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Abstract

In this paper, we investigate the deductive inference for interiors
and exteriors of Horn knowledge bases, where the interiors and exte-
riors were introduced by Makino and Ibaraki [11] to study stability
properties of knowledge bases. We present a linear time algorithm for
the deduction for the interiors and show that it is co-NP-complete for
the deduction for the exteriors. Under model-based representation, we
show that both the deduction problems are intractable. As for Horn
envelopes of the exteriors, we show that it is linearly solvable under
model-based representation, while it is co-NP-complete under formula-
based representation. We also discuss polynomially solvable cases for
all the intractable problems.

1 Introduction

Knowledge-based systems are commonly used to store the sentences as our
knowledge for the purpose of having automated reasoning such as deduction
applied to them (see e.g., [1]). Deductive inference is a fundamental mode
of reasoning, and usually abstracted as follows: Given the knowledge base
KB, assumed to capture our knowledge about the domain in question, and a
query χ that is assumed to capture the situation at hand, decide whetherKB
implies χ, denoted by KB |= χ, which can be understood as the question:
“Is χ consistent with the current state of knowledge ?”

In this paper, we consider the interiors and exteriors of knowledge base.
Formally, for a given positive integer α, the α-interior of KB, denoted by
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σ−α(KB), is a knowledge that consists of the models (or assignments) v
satisfying that the α-neighbors of v are all models of KB, and the α-exterior
of KB, denoted by σα(KB), is a knowledge that consists of the models v
satisfying that at least one of the α-neighbors of v is a model of KB [11].
Intuitively, the interior consists of the models v that strongly satisfy KB,
since all neighbors of v are models of KB, while the exterior consists of the
models v that weakly satisfy KB, since at least one of the α-neighbors of v
is a model of KB. Here we note that v might not satisfy KB, even if we say
that it weakly satisfies KB. As mentioned in [11], the interiors and exteriors
of knowledge base merit study in their own right, since they shed light on
the structure of knowledge base. Moreover, let us consider the situation in
which knowledge base KB is not perfect in the sense that some sentences in
KB are wrong and/or some are missing in KB. In this case, we may make
use of the interiors and/or exteriors to be on safe side.

Main problems considered. In this paper, we study the deductive In-
ference for the interiors and exteriors of propositional Horn theories, where
Horn theories are ubiquitous in Computer Science, cf. [13], and are of par-
ticular relevance in Artificial Intelligence and Databases. It is known
that important reasoning problems like deductive inference and satisfiabil-
ity checking, which are intractable for arbitrary propositional theories, are
solvable in linear time for Horn theories (cf. [3]).

More precisely, we address the following problems:

• Given a Horn theory Σ, a clause c, and nonnegative integer α, we
consider the problems of deciding if deductive queries hold for the α-interior
and exterior of Σ, i.e., σ−α(Σ) |= c and σα(Σ) |= c. It is well-known [3]
that a deductive query for a Horn theory can be answered in linear time.
Note that it is intractable to construct the interior and exterior for a Horn
theory [11, 12], and hence a direct method (i.e., first construct the interior
(or exterior) and then check a deductive query) is not possible efficiently.

• We contrast traditional formula-based (syntactic) with model-based (se-
mantic) representation of Horn theories. The latter form of representation
has been proposed as an alternative form of representing and accessing a
logical knowledge base, cf. [2, 4, 5, 7, 8, 6, 9, 10]. In model-based reasoning,
Σ is represented by a subset of its models M, which are commonly called
characteristic models. As shown by Kautz et al. [7], the deductive inference
can be done in polynomial time, given its characteristic models.

• Finally, we consider Horn approximations for the exteriors of Horn the-
ories. Note that the interiors of Horn theories are Horn, while the exteriors
might not be Horn. We deal with the least upper bounds, called the Horn
envelopes [15], for the exteriors of Horn theories.
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Main results. We investigate the problems mentioned above from an algo-
rithmical viewpoint, and find answers to all of them. Our main results can
be summarized as follows (see Figure 1).

• We present a linear time algorithm for the deduction for the interiors of
a given Horn theory, and show that it is co-NP-complete for the deduction
for the exteriors. Thus, the positive result for ordinary deduction for Horn
theories extends to the interiors, but does not to the exteriors. We also show
that the deduction for the exteriors is possible in polynomial time, if α is
bounded by a constant or if |N(c)| is bounded by a logarithm of the input
size, where N(c) corresponds to the set of negative literals in c.

• Under model-based representation, we show that the consistency prob-
lem for the interiors of Horn theories is co-NP-hard. This implies that the
deduction for the interiors is NP-hard, where it is currently open if the
problem belong to NP. As for the exteriors, we show that the deduction is
co-NP-complete. We also show that the deduction for the interiors is pos-
sible in polynomial time if α is bounded by a constant, and so is for the
exteriors, if α or |P (c)| is bounded by a constant, or if |N(c)| is bounded by
a logarithm of the input size, where P (c) corresponds to the set of positive
literals in c.

• As for Horn envelopes of the exteriors of Horn theories, we show that
it is linearly solvable under model-based representation, while it is co-NP-
complete under formula-based representation. The former contracts to the
negative result for the exteriors. We also present a polynomial algorithm
for formula-based representation, if α is bounded by a constant or if |N(c)|
is bounded by a logarithm of the input size.

The rest of the paper is organized as follows. In the next section, we
review the basic concepts and fix notations. Sections 3 and 4 investigate the
deductive inference for the interiors and exteriors of Horn theories. Section
5 considers the deductive inference for the envelopes of the exteriors of Horn
theories.

2 Preliminaries

Horn Theories

We assume a standard propositional language with atoms At = {x1, x2, . . . ,
xn}, where each xi takes either value 1 (true) or 0 (false). A literal is either
an atom xi or its negation, which we denote by xi. The opposite of a literal
` is denoted by `, and the opposite of a set of literals L by L = {` | ` ∈ A}.
Furthermore, Lit = At ∪ At denotes the set of all literals.
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Interiors Exteriors Envelopes of Exteriors

Formula-Based
P co-NP-complete? co-NP-complete?

Representation

Model-Based
NP-hard† co-NP-complete‡ P

Representation

?: It is polynomially solvable, if α = O(1) or |N(c)| = O(log ‖Σ‖).

†: It is polynomially solvable, if α = O(1).

‡: It is polynomially solvable, if α = O(1), |P (c)| = O(1), or |N(c)| =
O(log n|char(Σ)|).

Figure 1: Complexity of the deduction problems for the interiors and exte-
riors of Horn theories

A clause is a disjunction c =
∨

i∈P (c) xi ∨
∨

i∈N(c) xi of literals, where
P (c) and N(c) are the sets of indices whose corresponding variables occur
positively and negatively in c and P (c) ∩ N(c) = ∅. Dually, a term is
conjunction t =

∧

i∈P (t) xi ∧
∧

i∈N(t) xi of literals, where P (t) and N(t) are
similarly defined. We also view clauses and terms as sets of literals. A
conjunctive normal form (CNF) is a conjunction of clauses. A clause c is
Horn, if |P (c)| ≤ 1. A theory Σ is any set of formulas; it is Horn, if it is
a set of Horn clauses. As usual, we identify Σ with ϕ =

∧

c∈Σ c, and write
c ∈ ϕ etc. It is known [3] that the deductive query for a Horn theory, i.e.,
deciding if Σ |= c for a clause c is possible in linear time.

We recall that Horn theories have a well-known semantic characteriza-
tion. A model is a vector v ∈ {0, 1}n, whose i-th component is denoted by
vi. For a model v, let ON(v) = {i | vi = 1} and OFF (v) = {i | vi = 0}.
The value of a formula ϕ on a model v, denoted ϕ(v), is inductively defined
as usual; satisfaction of ϕ in v, i.e., ϕ(v) = 1, will be denoted by v |= ϕ.
The set of models of a formula ϕ (resp., theory Σ), denoted by mod(ϕ)
(resp., mod(Σ)), and logical consequence ϕ |= ψ (resp., Σ |= ψ) are defined
as usual. For two models v and w, we denote by v ≤ w the usual compo-
nentwise ordering, i.e., vi ≤ wi for all i = 1, 2, . . . , n, where 0 ≤ 1; v < w
means v 6= w and v ≤ w. Denote by v

∧

w componentwise AND of models
v, w ∈ {0, 1}n, and by Cl∧(M) the closure of M ⊆ {0, 1}n under

∧

. Then,
a theory Σ is Horn representable if and only if mod(Σ) = Cl∧(mod(Σ)) (see
[2, 9]) for proofs).

Example 1 Consider M1 = {(0101), (1001), (1000)} and M2 = {(0101),
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(1001), (1000), (0001), (0000)}. Then, for v = (0101), w = (1000), we have
w, v ∈ M1, while v

∧

w = (0000) /∈ M1; hence M1 is not the set of models
of a Horn theory. On the other hand, Cl∧(M2) = M2, thus M2 = mod(Σ)
for some Horn theory Σ.

As discussed by Kautz et al. [7], a Horn theory Σ is semantically repre-
sented by its characteristic models, where v ∈ mod(Σ) is called characteristic
(or extreme [2]), if v 6∈ Cl∧(mod(Σ) \ {v}). The set of all such models, the
characteristic set of Σ, is denoted by char(Σ). Note that char(Σ) is unique.
E.g., (0101) ∈ char(Σ2), while (0000) /∈ char(Σ2); we have char(Σ2) = M1.

It is known [7] that the deductive query for a Horn theory Σ from the
characteristic set char(Σ) is possible in linear time, i.e., O(n|char(Σ)|) time.

Interior and Exterior of Theories

For a model v ∈ {0, 1}n and a nonnegative integer α, its α-neighborhood is
defined by

Nα(v) = {w ∈ {0, 1}n |‖ w − v ‖≤ α},

where ‖ v ‖ denotes
∑n

i=1 |vi|. For a theory Σ and a nonnegative integer
α, the α-interior and α-exterior of Σ, denoted by σ−α(Σ) and σα(Σ) respec-
tively, are theories defined by

mod(σ−α(Σ)) = {v ∈ {0, 1}n | Nα(v) ⊆ mod(Σ)} (1)

mod(σα(Σ)) = {v ∈ {0, 1}n | Nα(v) ∩mod(Σ) 6= ∅}. (2)

By definition, σ0(Σ) = σ, σα(Σ) |= σβ(Σ) for integers α and β with α < β,
and σα(Σ1) |= σα(Σ2) holds for any integer α, if two theories Σ1 and Σ2

satisfy Σ1 |= Σ2.

Example 2 Let us consider a Horn theory Σ = {x1 ∨ x3, x2 ∨ x3, x2 ∨ x4}
of 4 variables, where mod(Σ) is given by

mod(Σ) = {(1111), (1011), (1010), (0111), (0011), (0010), (0001), (0000)}

(See Figure 2). Then we have σα(Σ) = {∅} for α ≤ −2, {x1, x2, x3, x4} for
α = −1, Σ for α = 0, {x1 ∨ x2 ∨ x3 ∨ x4} for α = 1, and ∅ for α ≥ 2.
For example, (0011) is the unique model of mod(σ−1(Σ)), since N1(0011) ⊆
mod(Σ) and N1(v) 6⊆ mod(Σ) holds for all the other models v. For the 1-
exterior, we can see that all models v with (x1 ∨ x2 ∨ x3 ∨ x4)(v) = 1 satisfy
N1(v) ∩ mod(Σ) 6= ∅, and no other such model exists. For example, (0101)
is a model of σ1(Σ), since (0111) ∈ N1(0101)∩mod(Σ). On the other hand,
(1100) is not a model of σ1(Σ), since N1(1100) ∩ mod(Σ) = ∅. Notice that
σ−1(Σ) is Horn, while σ1(Σ) is not.
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σ0(Σ)=Σ

σ−1(Σ)

σ1(Σ)

1111

1110 1101 1011 0111

0000

1000 0100 0010 0001

1100 1010 0101 001110010110

Figure 2: A Horn theory and its interiors and exteriors

Makino and Ibaraki [11] introduced the interiors and exteriors to analyze
stability of Boolean functions, and studied their basic properties and com-
plexity issues on them (see also [12]). For example, it is known [11] that, for
a theory Σ and nonnegative integers α and β, σ−α(σ−β(Σ)) = σ−α−β(Σ),
σα(σβ(Σ)) = σα+β(Σ), and

σα(σ−β(Σ)) |= σα−β(Σ) |= σ−β(σα(Σ)). (3)

For a nonnegative integer α and two theories Σ1 and Σ2, we have

σ−α(Σ1 ∪ Σ2) = σ−α(Σ1) ∪ σ−α(Σ2) (4)

σα(Σ1 ∪ Σ2) |= σα(Σ1) ∪ σα(Σ2), (5)

where σα(Σ1 ∪ Σ2) 6= σα(Σ1) ∪ σα(Σ2) holds in general.
As demonstrated in Example 2, it is not difficult to see that the interiors

of any Horn theory are Horn, which is, for example, proved by (4) and
Lemma 1, while the exteriors might be not Horn.

3 Deductive Inference from Horn Theories

In this section, we investigate the deductive inference for the interiors and
exteriors of a given Horn theory.
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3.1 Interiors

Let us first consider the deduction for the α-interiors of a Horn theory: Given
a Horn theory Σ, a clause c, and a positive integer α, decide if σ−α(Σ) |= c
holds. We show that the problem is solvable in linear time after showing a
series of lemmas.

The following lemma is a basic properties of the interiors.

Lemma 1 Let c be a clause. Then for a nonnegative integer α, we have
σ−α(c) =

∨

S⊆c:
|S|=α+1

(
∧

`∈S `
)

=
∧

S⊆c:
|S|=|c|−α

(
∨

`∈S `
)

.

This, together with (4), implies that for a CNF ϕ and a nonnegative integer
α, we have

σ−α(ϕ) =
∧

c∈ϕ

(

∨

S⊆c:
|S|=α+1

(

∧

`∈S

`
)

)

=
∧

c∈ϕ

(

∧

S⊆c:
|S|=|c|−α

(

∨

`∈S

`
)

)

,

where we regard c as a set of literals.

Lemma 2 Let Σ be a Horn theory, and let c be a clause. For a nonnegative
integer α, if there exists a clause d ∈ Σ such that |N(d) \ N(c)| ≤ α− 1 or
(|N(d) \N(c)| = α and P (d) ⊆ P (c)), then we have σ−α(Σ) |= c.

Proof. If Σ has a clause d that satisfies |N(d) \ N(c)| ≤ α − 1, then
|(N(d) \ N(c)) ∪ P (d)| ≤ α holds. Thus by Lemma 1, we have σ−α(d) |=
∨

i∈N(c)∩N(d) xi |= c. Therefore, by (4), σ−α(Σ) |= c holds.
On the other hand, if Σ has a clause d such that |N(d) \ N(c)| = α

and P (d) ⊆ P (c), then by Lemma 1, we have σ−α(d) |=
∨

i∈P (c) xi ∨
∨

i∈N(c)∩N(d) xi |= c. Therefore, by (4), σ−α(Σ) |= c holds. 2

Lemma 3 Let Σ be a Horn theory, and let c be a clause. For a nonnegative
integer α, if (i) |N(d) \ N(c)| ≥ α holds for all d ∈ Σ and (ii) ∅ 6= P (d) ⊆
N(c) holds for all d ∈ Σ with |N(d) \N(c)| = α, then we have σ−α(Σ) 6|= c.

Proof. Let v be the unique minimal model that does not satisfy c, i.e.,
vi = 1 if xi ∈ c and 0, otherwise. We show that v |= σ−α(Σ), which implies
σ−α(Σ) 6|= c.

Let d be a clause in Σ with |N(d) \ N(c)| ≥ α + 1, and let t be a term
obtained by conjuncting arbitrary α + 1 literals in N(d) \ N(c). Then we
have t(v) = 1 and t |= σ−α(d) by Lemma 1. On the other hand, for a clause
d in Σ with |N(d) \ N(c)| = α, let t be a term obtained by conjuncting all
literals in (N(d) \ N(c)) ∪ P (d). Then we have |t| = α + 1 and t |= σ−α(d)
by Lemma 1. Moreover, it holds that t(v) = 1 by P (d) ⊆ N(c). Therefore,
by (4), we have v |= σ−α(Σ). 2
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By Lemmas 2 and 3, we can easily answer the deductive queries, if Σ
satisfies certain conditions mentioned in them. In the remaining case, we
have the following lemma.

Lemma 4 For a Horn theory Σ that satisfies none of the conditions in
Lemmas 2 and 3, let d be a clause in Σ such that |N(d) \ N(c)| = α, and
P (d) = P (d) \ (P (c) ∪N(c)) = {j}. Then σ−α(Σ) |= c ∨ xj holds.

Proof. By Lemma 1, we have σ−α(d) |=
∨

i∈N(c)∩N(d) xi ∨ xj |= c∨ xj. This
implies σ−α(Σ) |= c ∨ xj by (4). 2

From this lemma, we have only to check a deductive query σ−α(Σ) |=
c ∨ xj , instead of σ−α(Σ) |= c. Since |c| < |c ∨ xj | ≤ n, we can answer the
deduction by checking the conditions in Lemmas 2 and 3 at most n times.

Algorithm Deduction-Interior-from-Horn-Theory

Input: A Horn theory Σ, a clause c and a nonnegative integer α.

Output: Yes, if σ−α(Σ) |= c; Otherwise, No.

Step 0. Let N := N(c) and P := P (c).

Step 1. /* Check the condition in Lemma 2. */
If there exists a clause d ∈ Σ such that |N(d) \N | ≤ α− 1 or (|N(d) \
N | = α and P (d) ⊆ P , then output Yes and halt.

Step 2. /* Check the condition in Lemma 3. */
If P (d) ⊆ N holds for all d ∈ Σ with |N(d) \N | = α, then output No
and halt.

Step 3. /* Update N by Lemma 4. */
For a clause d in Σ such that |N(d) \N | = α and P (d) = P (d) \ (P ∪
N) = {j}, update N := N ∪ {j} and return to Step 1. 2

We can see that a straightforward implementation of the algorithm re-
quires O(n(‖ Σ ‖ +|c|)) time, where ‖ Σ ‖ denotes the length of Σ, i.e.,
‖Σ‖=

∑

d∈Σ |d|. However, it is not difficult to see that we have a linear
time algorithm for the problem, if N(d) \ N for d ∈ Σ is maintained by
using the proper data structure.

Theorem 1 Given a Horn theory Σ, a clause c and a nonnegative integer
α, a deductive query σ−α(Σ) |= c can be answered in linear time, i.e., O(‖
Σ‖ +|c|) time.
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3.2 Exteriors

Let us next consider the deduction for the α-exteriors of a Horn theory. In
contract to the interior case, we have the following negative result.

Theorem 2 Given a Horn theory Σ, a clause c and a positive integer α,
it is co-NP-complete to decide whether a deductive query σα(Σ) |= c holds,
even if P (c) = ∅.

Proof. By definition, σ = α(Σ) 6|= c if and only if there exists a model v of
Σ such that some model in Nα(v) does not satisfy c. The latter is equivalent
to the condition that there exists a model v of Σ such that |ON(v)∩P (c)|+
|OFF (v) ∩N(c)| ≤ α, which can be checked in polynomial time. Thus the
problem is in co-NP.

We then show the hardness by reducing a well-known NP-complete prob-
lem Independent Set to the complement of our problem. Independent

Set is the problem of deciding if a given graph G = (V,E) has an indepen-
dent set W ⊆ V such that |W | ≥ k for a given integer k. Here we call a
subset W ⊆ V is an independent set of G if |W ∩ e| ≤ 1 for all edges e ∈ E.
For a problem instance G = (V = {1, 2, . . . , n}, E) and k of Independent

Set, let us define a Horn theory ΣG over At = {x1, x2, . . . , xn} by

ΣG = {(x̄i ∨ x̄j) | {i, j} ∈ E}.

Let c =
∨n

i=1 xi and α = n − k. Note that (11 · · · 1) is the unique model
that does not satisfy c. Thus σα(Σ) 6|= c if and only if σα(Σ)(11 · · · 1) = 1.
Since W is an independent set of G if and only if ΣG contains a model w
defined by ON(w) = W , σα(ΣG)(11 · · · 1) = 1 is equivalent to the condition
that G has an independent set of size at least k (= n− α). This completes
the proof. 2

We remark that this result can also be derived from the ones in [11].
However, by using the next lemma, a deductive query can be answered

in polynomial time, if α or N(c) is small.

Lemma 5 Let Σ1 and Σ2 be theories. For a nonnegative integer α, Then
σα(Σ1) |= Σ2 if and only if Σ1 |= σ−α(Σ2)

Proof. For the if part, if Σ1 |= σ−α(Σ2) holds, then, we have σα(Σ1) |=
σα(σ−α(Σ2)) |= Σ2 by (3). On the other hand, if σα(Σ1) |= Σ2, then we
have Σ1 |= σ−α(σα(Σ1)) |= σ−α(Σ2) by (3). 2

From Lemma 5, the deductive query for the α-interior of a theory Σ,
i.e., σα(Σ) |= c for a given clause c is equivalent to the condition that
Σ |= σ−α(c). Since we have σ−α(c) =

∧

S⊆c:
|S|=|c|−α

(
∨

`∈S `
)

by Lemma 1, the

deductive query for the α-interior can be done by checking
(|c|

α

)

deductions
for Σ. More precisely, we have the following lemma.
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Lemma 6 Let Σ be a Horn theory, let c be a clause, and α be a nonnegative
integer. Then σα(Σ) |= c holds if and only if, for each subset S of N(c) such
that |S| ≥ |N(c)| − α, at least (α − |N(c)| + |S| + 1) j’s in P (c) satisfy
Σ |=

∨

i∈S xi ∨ xj.

Proof. From Lemmas 1 and 5, we have σα(Σ) |= c if and only if Σ |=
∧

S⊆c:
|S|=|c|−α

(
∨

`∈S `
)

. It is known that for a Horn theory Σ and clause d,

Σ |= d if and only if Σ |=
∨

i∈N(d) xi ∨ xj holds for some j ∈ P (d) (i.e., All
the prime implicates of Horn theory are Horn). This proves the lemma. 2

This lemma implies that the deductive query can be answered by check-
ing the number of j’s in P (c) that satisfy Σ |=

∨

i∈S xi∨xj for each S. Since

we can check this condition in linear time and there are
∑α

p=0

(|N(c)|
p

)

such
S’s, we have the following result, which complements Theorem 2 that the
problem is intractable, even if P (c) = ∅.

Theorem 3 Let Σ be a Horn theory, let c be a clause, and let α be a non-
negative integer. Then a deductive query σα(Σ) |= c can be answered in

O
(

∑α
p=0

(

|N(c)|
p

)

‖Σ‖ +|P (c)|
)

time. In particular, it is polynomially solv-

able, if α = O(1) or |N(c)| = O(log ‖Σ‖).

4 Deductive Inference from Characteristic Sets

In this section, we consider the case when Horn knowledge bases can be
represented by characteristic sets. Different from formula-based representa-
tion, the deductions for interiors and exteriors are both intractable, unless
P=NP.

4.1 Interiors

We first present an algorithm to solve the deduction problem for the interiors
of Horn theories. This algorithm requires exponential time in general, but
it is polynomial when α is small.

Let Σ be a Horn theory given by its characteristic set char(Σ), and let
c be a clause. Then for a nonnegative integer α, we have

σ−α(Σ) |= c if and only if σ−α(Σ) ∧ c ≡ 0. (6)

Let v∗ be a unique minimal model such that c(v∗) = 0 (i.e., c(v∗) = 1). By
the definition of interiors, v∗ is a model of σ−α(Σ) if and only if all v’s in
Nα(v∗) are models of Σ. Therefore, for each model v in Nα(v∗), we check if
v ∈ mod(Σ), which is equivalent to

∧

w∈char(Σ)
w≥v

w = v. (7)
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If (7) holds for all models v in Nα(v∗), then we can immediately conclude
by (6) that σ−α(Σ) 6|= c. On the other hand, if there exists a model v in
Nα(v∗) such that (7) does not hold, let J = ON(

∧

w∈char(Σ)
w≥v

w) \ON(v). By

definition, we have J 6= ∅, and we can see that σ−α(Σ) |=
∨

i∈N(c) xi ∨ xj

for j ∈ J . Thus, if J contains an index in P (c), then we can conclude
that σ−α(Σ) |= c; Otherwise, we check the condition σ−α(Σ) |= c∨

∨

j∈J xj,
instead of σ−α(Σ) |= c. Since a new clause d = c ∨

∨

j∈J xj is longer than
c, after at most n iterations, we can answer the deductive query. Formally,
our algorithm can be described as follows.

Algorithm Deduction-Interior-from-Charset

Input: The characteristic set char(Σ) of a Horn theory Σ, a clause c and
a nonnegative integer α.

Output: Yes, if σ−α(Σ) |= c; Otherwise, No.

Step 0. Let N := N(c) and let d := c.

Step 1. Let v∗ be the unique minimal model such that d(v∗) = 0.

Step 2. For each v in Nα(v∗) do

If (7) does not hold,

then let J = ON(
∧

w∈char(Σ)
w≥v

w) \ ON(v).

If J ∩ P (c) 6= ∅, then output yes and halt.

Let N := N ∪ J and d :=
∨

i∈N(d) xi ∨
∨

i∈P (d) xi.

Go to Step 1.

end{for}

Step 3. Output No and halt. 2

Theorem 4 Given the characteristic model char(Σ) of a Horn theory Σ,
a clause c and a nonnegative integer α, a deductive query σ−α(Σ) |= c can
be answered in O(nα+2|char(Σ)|) time. In particular, it is polynomially
solvable, if α = O(1).

Proof. Since we can see algorithm Deduction-Interior-from-Charset

correctly answers a deductive query from the discussion before the descrip-
tion, we only estimate the running time of the algorithm.

Clearly, Steps 0, 1 and 3 require O(n) time. Step 2 requires O(nα+1 ·
|char(Σ)|) time, since (7) can be checked in O(n|char(Σ)|) time. Since we
have at most n iterations between Steps 1 and 2, the algorithm requires
O(nα+2|char(Σ)|) time. 2

However, in general, the problem is intractable, which contracts to the
formula-model representation.

11



Theorem 5 Given the characteristic set char(Σ) of a Horn theory Σ and a
positive integer α, it is co-NP-hard to decide whether σ−α(Σ) is consistent,
i.e., mod(σ−α(Σ)) 6= ∅.

Proof. We show the co-NP-hardness by reducing Independent Set to
our problem. Given a problem instance G = (V = {1, 2, . . . , n}, E) and k
of Independent Set, let us define a Horn theory ΣG over At = {x1, x2,
. . . , xn} by

char(ΣG) = {v(i,j), v(i,j,l) | {i, j} ∈ E, l ∈ V \ {i, j}},

where v(i,j) and v(i,j,l) are respectively the vectors defined by OFF (v(i,j)) =
{i, j} and OFF (v(i,j,l)) = {i, j, l}. Let α = n−k. Note that ΣG is a negative
theory, and hence σ−α(ΣG) is consistent if and only if (00 · · · 0) is a model of
σ−α(ΣG). Moreover, the latter condition is equivalent to the one that G has
no independent set of size at least k (= n−α). This completes the proof. 2

It is easy to see that the consistency problem for the interiors of Horn
theories is in ΣP

2 , but it is open whether the problem is ΣP
2 -complete.

This result immediately implies the following corollary.

Corollary 1 Given the characteristic set char(Σ) of a Horn theory Σ, a
clause c and a positive integer α, it is NP-hard to decide whether a deductive
query σ−α(Σ) |= c holds, even if c = ∅.

Different from the other hardness results, the hardness is not sensitive
to the size of c.

4.2 Exteriors

Let us consider the exteriors. Similarly to the formula-based representation,
we have the following negative result.

Theorem 6 Given the characteristic set char(Σ) of a Horn theory Σ, a
clause c and a positive integer α, it is co-NP-complete to decide if a deductive
query σα(Σ) |= c holds.

Proof.
From Lemmas 1 and 5, σα(Σ) 6|= c if and only if there exists a subclause

d of c such that |d| = |c|−α and Σ 6|= d. This d is a witness that the problem
belongs to co-NP.

We then show the hardness by a reduction from Vertex Cover which
is known to be NP-hard. Vertex Cover is the problem to decide if a
given graph G = (V,E) has a vertex cover U such that |U | ≤ k for a given
integer k (< n). Here U ⊆ V is called vertex cover if U ∩ e 6= ∅ holds for all
e ∈ E. For this problem instance, we construct our problem instance. For

12



each e ∈ E, let We = {e1, e2, . . . , e|V |}, and let W =
⋃

e∈E We. Let m(v),
v ∈ V , be a model over V ∪W such that

ON(m(v)) = (V \ {v}) ∪
⋃

v 6∈e

We,

and let char(Σ) be the characteristic set for some Horn theory Σ defined by
char(Σ) = {m(v) | v ∈ V }. We define c and α by

c =
∨

i∈V

xi ∨
∨

i∈W

xi and α = k,

respectively. For this instance, we show that σα(Σ) 6|= c if and only if the
corresponding G has a vertex cover U of size at most k (= α).

For the if part, let U be such a vertex cover of G. For this U , we

consider model m(U) def
=

∧

v∈U m
(v), which is a model of Σ by the intersection

property of a Horn theory. Note that m(U) does not satisfy a clause d =
∨

i∈V \U xi ∨
∨

i∈W xi. Since d is a subclause of c of length at least |c| − α,

m(U) is not a model of σ−α(c) by Lemma 1. This completes the if part by
Lemma 5.

For the only-if part, let us assume that σα(Σ) 6|= c. Then by Lemmas 1
and 5, there exists a subclause d of c such that |d| = |c|−α and Σ 6|= d. This
implies that Σ ∧ d contains a model m. By α < n, for each e ∈ E, there
exist an index j in We such that mj = 0. Since any model m′ in Σ satisfy
either m′

i = 0 or m′
i = 1 for all i ∈ We, we have mi = 0 for all i ∈ W . This

means that V \ON(m) is a vertex cover of G, and since |V \ON(m)| ≤ k,
we have the only-if part. 2

By using Lemma 6, we can see that the problem can be solved in poly-
nomial time, if α or |N(c)| is small. Namely, for each subset S of N(c) such
that |S| ≥ |N(c)| − α, let vS denotes the model such that ON(vS) = S.
Then wS =

∧

w∈char(Σ):

w≥vS

w is the unique minimal model of Σ such that

ON(wS) ⊇ S, and hence it follows from Lemma 6 that it is enough to
check if |ON(ws) ∩ P (c)| ≥ α − |N(c)| + |S| + 1. Clearly, this can be done

in in O
(

∑α
p=0

(|N(c)|
p

)

n|char(Σ)|
)

time.

Moreover, if |P (c)| is small, then the problem also become tractable,
which contrasts with Theorem 2.

Lemma 7 Let Σ be a Horn theory, let c be a clause, and α be a nonnegative
integer. Then σα(Σ) |= c holds if and only if each S ⊆ P (c) such that
|S| ≥ |P (c)| − α satisfies

|OFF (w) ∩N(c)| ≥ α− |P (c)| + |S| + 1 (8)

for all models w of Σ such that OFF (w) ∩ P (c) = S.

13



Note that (8) is monotone in the sense that, if a model w satisfies (8),
then all models v with v < w also satisfy it. Thus it is sufficient to check
if (8) holds for all maximal models w of Σ such that OFF (w) ∩ P (c) = S.
Since such maximal models w can be obtained from w(i) (i ∈ S) with i ∈
OFF (w(i)) ∩ P (c) ⊆ S by their intersection w =

∧

i∈S w
(i), we can answer

the deduction problem in O
(

n
∑|P (c)|

p=|P (c)|−α

(|P (c)|
p

)

|char(Σ)|p
)

time.

Theorem 7 Given the characteristic set char(Σ) of a Horn theory, a clause
c, and a nonnegative integer α, a deductive query σα(Σ) |= c can be answered

in O
(

nmin{
∑α

p=0

(|N(c)|
p

)

|char(Σ)|,
∑|P (c)|

p=|P (c)|−α

(|P (c)|
p

)

| · char(Σ)|p}
)

time.

In particular, it is polynomially solvable, if α = O(1), |P (c)| = O(1), or
|N(c)| = O(log n|char(Σ)|).

5 Deductive Inference for Envelopes of the Exte-

riors of Horn Theories

We have considered the deduction for the interiors and exteriors of Horn
theories. As mentioned before, the exteriors of Horn theories are also Horn,
while this does not hold for the interiors. This means that the interiors of
Horn theories might lose beneficial properties of Horn theories. One of the
ways to overcome such a hurdle is Horn Approximation, that is, approxi-
mating a theory by a Horn theory [15]. There are several methods to do
that, but one of the most natural ones is to approximate a theory by its
Horn envelope. Namely, for a theory Σ, its Horn envelope is the Horn the-
ory Σe such that mod(Σe) = Cl∧(mod(Σ)). Since Horn theories are closed
under intersection, Horn envelope is the least Horn upper bound for Σ, i.e.,
char(Σe) ⊇ char(Σ) and and there exists no Horn theory Σ∗ such that
char(Σe) ) char(Σ∗) ⊇ char(Σ). In this section, we consider the deduction
for Horn envelopes of interiors of Horn theories, i.e., σα(Σ)e |= c.

5.1 Model-Based Representations

Let us first consider the case in which knowledge bases are represented by
characteristic sets.

Proposition 1 Let Σ be a Horn theory, and let α be a nonnegative integer.
Then we have

mod(σα(Σ)e) = Cl∧(
⋃

v∈char(Σ)

Nα(v)) (9)

Proof. By definition,

mod(σα(Σ)e) = Cl∧(mod(σα(Σ))) ⊇ Cl∧(
⋃

v∈char(Σ)

Nα(v))
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holds. We then show the converse direction. Let v∗ be a model of Horn
envelope of the α-exterior, i.e., v∗ ∈ mod(σα(Σ)e). Then v∗ can be rep-
resented by v∗ =

∧

w∈W w for some W ⊆ mod(σα(Σ)). Assume that
w ∈ W is contained in Nα(u) for some model u of Σ. Since such a u
can be represented by u =

∧

z∈Sw
z for some Sw ⊆ char(Σ), w belongs to

Cl∧(
⋃

v∈Sw
Nα(v)). This, together with v∗ =

∧

w∈W w, implies that v∗ also
belongs to Cl∧(

⋃

v∈char(Σ) Nα(v)). 2

For a clause c, let v∗ be the unique minimal model such that c(v∗) = 0.
We recall that, for a Horn theory Φ,

Φ |= c if and only if c(
∧

v∈char(Φ)
v≥v∗

v) = 1. (10)

Therefore, Proposition 1 immediately implies an algorithm for the deduc-
tion for σα(Σ)e from char(Σ), since char(σα(Σ)e) ⊆

⋃

v∈char(Σ) Nα(v) holds.
However, for a general α,

⋃

v∈char(Σ) Nα(v) is exponentially larger than
char(Σ), and hence this direct method is not efficient. The following lemma
helps developing a polynomial time algorithm.

Lemma 8 Let Σ be a Horn theory, let c be a clause, and let α be a non-
negative integer. Then σα(Σ)e |= c holds if and only if the following two
conditions are satisfied.

(i) |OFF (v) ∩N(c)| ≥ α holds for all v ∈ char(Σ).

(ii) If S = {v ∈ char(Σ) | |OFF (v) ∩N(c)| = α} 6= ∅, P (c) is not covered
with OFF (v) for models v in S, i.e., P (c) 6⊆

⋃

v∈char(Σ)
|OFF (v)∩N(c)|=α

OFF (v).

Proof. To show the if part, let us first assume that (i) and (ii) in the lemma
holds. Let v be a model in char(Σ) such that |OFF (v) ∩N(c)| > α. Then
all models w in Nα(v) satisfy OFF (w) ∩ N(c) 6= ∅. Therefore, if all the
models v in char(Σ) satisfy |OFF (v) ∩ N(c)| > α, then by Proposition 1,
we have OFF (w) ∩ N(c) 6= ∅ for any model w of σα(Σ)e. This implies
σα(Σ)e |= c. Therefore, let us consider the case when S = {v ∈ char(Σ) |
|OFF (v) ∩N(c)| = α} is not empty. Let v∗ be the unique minimal model
such that c(v∗) = 0. Then by Proposition 1, we have

{v ∈ char(σα(Σ)e) | v ≥ v∗}

⊆ {w | ON(w) = ON(v) ∪N(c) for some v ∈ S}. (11)

Since P (c) is not covered with OFF (v) for models v in S, this, together
with (10) implies σα(Σ)e |= c.

Let us next show the only-if part. Assume that (i) is satisfied, but (2) is
not. Then (10) and (11) imply σα(Σ)e 6|= c. On the other hand, if (1) is not
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satisfied, i.e., there exists a v ∈ char(Σ) such that |OFF (v) ∩ N(c)| < α,
let w(i), i ∈ P (c), be a model in Nα(v) such that ON(w(i)) ⊇ N(c) and
OFF (w(i)) ⊇ {i}, and let w∗ =

∧

i∈P (c) w
(i). Then we have c(w∗) = 0 and

w∗ ∈ mod(σα(Σ)e) by Proposition 1. This implies σα(Σ)e 6|= c. 2

The lemma immediately implies the following theorem.

Theorem 8 Given the characteristic set char(Σ) of a Horn theory Σ, a
clause c, and a nonnegative integer α, a deductive query σα(Σ)e |= c can be
answered in linear time.

We remark that this contrasts with Corollary 1. Namely, if we are given
the characteristic set char(Σ) of a Horn theory Σ, then σα(Σ)e |= c is
polynomially solvable, while it is co-NP-complete to decide if σα(Σ) |= c.

5.2 Formula-Based Representation

Recall that a negative theory (i.e., a theory consisting of clauses with no
positive literal) is Horn and the exteriors of negative theory are also negative,
and hence Horn. This means that, for a negative theory Σ, we have σα(Σ)e =
σα(Σ). Therefore, we can again make use of the reduction in the proof of
Theorem 2, since the reduction uses negative theories.

Theorem 9 Given the characteristic set char(Σ) of a Horn theory Σ, a
clause c, and a nonnegative integer α, it is co-NP-complete to decide whether
σα(Σ)e |= c holds, even if P (c) = ∅.

Proof. Since the hardness is proved similarly to Theorem 2, we show that
the problem belongs to co-NP.

Let v be a model of σα(Σ)e. Then v can be represented by v =
∧

w∈W w
for someW ⊆ char(σα(Σ)). Since we have char(σα(Σ)) ⊆

⋃

w∈char(Σ) Nα(w)
by Proposition 1,

v =
∧

w∈char(Σ)

(

∧

u∈Sw

u
)

(12)

holds for some Sw ⊆ Nα(w). We claim that there exists such a representation
that |Sw| ≤ n holds for all w’s in (12). Let w∗ =

∧

u∈Sw
u, and let I =

ON(w∗) ∩ OFF (w) and J = OFF (w∗) ∩ ON(w). Then we have w∗ =
∧

j∈J

(

w − e(j) +
∑

i∈I e
(i)

)

, where e(i) denotes the ith unit model. Since

w − e(j) +
∑

i∈I e
(i) ∈ Nα(w) for all j ∈ J , the claim is proved.

Note that σα(Σ)e 6|= c if and only if there exists a model v of σα(Σ)e
such that c(v) = 0. Since any model v of σα(Σ)e can be represented by

v =
∧

w∈char(Σ)

(

∧

u∈Sw
u
)

for some Sw ⊆ Nα(w) with |Sw| ≤ n by our

claim, the problem is in co-NP. 2

However, if α or N(c) is small, the problem becomes tractable.
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Algorithm Deduction-Envelope-Exterior-from-Horn-Theory

Input: A Horn theory Σ, a clause c and a nonnegative integer α.

Output: Yes, if σα(Σ)e |= c; Otherwise, No.

Step 1. /* Check if there exists a model v of Σ such that |OFF (v)∩N(c)| <
α. */

For each N ⊆ N(c) with |N | = |N(c)| − α+ 1 do

Check if the theory obtained from Σ by assigning xi = 1 for i ∈ N
is satisfiable.

If so, then output No and halt.

end{for}

Step 2. /* Check if there exists a set S = {v ∈ mod(Σ) | |OFF (v)∩N(c)| =
α} such that

⋃

v∈S OFF (v) ⊇ P (c). */

Let J := ∅.

For each N ⊆ N(c) with |N | = |N(c)| − α do

Compute a unique minimal satisfiable model v for the theory
obtained from Σ by assigning xi = 1 for i ∈ N is satisfiable.

Update J := J ∪ {j ∈ P (c) | vj = 0}.

end{for}

If J = P (c), then output NO and halt.

Step 3. Output Yes and halt. 2

The algorithm above is based on a necessary and sufficient condition for
σα(Σ)e |= c, which is obtained from Lemma 8 by replacing all char(Σ)’s
with mod(Σ)’s. It is not difficult to see that such a condition holds from the
proof of Lemma 8.

Theorem 10 Given a Horn theory Σ, a clause c, and a nonnegative integer

α, a deductive query σα(Σ)e |= c can be answered in O
(

((|N(c)|
α−1

)

+
(|N(c)|

α

))

‖

Σ‖ +|P (c)|
)

time. In particular, it is polynomially solvable, if α = O(1) or

|N(c)| = O(log ‖Σ‖).

Proof. The correctness of the algorithm follows from the discussion after
its description. For the time complexity, it is known [3] that the satisfiabil-
ity problem, together with computing a unique minimal model for a Horn
theory, is possible in linear time. Since the number of the iterations of for-
loops in Steps 2 and 3 are bounded by

(

|N(c)|
α−1

)

and
(

|N(c)|
α

)

, respectively, the

algorithm requires O
(

((

|N(c)|
α−1

)

+
(

|N(c)|
α

))

‖Σ‖ +|P (c)|
)

time. 2
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