,B) be the blocker of the clutter C.
Since C is ideal, the minimum capacity τ(w) of an edge in the blocker is
equal to the total multiplicity of a maximum fractional packing, that is,

τ(w) = min{w(B) |B ∈ B}

= max{
∑
E∈E

yE |
∑
E∈E

yEχE ≤ w, yE ≥ 0 for all E ∈ E}.

5

For an edge E ∈ E , we use β(E) to denote min{w(v) | v ∈ E}. We define
the packing capacity α(E) for an edge E ∈ E as follows:

α(E) = max{0 ≤ α ≤ β(E) | τ(w − αχE) = τ(w) − α}.

Remark that this value may be zero for some edge.
This definition suggests the following greedy algorithm. Find an edge

E ∈ E and compute α(E). We then solve the fractional packing problem
recursively for the new weight function w − α(E)χE . By the definition of
α(E), the total multiplicity of an optimal packing to w − α(E)χE should
be τ(w)− α(E) Then assign α(E) to yE . The resulting packing attains the
total multiplicity τ(w).

We now discuss complexity of the algorithm. We can find an edge E ∈ E
by using Oracle MINC once for some cost function l. We can compute
α(E) by repeating Oracle MINB at most n times, as we will show in
Section 3.1. However, the number of iterations is not clear at this stage.
In order to bound the number of iterations, we introduce guidance on the
choice of the edge E, which we will describe in Section 3.3.

3.1 Computation of the Packing Capacity

In this subsection, we discuss how to compute α(E) for a given edge E ∈ E .
Suppose we are given an edge E ∈ E with β(E) > 0 and a capacity

function w with τ(w) > 0. Remark that τ(w − αχE) is a piecewise-linear
concave function in the parameter α, since it is the minimum of a finite
number of affine functions. We start by setting α = β(E). Given a value of
α, we find a minimum capacity edge B in B with respect to w − αχE . This
can be done by using Oracle MINB for w − αχE . If the optimal value
τ(w −αχE) is equal to τ(w)−α, then α(E) is equal to the current value of
α. Otherwise, we apply the following lemma.

Lemma 3.1. If τ(w − αχE) < τ(w) − α for an edge E ∈ E and a positive
value α, then |B ∩E| > 1 holds for any minimum capacity edge B ∈ B with
respect to w − αχE.

Proof. Suppose that |B ∩ E| = 1 holds for some minimum capacity edge
B with respect to w − αχE . Then we have τ(w − αχE) = χ>

B(w − αχE) =
w(B) − α. This implies that τ(w) ≤ w(B) = τ(w − αχE) + α, which
contradicts the assumption.

Remark that we have τ(w)−α(E) = τ(w−α(E)χE) ≤ (w−α(E)χE)(B) =
w(B) − α(E)|B ∩ E|. Since |B ∩ E| > 1 by Lemma 3.1, this implies that

α(E) is at most
w(B) − τ(w)
|B ∩ E| − 1

. We replace α by this value, and repeat this

procedure. The procedure is summarized as follows:

6

§̈ ¥¦Computation of α(E)¶ ³
Input: An edge E ∈ E with β(E) > 0 and a capacity function w with

τ(w) > 0.
Output: A packing capacity α(E) and, if α(E) < β(E), a minimum

capacity edge D ∈ B with respect to w − α(E)χE satisfying
|D ∩ E| > 1.

Step 0: Compute β(E). Set α ← β(E) and D ← ∅.
Step 1: Use Oracle MINB for w−αχE to obtain a minimizer B ∈ B.
Step 2: If (w − αχE)(B) < τ(w) − α, then replace D by B and α by

w(B) − τ(w)
|B ∩ E| − 1

. Go back to Step 1.

Step 3: Return α. If α < β(E), then return D.µ ´
Since at each iteration the value |B ∩ E| decreases by at least one, the

procedure requires at most n (= |V |) iterations. Thus we have the following
lemma:

Lemma 3.2. If α(E) = β(E), the procedure requires one computation of
Oracle MINB. Otherwise, it requires at most n computations of Oracle
MINB.

3.2 Polyhedral Characterization of the Packing Capacity

In this subsection, we introduce the blocking polyhedron Q and characterize
the case where the packing capacity α(E) is equal to τ(w).

We use w̃(λ) to denote the externally dividing point of w
τ(w) and χE

defined by

w̃(λ) =
w

τ(w) − λχE

1 − λ

for each λ with 0 ≤ λ < 1. Then the packing capacity α(E) is characterized
as follows.

Lemma 3.3. For any edge E ∈ E with β(E) > 0 and any capacity function
w with τ(w) > 0, we have

α(E)
τ(w)

= sup{λ | 0 ≤ λ < 1, w̃(λ) ∈ Q}.

7

Proof. This follows from the following equations:

α(E) = max{α | 0 ≤ α ≤ β(E), τ(w − αχE) = τ(w) − α}
= max{α | 0 ≤ α ≤ τ(w), w − αχE ≥ 0, τ(w − αχE) = τ(w) − α}
= max{α | 0 ≤ α ≤ τ(w), w − αχE ≥ 0, χ>

B(w − αχE) ≥ τ(w) − α

for all B ∈ B}

= sup{α | 0 ≤ α < τ(w),
w − αχE

τ(w) − α
∈ Q}

= τ(w) × sup{λ | 0 ≤ λ < 1, w̃(λ) ∈ Q},

where in the last equality we let λ = α
τ(w) .

Consider the case where α(E) = τ(w) holds. In this case, we can finish
the algorithm by assigning α(E) to yE . The following corollary gives the
condition when this case occurs.

Corollary 3.4. For any edge E ∈ E with β(E) > 0 and any capacity func-
tion w with τ(w) > 0, we have α(E) = τ(w) if and only if χE ≤ w

τ(w)
holds.

Proof. Suppose that we have α(E) = τ(w), then we have w
τ(w) − λχE ≥ 0

for any λ in 0 ≤ λ < 1 by using Lemma 3.3. This implies χE ≤ w
τ(w) .

Conversely, if χE ≤ w
τ(w) , then χE ≤ w

τ(w) ≤ w̃(λ) holds for any λ in
0 ≤ λ < 1, which implies α(E) = τ(w).

3.3 A Packing Algorithm

This subsection provides guidance on the choice of edges, and presents our
scheme for fractional packing.

For a vertex set W ⊆ V and an edge set D ⊆ B, we define a face F (W,D)
of Q as

F (W,D) = {x ∈ Q |x(v) = 0, for all v ∈ W and χ>
Dx = 1, for all D ∈ D}.

Remark that F (W,D) may be empty for some W ⊆ V and D ⊆ B. In the
algorithm we keep F (W,D) so that w

τ(w) ∈ F (W,D), and choose a vector χE

from F (W,D).
We now describe our algorithm. We start the algorithm by initializing

variables: D ← ∅ and W ← {v ∈ V |w(v) = 0}. First, find a minimum
cost edge E ∈ E for the cost function l = χW +

∑
D∈D χD. This can be

done by using Oracle MINC for l. Next, we compute α(E) for E and
assign α(E) to the multiplicity yE . If α(E) < β(E), then the procedure of
computing α(E) returns a minimum capacity edge D ∈ B with respect to
w − α(E)χE satisfying |D ∩ E| > 1. Finally, replace w by w − α(E)χE and

8

update F (W,D). If α(E) = β(E), then replace W by {v ∈ V |w(v) = 0}.
Otherwise, add D to D. Repeat this procedure until τ(w) is equal to zero.

The algorithm is summarized as follows.

§̈ ¥¦Fractional Packing in Ideal Clutters¶ ³
Input: A nonnegative capacity function w.
Output: A maximum fractional packing y.
Assumption: Oracle MINC and Oracle MINB are given.

Step 0: (Initialization)
Set D ← ∅ and W ← {v ∈ V |w(v) = 0}.

Step 1: (Finding a vertex χE in a face F (W,D))
Use Oracle MINC for l = χW +

∑
D∈D χD to obtain a

minimum cost edge E ∈ E .
Step 2: (Computation of α(E))

Compute α(E) and assign α(E) to yE .
If α(E) < β(E), we obtain a minimum capacity edge D ∈ D
with respect to w − α(E)χE satisfying |D ∩ E| > 1.

Step 3: (Updating w and F (W,D))
Replace w by w − α(E)χE . If α(E) = β(E), then replace W
by {v ∈ V |w(v) = 0}. Otherwise, add D to D.

Step 4: If τ(w) = 0, then return y. Otherwise, go back to Step 1.µ ´
To prove the validity of the algorithm, we show the following two lemmas:

Lemma 3.5. At any point of the algorithm, we have w(D) = τ(w) for any
D ∈ D.

Proof. Suppose that before Step 3 we have w(D) = τ(w) for any D ∈ D.
From the definition of τ , we have for any B ∈ B,

τ(w) − α(E) = τ(w − α(E)χE) ≤ (w − α(E)χE)(B)
= w(B) − α(E)|B ∩ E| ≤ w(B) − α(E),

where the last inequality follows from |B ∩ E| ≥ 1. Then for any D ∈ D, it
holds that τ(w − α(E)χE) = (w − α(E)χE)(D), because we have w(D) =
τ(w).

A new edge D ∈ B added to D in Step 3 is a minimum capacity edge for
the replaced w, which implies w(D) = τ(w).

Thus w(D) = τ(w) holds for any D ∈ D after execution of Step 3.

From this lemma we have w
τ(w) ∈ F (W,D) throughout the algorithm,

which implies that F (W,D) is not empty.

9

Lemma 3.6. For any W ⊆ V and any D ⊆ B, let E ∈ E be a minimum
cost edge with respect to l = χW +

∑
D∈D χD. If F (W,D) is not empty, then

χE is in the face F (W,D).

Proof. Since |D ∩ E| ≥ 1 for all D ∈ D ⊆ B, we have

l(E) = |W ∩ E| +
∑
D∈D

|D ∩ E| ≥
∑
D∈D

|D ∩ E| ≥ |D|.

On the other hand, by using Lehman’s width-length inequality (4) for a
minimum cost edge E ∈ E , we have

τ(w) × l(E) ≤ l>w = w(W) +
∑
D∈D

w(D) =
∑
D∈D

w(D) = τ(w) × |D|,

where the last equality follows from Lemma 3.5. Since we have τ(w) > 0
in the algorithm, these inequalities implies that l(E) = |D|. Therefore,
W ∩ E = ∅ and |D ∩ E| = 1 for all D ∈ D, which imply χE ∈ F (W,D).

Remark that χE ∈ F (W,D) implies that β(E) > 0 holds, because
χE(v) = 0 for all v ∈ W and w(v) > 0 for all v ∈ E. This lemma also
follows from the observation that −l is in the relative interior of the nor-
mal cone of the face F (W,D). Hence in the scheme we may choose l to be∑

v∈W γvχv +
∑

D∈D γDχD for arbitrary positive values γv and γD. Note
that χE is, in fact, an extreme point of F (W,D), but we do not use this
property in our algorithm.

For complexity of the algorithm, we have the following lemma.

Lemma 3.7. The dimension of F (W,D) decreases by at least one in each
iteration.

Proof. By Lemma 3.6, we have χE ∈ F (W,D) before updating F (W,D). If
α(E) = β(E), there exists at least one vertex v ∈ V with w(v) > 0 such that
packing of E makes w(v) zero. Hence we have χE /∈ F (W,D) after enlarging
W . Otherwise (α(E) < β(E)), we have a minimum capacity edge D in B
satisfying |D ∩ E| > 1. After adding D to D, we have χE /∈ F (W,D).

Consider the case where the dimension of F (W,D) is equal to 0. Then
we can describe F (W,D) as {χE} for some edge E ∈ E . Therefore, in Step
1 we obtain E as the unique minimizer of Oracle MINC, and in Step 2 we
have α(E) = τ(w) from Corollary 3.4, which leads to the termination of the
algorithm.

Lemma 3.7 implies that the number of iterations is at most n, which
together with Lemma 3.2 gives the following theorem on the running time
of our algorithm.

10

Theorem 3.8. For an ideal clutter C, our scheme finds an optimal fractional
packing of edges in E, performing at most n computations of Oracle MINC
and at most n2 computations of Oracle MINB.

As a consequence, we have the following bound on the number of edges
with positive multiplicities.

Corollary 3.9. For an ideal clutter C = (V, E) with |V | = n, there exists
an optimal fractional packing of at most n edges with positive multiplicities.

4 Application — Fractional Packing of Dijoins

Consider a directed graph G = (N,A) with a nonnegative capacity function
w on arcs.

The clutter of dijoins is ideal, because the theorem of Lucchesi–Younger
[13] states that the clutter of dicuts has MFMC property. We can compute
a minimum capacity dicut in time O(|A||N | log(|N |2/|A|)). On the other
hand, we can find a minimum cost dijoin in time O(|A||N |2). Remark that
most algorithms for minimum cost dijoins do not necessarily return minimal
arc sets as optimal solutions, and we can compute a minimal arc set with-
out violating optimality by removing some arcs. This can be done in time
O(|A||N |).

Therefore, by applying our scheme to the clutter of dijoins, we have a
combinatorial polynomial-time algorithm for fractional packing of dijoins,
which runs in time O(|A|3|N | log(|N |2/|A|)). The obtained fractional pack-
ing uses at most |A| distinct dijoins.

We now improve the complexity of the algorithm by giving better bound
on the number of oracle calls to find minimum capacity dicuts. Consider
the case where α(E) = β(E) holds. This case occurs at most |N | times, and
each computation of α(E) requires one call. Consider the other case. We
can compute α(E) by at most |N | calls, because we have |E| ≤ |N | − 1 for
any dijoin E. Furthermore, this case occurs at most 4|N |−2 times, because
we can represent minimum capacity dicuts in D as a cross-free family and
this implies |D| ≤ 4|N | − 2.

Thus, the number of oracle calls to compute minimum capacity dicuts is
O(|N |2). On the other hand, the number of oracle calls to compute minimum
cost dijoins is O(|A|). The total running time is as follows.

Theorem 4.1. Our algorithm applied to the clutter of dijoins runs in O(|A|2|N |2+
|A||N |3 log(|N |2/|A|)) time.

5 Conclusions

This paper has presented a generic scheme for fractional packing in ideal
clutters. Our scheme finds an optimal packing of at most n edges with

11

positive multiplicities, performing minimization for the clutter at most n
times and minimization for the blocker at most n2 times, where n denotes the
cardinality of the vertex set. Applied to the clutter of dijoins (directed cut
covers), the scheme yields the first combinatorial polynomial-time algorithm
for fractional packing of dijoins.

Acknowledgement

I am very grateful to Satoru Iwata for valuable discussions and useful com-
ments throughout my research.

References

[1] F. Barahona: Fractional packing of T -joins. SIAM Journal on Discrete
Mathematics, 17, 2004, pp. 661–669.

[2] G. Cornuéjols: Combinatorial Optimization — Packing and Covering.
SIAM, Philadelphia, Pennsylvania, 2001.

[3] J. Edmonds and D. R. Fulkerson: Bottleneck extrema. Journal of Com-
binatorial Theory, 8, 1970, pp. 299–306.

[4] A. Frank: How to make a digraph strongly connected. Combinatorica,
1, 1981, pp. 145–153.

[5] D. R. Fulkerson: Blocking polyhedra. In Graph Theory and Its Appli-
cations (Proceedings Advanced Seminar Madison, Wisconsin, 1969; B.
Harris, ed.), Academic Press, New York, 1970, pp. 93–112.

[6] D. R. Fulkerson: Blocking and anti-blocking pairs polyhedra. Mathe-
matical Programming, 1, 1971, pp. 168–194.

[7] H. N. Gabow: Centroids, representations, and submodular flows. Jour-
nal of Algorithms, 18, 1995, pp.586–628.

[8] H. N. Gabow and K. S. Manu: Packing algorithms for arborescences
(and spaninng trees) in capacitated graphs. Mathematical Program-
ming, 82, 1998, pp. 83–109.

[9] M. Grötschel, L. Lovász, and A. Schrijver: Geometric Algorithms and
Combinatorial Optimization. Springer, Berlin, 1988.

[10] J. Hao and J. B. Orlin: A faster algorithm for finding the minimum cut
in a directed graph. Journal of Algorithms, 17, 1994, pp. 424–446.

[11] S. Iwata and Y. Kobayashi: An algorithm for minimum cost arc-
connectivity orientations. METR 2005-16, University of Tokyo, 2005.

12

[12] A. Lehman: On the width-length inequaity. Mathematical Program-
ming, 17, 1979, pp. 403–417.

[13] C. L. Lucchesi and D. H. Younger: A minimax theorem for directed
graphs. The Journal of the London Mathematical Society (2), 17, 1978,
pp. 369–374.

[14] A. Schrijver: A counterexample to a conjecture of Edmonds and Giles.
Discrete Mathematics, 32, 1980, pp. 213–214.

[15] A. Schrijver: Min–max results in combinatorial optimization. In Mathe-
matical Programming — The State of the Art (Bonn, 1982; A. Bachem,
M. Gtötschel, B. Korte, eds.), Springer, Berlin, 1983, pp. 439–500.

[16] A. Schrijver: Combinatorial Optimization — Polyhedra and Efficiency.
Springer, Berlin, 2003.

[17] F. B. Shepherd and A. Vetta: Visualizing, finding and packing dijoins.
In Graph Theory and Combinatorial Optimization GERAD 25th An-
niversary Volumes, Springer, 2003, pp. 1–36.

13

