MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

Function Classes for
Double Exponential Integration Formulas

Ken’ichiro TANAKA Masaaki SUGIHARA
Kazuo MUROTA Masatake MORI

METR 2007-07 February 2007

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY
THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.i.u-tokyo.ac.jp/mi/mi-e.htm



The METR technical reports are published as a means to ensure timely dissemination of
scholarly and technical work on a non-commercial basis. Copyright and all rights therein
are maintained by the authors or by other copyright holders, notwithstanding that they
have offered their works here electronically. It is understood that all persons copying this
information will adhere to the terms and constraints invoked by each author’s copyright.
These works may not be reposted without the explicit permission of the copyright holder.



Function Classes for Double Exponential Integration Formulas

Ken’ichiro Tanaka* ¥, Masaaki Sugihara* ¥, Kazuo Murota* I, Masatake Mori® |

*Department of Mathematical Informatics,
Graduate School of Information Science and Technology, University of Tokyo

fDepartment of Mathematical Sciences, Tokyo Denki University

tkenitiro@misojiro.t.u-tokyo.ac.jp, *m_sugihara@mist.i.u-tokyo.ac.jp,
Imurota@mist.i.u-tokyo.ac.jp, lmmori@r.dendai.ac.jp

February, 2007

Abstract

The double exponential (DE) formulas for numerical integration are known to be highly
efficient, more efficient than the single exponential (SE) formulas in many cases. Function
classes suited to the SE formulas have already been investigated in the literature through
rigorous mathematical analysis, whereas this is not the case with the DE formulas. This paper
identifies function classes suited to the DE formulas in a way compatible with the existing
theoretical results for the SE formulas. The DE formulas are good for more restricted classes
of functions, but more efficient for such functions. Two concrete examples demonstrate the
subtlety in the behavior of the DE formulas that is revealed by our theoretical analysis.

1 Introduction

The double exponential (DE) formulas for numerical integration [1], proposed by Takahasi and
Mori [13], are known to be highly efficient. The idea is to transform a given problem to
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through a change of variable x = v (¢) and then apply the trapezoidal formula to the transformed
integral above. For the transformation function ¢ (¢) the DE formulas employ an appropriate
DE transformation [4] such as

YpE1 ¢ (—00,00) — (—1,1), ¢pg1(t) := tanh((7/2) sinh t), (1.1)
Ypg2 : (—00,00) — (—00,00), Ypg2(t) := sinh((7/2)sinht), (1.2)
YpEs : (—00,00) — (0,00),  ¢pr3(t) := exp((m/2)sinh?), (1.3)
YpE4 @ (—00,00) — (0,00),  Yppa(t) 1= exp(t — exp(—t)), (1.4)
YpEs : (—00,00) — (0,00), YpEs(t) := log(exp((r/2)sinht) + 1), (1.5)



where ¥pgs is proposed recently in [5]. More explicitly, the formulas with these transformations
are as follows:
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= hkz_:Nf(tanh((ﬂ/2) sinh(kh))) 2 cosh®((x /2) sinh(kh))’ (1.6)
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=h Z f(sinh((7/2) sinh(kh))) (w/2) cosh(kh) cosh((m/2) sinh(kh)), (1.7)
k=—N
0 N
/0 Flats = 3 (o (i) (1)
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N
Z (exp((m/2) sinh(kh))) (7/2) cosh(kh) exp((7/2) sinh(kh)), (1.8)
o N
/0 Z (Yppa(kh))YpEa(kh)
N
Z (exp(kh — exp(—kh))) (1 + exp(—kh)) exp(kh — exp(—kh)), (1.9)
[ Hadte ~ Y w6t s i)
0 k=—N
al . mcosh(kh) exp((m/2) sinh(kh))
= thZN f(log(exp((m/2) sinh(kh)) + 1)) — (exp((r/2) s (k) £ 1) (1.10)

Besides the DE formulas there are a number of efficient integration formulas based on the
same idea of a change of variable, but using different transformation functions [2, 3, 6, 7, 12].
Among them are the single exponential (SE) formulas, by which we mean those formulas advo-
cated by Stenger [8, 9]; the explicit forms of the SE formulas are given in Section 2. Generally,
the DE formulas are more efficient than the SE formulas.

As a theoretical result on the DE formulas, an error estimate of the form exp(—cN/log N) is
given by Takahasi and Mori [13] by means of the saddle point method. More rigorous mathemat-
ical analysis is done by Sugihara [11], with an observation that implies a certain optimality of
the DE formulas. For the SE formulas, on the other hand, some classes of functions suited to the
formulas have been identified by Stenger [9] through rigorous mathematical analysis, whereas
this is not the case with the DE formulas.

This paper identifies the function classes suited to the DE formulas in a way compatible with
the existing results for the SE formulas. The DE formulas are good for more restricted classes
of functions, but more efficient for such functions. It may be said that the essence of the present
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results is already implicit in [11], and the main contribution of this paper is to tailor the implicit
observation there to explicit statements that are compatible with the corresponding results for
the SE formulas.

This paper is organized as follows. In Section 2, we review Stenger’s theorems for the SE
formulas by way of comparison with our results. In Section 3, we present our theorems for the
DE formulas as the main result of this paper. In Section 4, we show two concrete examples with
numerical results that demonstrate the subtlety in the behavior of the DE formulas revealed by
our theoretical analysis. In Section 5 we give the proofs of the theorems.

2 Function Classes for SE Formulas

This section is a review of some relevant results on the integration formulas based on single
exponential transformations.
The single exponential transformations are given by the following functions:

sp1 : (—00,00) — (—1,1), sp1(t) := tanh(t/2), (2.1)
spe 1 (—00,00) — (—00,00), Psga(t) := sinht, (2.2)
Ysgs 1 (—00,00) — (0,00), Ysgs(t) = expt, (2.3)
spq 1 (—00,00) — (0,00), sgp4(t) := arcsinh(expt). (2.4)
Accordingly, the integration formulas with these transformations are given as follows:
1
[ e Z (s (k) (B1) hk_z Flanh(kh/2) g (25)
/ f(x)dz ~ h Z F(¥spa(kh)) g (kh) = h Z f(sinh(kh)) cosh(kh), (2.6)
k=—N
/ f(x)dz ~ h Z Flsmab) s () = 1S Flexp(kh)) explih), (2.7)
k=— k=—N
= / . xp(kh
|t hk:ZN (1)) () = hk:Zwarcsmh(exp(kh))) —
(2.8)

These formulas are called the SE formulas.
In the theorems below, integrands suited to the SE formulas are specified with reference to
complex regions. For d > 0 we define a strip region Dy as

Dy :={z€C||Imz| < d}. (2.9)
Then we define Dgg;(d) as the image of Dy through gg;; that is,
Dsgi(d) := {z = ¢sgi(w) |w e Dy} (i=1,...,4).

Figures 1 to 4 illustrate these regions together with their boundaries 0Dgg;(d).
Theorems 2.1 to 2.4 below give asymptotic error estimates for the SE formulas with mathe-
matical rigor.
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Figure 2: Region Dgga(1) and its boundary 0Dgga(1)
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Figure 3: Region Dsg3(1) and its boundary 0Dggs(1)




Figure 4: Region Dgpy(1) and its boundary 0Dgr4(1)

Theorem 2.1 (Stenger [9]). Assume that f is holomorphic on Dggi(d) for d with 0 < d < 7
and satisfies

Vz € Dsgi(d) : |f(2)] < C1|(1 = 2%)P71| (2.10)

for constants C7 > 0 and 8 > 0. Then there exists a constant C, independent of IV, such that

‘/ f(z)dz —h Z F(spr (kR)) g, (kh) <Cexp< M%dﬁN),
—N

where

27d

BN

Theorem 2.2 (Stenger [9]). Assume that f is holomorphic on Dsga(d) for d with 0 < d < 7/2
and satisfies

1

V2 € Dsmald) s 1f(2) < O | 5

(2.11)

for constants C; > 0 and 8 > 0. Then there exists a constant C, independent of IV, such that

‘ / flz)dz —h Z F (¥sia(kh)) g (kh) | < C exp (—/27dBN)
-N

where

2nd
BN



Theorem 2.3 (Stenger [9]). Assume that f is holomorphic on Dggs(d) for d with 0 < d < /2
and satisfies

281
(1+ 22)8
for constants C; > 0 and 8 > 0. Then there exists a constant C, independent of IV, such that

< Cexp (—W%

V2 € Daps(d) = |f(2)] < Oy (2.12)

~ N
| f@yde = pseain)) v (kh)
0 k=—N

[27d

Theorem 2.4 (Stenger [9]). Assume that f is holomorphic on Dgg4(d) for d with 0 < d < 7/2

and satisfies
-1
z
(=) ot

where

Vz € Dspa(d) : |f(2)] < Ch (2.13)

1+ 2

for constants C; > 0 and 8 > 0. Then there exists a constant C, independent of IV, such that

< Cexp (—W%

o N
/ f@)de —h S F(tsma(kh)) s, (kh)
0 k=—N

[2md

3 Function Classes for DE Formulas

where

In this section, we present our theorems for the error estimate of the DE formulas. Recall the
transformation functions ¢pg; (i = 1,...,5) given in (1.1)—(1.5):

YpE1 : (—00,00) — (—1,1), pri(t) := tanh((7/2)sinht),

YpE2 : (—00,00) — (—00,00), YpEa(t) := sinh((7/2)sinht),
YpEs 1 (—00,00) — (0,00), Ypr3(t) := exp((7/2)sinht),

Yppy : (—00,00) — (0,00), Ypra(t) := exp(t — exp(—t)),

YpEs : (—00,00) — (0,00), Ypgs(t) ;= log(exp((m/2)sinht) + 1).

To state our theorems we need to introduce complex regions Dpg;(d) that are defined as the
images of Dy in (2.9) through the transformation functions v¥pg;; that is,

Dpri(d) :={z = ¢Ypri(w) | w € Dy} (i=1,...,5).

Figures 5 to 9 illustrate these regions together with their boundaries 0Dpg;(d). We regard
Dpri(d) as a region on the Riemann surface.
We are now in the position to state the main theorems. The proofs are shown in Section 5.
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Figure 7: Region Dpgs(1) and its boundary 0Dpgs(1)
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Theorem 3.1. Assume that f is holomorphic on Dpg;(d) for d with 0 < d < 7/2 and satisfies
Vz € Dpi(d) : [f(2)] < Chl(1 =227 (3.1)

for constants C7 > 0 and 8 > 0. Then there exists a constant C, independent of IV, such that

2rdN
< Cexp (— md >

‘ [ s sz Yo (k) (k) e (ANTB)

where

log(4dN/8)
INB)

Theorem 3.2. Assume that f is holomorphic on Dpga(d) for d with 0 < d < 7/2 and satisfies

1
(1 + 22)8/2+1/2

h =

Vz € Dppa(d) : |f(2)] < Cy (3.2)

for constants C7 > 0 and 8 > 0. Then there exists a constant C, independent of IV, such that

00 N
JARICESD SR D (“iasina)
where
- log(SdN/ﬁ)'
N
Theorem 3.3. Assume that f is holomorphic on Dpgs(d) for d with 0 < d < 7/2 and satisfies
2Pt
Vz € Dpgs(d) : |f(2)] < Cy W‘ (3.3)

for constants C7 > 0 and 8 > 0. Then there exists a constant C, independent of IV, such that

N ) 2wdN
x)dx —h Z f(¥pEs(kh))Ypes(kh)| < Cexp <_log(8dN/ﬁ)>
k=—N
where
_ log(8dN/p)
- N

Theorem 3.4. Assume that f is holomorphic on Dpg4(d) for d with 0 < d < 7/2 and satisfies

(&)B_l exp(—fz)

for constants C; > 0 and 8 > 0. Then there exists a constant C, independent of IV, such that

Vz € DDE4<d) : ]f(z)] < Cl (3.4)

[ee} N 2wdN
/0 f(z)dx — hk:ZwaDM(kh))wDM(kh) < Cexp <_log(27rdN/ﬁ)>
where
_ log(27dN/ )
- N



Theorem 3.5. Assume that f is holomorphic on Dpgs(d) for d with 0 < d < 7/2 and satisfies

(12) "ot

for constants C; > 0 and 8 > 0. Then there exists a constant C, independent of IV, such that

Vz € Dpis(d) = |f(2)] < Cy (3.5)

< Cexp < 2rdN ) 7

~ log(8dN/3)

. N
/ f@)de —h S F(oms (kh)) s (kh)
0 k=—N

where

b= log(8dN/3)
N N

4 Examples Not Suited to DE Formulas

The DE formula works excellently under fairly general functions, as specified in Theorems 3.1 to
3.5. This does not mean, however, that the formula works for any integrands. In this section we
show two examples for which the DE formula is not so efficient as the naive intuition expects. In
so doing we intend to indicate the sharpness of our theoretical results. In practical applications,
however, there will be no doubt that the DE formula is one of the most reliable methods for
numerical integration.

4.1 Jacobi’s elliptic function

As the first example we apply the DE formula to the numerical integration of
f(z) = (1 — 2%) cn(2arctanh z,v/0.5) (4.1)

on the interval (—1,1), where “cn” is Jacobi’s elliptic function (so-called “cn” function). We are
to employ the DE formula in (1.6).

This integrand f does not meet the assumptions of Theorem 3.1. In fact, there is no d > 0
such that f(¢¥pgi(-))¥pE; (+) is holomorphic on D,4. This is because the poles of the transformed
integrand

mcosh z en(msinh z,1/0.5)

f(WpE1(2))¥DE1 (2) = 2 cosh?((7/2) sinh 2)

arising from cn(msinh z,/0.5) are located (see Figure 10) at
K
arcsinh <(2n + 1)> (neZ)
s
with
lim Imarcsinh <(2n + 1)) =0,
7r

n—rIoo
where
= 1.85407--- .

/2
K- / a4
0 11—0.5sin%0
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Figure 10: Poles at arcsinh (K (2n +1)/m)

The errors of the DE formula with

b log(2P7N)

=-5,-4,-3,-2,-1,0,1,2,3
N (p ’ ’ ’ ’ 7aaa)7

as observed in our numerical experiments, are depicted in Figure 11. The error does not decay
as exp(—cN/log N), but seemingly as exp(—cv/N). Note that there is no theoretical recipe for
the choice of h.

For comparison, the SE formula (2.5) is applied to f, with the results shown in Figure 12.
Theorem 2.1 is applicable to this function and the theory indicates the choice of h = /7K /N.

We have also tried with
(2Pt K
h: ]7{[ (p:_37_27_170717273)7

where p = 0 corresponds to the theoretical value. The computational results show that the
theoretical choice of h gives the highest accuracy.
Finally we mention that we used

1
/ f(x)dx = 0.819455527492963168119705702971
-1
as the “true” value in computing the errors, whereas we computed the above value with Math-
ematica by executing
NIntegratel[f([x], {x, -1, 1}, WorkingPrecision -> 40, MaxRecursion -> 100]

where the number of the significant digits set by the command “NIntegrate” is usually smaller
than the value of “WorkingPrecision” by 10. Other computations are done with double-
precision floating point numbers.
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Figure 11: Errors of the DE formula for f(z) = (1 — 22
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loglo(error)

loglo(error)

Figure 12:

Errors of the SE formula for f(z) = (1 — 2?) cn(2arctanh z, 1/0.5)
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Figure 13: Poles at arcsinh [% {(g + mr) + 1}]
4.2 An elementary function

Our second example is an elementary function

2(1 — 2?)
cos(4arctanh x) + cosh 2’

flz) = (4.2)

which is tough to the DE formula in the same way as Jacobi’s elliptic function. For the integra-
tion of f on the interval (—1,1) we employ the DE formula in (1.6).

This integrand f does not meet the assumptions of Theorem 3.1 for the same reason as
Jacobi’s elliptic function in the previous subsection. In fact, the denominator of (4.2) is equal
to

2 cos(s + 1) cos(s — 1) with s = 2arctanh x,

and therefore f(vpr1(-))¥pg; () has poles (see Figure 13) at

arcsinh [1 {(g + mr) + 1}} (n € Z).

™

The errors of the DE formula with
b= log(2PN)
- N
are depicted in Figure 14. Again the error does not decay as exp(—cN/log V), but seemingly
as exp(—cv/N). Note that there is no theoretical recipe for the choice of h.
For comparison, the SE formula (2.5) is applied to f, with the results shown in Figure 15.

Theorem 2.1 is applicable to this function and the theory indicates the choice of h = y/7/N.
We have also tried with

(p = _37 _27 _17 07 1) 2) 3)

207
h=14/— =-3,-2,-1,0,1,2,3
N (p 9 ) 7777)7
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cos(4 arctanh ) + cosh 2

Figure 14: Errors of the DE formula for f(z)
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where p = 0 corresponds to the theoretical value. The computational results show that the
theoretical choice of h gives the highest accuracy.
Finally we mention that in computing the errors we used

1
/ f(x)dx = 0.711943822970598278880004050315,
-1

which was computed as described in the previous subsection.

5 Proofs

In this section, we prove Theorems 3.1 to 3.5 in turn. The proofs are based on a variant (Theorem
5.2) of a well-known error estimate (Theorem 5.1) of the trapezoidal formula on (—o0, 00).

5.1 Trapezoidal Formula on (—o0, c0)

Error estimates of the trapezoidal formula on (—oo,00) are shown in this subsection. The
following theorem is known to be fundamental.

Theorem 5.1 ([11, Theorem 3.2]). For d > 0, let f be a function holomorphic on Dy such

that
Ny =Jim [ (5 i@ i@ <o, (5)
d—e
lim |f(x+iy)|dy =0 (5.2)

r—F00 —(d—&)
for arbitrary ¢ with 0 < € < d, and
Ve eR: |f(z)| < A exp(—B exp(v|z])) (5.3)

for constants A, B > 0 and v > 0 with vd < /2. Then there exists a constant C, independent
of N, such that

2wdyN
where
_ log(27dyN/B)
h= R (5.5)

Proof. A sketch of the proof is given here in view of its fundamental role in subsequent argu-
ments. We divide the error into two parts as

0o N
|/ fl@)dz—h > f(kh)
- k=—N

z)dz —h Z FER)| + [h )" f(kh)|.  (5.6)

k=—o0 k|>N
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Figure 15: Errors of the SE formula for f(z)
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The first term on the right-hand side is referred to as the discretization error and the second
as the truncation error. For the discretization error it follows from (5.1), (5.2), (5.5), and an
estimate by a contour integral that

o0 B exp(—2nd/h)
'/_Oo f(z)dx hk_zzoof (kh)| < 1 — exp(— 27rd/h)N(f’ d)
2wdyN

where C > 0 is a constant. For the truncation error we have from (5.3) and (5.5) that

h' > f(kh)| <h > Aexp(—Bexp(y|khl|))
|k|>N |k|>N

=2h Z Aexp(—Bexp(ykh))
k=N+1

<2 Aexp(—Bexp(yx))dx
Nh

= exp(yr)
Nn o exp(YNh)
[ee]
= [_B'yej;(ly]\fm exp(—Bexp(yz))
~ 2Aexp(—Bexp(yNh))
n Bryexp(yNh)
_ 2Aexp(—2ndyN)

2wdy2N

<2 exp(—Bexp(yz))dz

z=Nh

Hence follows the claim. [ |

Theorem 5.1 above can be strengthened to the following theorem, in which the assumption
(5.8) is weaker than (5.3). This theorem will be used as the key lemma in proving Theorems 3.1
to 3.5.

Theorem 5.2. For d > 0, let f be a function holomorphic on D, such that (5.1), (5.2), and
Vo eR: [f(x)] < A explyle]) exp(— B exp(r]z])) (5.8)

for constants A, B,y > 0. Then there exists a constant C', independent of N, such that

2wdyN
where
b log(2mdyN/B)
= ,-Y—N'

18



Proof. From the proof of Theorem 5.1 we see that the estimate (5.7) is still valid for the
discretization error. For the truncation error we have the following;:

h> f(kh)| <h Y Aexp(ylkh|) exp(—Bexp(y|kh|))
|k|>N |k|>N

=2h Z A exp(vkh) exp(—Bexp(vkh))

k=N+1
<2 A exp(yz) exp(—Bexp(yz))dz
Nh
24 >
= |—— exp(—Bexp(yr
5 eBen0n)|
24
= By exp(—Bexp(yNh)).
Then (5.9) follows from (5.6). [ ]

The following lemma gives a sufficient condition for f to satisfy the assumptions of Theorem
5.2 in term of a dominating function g of f.

Lemma 5.3. A function f holomorphic on Dy satisfies (5.1), (5.2), and (5.8) for constants
A, B,~ > 0, if there exists a function g on Dy such that

Vz e Dy |f(2)] < lg(z)], (5.10)
Ve e R, Yy e R(lyl < d): [g(z+iy)| < A exp(y'|z]) exp(—B exp(v]x])) (5.11)

for some constants A’, B’,y' > 0, and
VreR: |g(@)] < A exp(ylal) exp(~Bexp(xal)). (5.12)

Proof. (5.1) and (5.2) follow from (5.11) with (5.10), whereas (5.8) from (5.12) with (5.10). H

5.2 Proof of Theorem 3.1

In the proofs of Theorem 3.1 to 3.5 in Subsections 5.2 to 5.6, we show that the transformed inte-
grand function f = f (YpEi(-))Yhg;(+) satisfies the assumptions of Theorem 5.2 by demonstrating
a dominating function g for f as described in Lemma 5.3.

In this subsection we deal with ¥pg;. The transformed function f(z) = f(¥pg1(2))¥hg, (2)
is holomorphic on Dy. Since

cosh z
" |{cosh?((r/2) sinh 2)}8

Vz € Dy |f(¥pE1(2))¥pEi(2)| < C

from (3.1), we can take
cosh z

= Ol cosh?((/2) sinh 27}

9(2)

19



to meet the first requirement (5.10) in Lemma 5.3. We can also show that this function g(z)
satisfies (5.11) by letting B = # in Lemma 5.4 below. For the third condition (5.12), for x € R
we have

9(0)] < 4 explla) exp (= exple]) )

for a constant A > 0. Thus g is valid in Lemma 5.3 and therefore f satisfies the assumptions of
Theorem 5.2 for B = 73/2 and v = 1. Hence follows the claim of Theorem 3.1.

Lemma 5.4. Let d be a constant with 0 < d < 7/2 and B > 0 be a positive constant. Then
the function

(2) = cosh z
ghe= {cosh?((m/2) sinh 2)} B
satisfies (5.11).

Proof. Let z,y € R and |y| < d. Using that 64 := (1/2)arccosh(1/sind) > 0 satisfies
cosh dgsind < 1, we have

| cosh((m/2) sinh(z +1%))|> = cosh?((7/2) sinh z cos y) — sin?((7/2) cosh x sin y)
> cosh?(((m/2) cos d) sinh ) — sin’((7/2) cosh x sin y)

- {1 — sin?((7r/2) cosh 0,4 sin d) (|| < dq),
cosh?(((7/2) cosd)sinhz) — 1 (|z| > d4).

It follows from this fact and

| cosh(z 4 iy)|* = cosh? x — sin®y < cosh? z

that
cosh dy4
. <6
cosh(z +1y) <1 — sin?((7/2) cosh §4sin d) } B (2] < 0a),
{cosh?((7/2) sinh(z +iy))}B| ~ cosh (2] > 62).

{cosh?(((7/2) cosd) sinh ) — 1}B

5.3 Proof of Theorem 3.2

First note that the transformed integrand function f(¢pga(-))¥pgs() is holomorphic on Dy. It
follows from (3.2) that

, 1
vz € Da: |/ (Woe2(2))¥pea(2)] < Cr {cosh?((7/2) sinh z) }#/2+1/2

- | cosh((7/2) sinh 2) - (7/2) cosh z|

cosh z
{cosh?((r/2) sinh z)}#/2

s
6’15

Then the rest of the proof is similar to that of Theorem 3.1. Note that we set B = (/2 in
Lemma 5.4 to show (5.11).

20



5.4 Proof of Theorem 3.3

First note that the transformed integrand function f(¢pgs(-))¥pHgs(+) is holomorphic on Dy. It
follows from (3.3) that

< YpE3(2) )2)6coshz

Vz € Da: |f(¢prs(2))vprs(2)] < Clg 1 + Ypr3(z

1 p "
<7/JDE3(Z)1 +¢DE3(Z)> oz

cosh z
{cosh?((r/2) sinh 2)}5/2

Then the rest of the proof is similar to that of Theorem 3.1. Note that we set B = (/2 in
Lemma 5.4 to show (5.11).

™
2015

s

= Cigg

5.5 Proof of Theorem 3.4

The transformed integrand function f(¢¥pg4(z))¥pg,(2) is holomorphic on D,. It follows from
(3.4) that

exp z A
Fora()bea(2)] <1 |{ oy} e e exp(-2)

exp z + exp(exp

- (exp(—exp(—2)) +exp(—=z)) - (1 +exp z)

holds for all z € Dy. Accordingly we choose as g(z) the right-hand side above. Then (5.10) is
satisfied. This function g(z) satisfies (5.11) by Lemma 5.5 below with B = 3. As for (5.12), for
x € R we have

lg(2)| < A exp(|z[) exp(—Fexp(|]))

for a constant A > 0. Thus g is valid in Lemma 5.3 and therefore f(¢pra(z))Yhg, (%) satisfies
the assumptions of Theorem 5.2 for B = § and v = 1. Hence follows the claim of Theorem 3.4.

Lemma 5.5. Let d be a constant with 0 < d < 7/2 and B > 0 be a positive constant. Then
the function

exp z B
o) ={ o2 L exp(-Bexp - expl- exp(—2)

(exp(—exp(—2)) + exp(—2)) - (1 + exp2)
satisfies (5.11).
Proof. Let z,y € R and |y| < d. Let z,y € R and |y| < d, and put

exp z
exp z + exp(exp(—2))’
92(z) = exp(—Bexp z - exp(— exp(—2))),
93(z) = (exp(—exp(—=z)) + exp(—2)) - (1 + exp 2)

9i(2) =
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to obtain g(z) = g1(2)%g2(2)g3(2). We note

) 1
g1z + i)l = 1+ exp(exp(—x —iy) —z —iy)
< ! . .
1 — |exp(exp(—z —iy) —z —iy)||

_ 1

"~ |1 —exp(e~*cosy — )|’
|92(2 +1y)| = |exp(—Bexp(z +1y) - exp(— exp(—z — iy)))|

= exp{—B - Re (exp(z +1y) - exp(—exp(—z —1y)))}

=exp{—B -exp(z —e “cosy) - cos(y +e “siny)}, (5.14)
lg3(z +1y)| = [(exp(—exp(—z —iy)) + exp(—z —iy)) - (1 + exp(z +1y))|

< (lexp(—exp(—z —iy))| + [exp(—z —iy)]) - (1 + |exp(z +1iy)|)

= (exp(—e “cosy) +e ) (1 +expuzx). (5.15)

(5.13)

It turns out to be convenient to choose a (sufficiently large) positive number & such that
a:=i—-e%>0, §:=n/2—d—e*sind >0, (5.16)

and estimate |g(z)| by dividing into three cases: (i) x <0, (ii) 0 < x < &, and (iii) x > Z.
Case (i) with = < 0: By (5.13) we have

1 1
< .
exp(e ®cosy —x) —1 ~ exp(e % cosd) — 1

91(z +iy)| <
In (5.14) we have
exp(z —e Y cosy) - cos(y +e “siny) > —1

and therefore
lg2(z +1y)| < exp B.

By (5.15) we have
lgs(z +iy)| <4de™ ™.
Combining the above three inequalities we obtain

4exp(B — )
exp(e~*cosd) — 1)B’

lg(z+iy)| = lgr(z +iy)|” - |g2(z +iy)| - lgs(z +iy)| < (

from which follows the inequality in (5.11).
Case (ii) with 0 < 2 < #: We can regard |g(xz +1y)| as a continuous function on a bounded
and closed region with 0 <z < % and |y| < d. Then there exists a constant C' such that

l9(z +1iy)[ < C,

which implies the inequality in (5.11).
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Case (iii) with z > #: Recall the definitions of o and § in (5.16). By (5.13) we have

1 1
< - = .
1—exple®—xz) ~ 1—exple®—2) 1—exp(—a)

lg1(z +iy)| <

In (5.14) we have

exp(zx —e Fcosy) > exp(x —e *) > exp(x — 1),
cos(y + e Tsiny) > cos(d + e Tsind) > cos(d + e Zsind) = cos(1/2 — ),

and therefore,

B 005(1/2 —9) expa:) '

g2(z +19)] < exp (—

By (5.15) we have
lg3(2 +1y)| <4expu.

It follows from the above three inequalities that

) dexpzx B cos(m/2 —§)
< . _
900 +i19)| < gt o ( 220 pa)
which implies the inequality in (5.11). [ |

5.6 Proof of Theorem 3.5

First, the transformed function f(¥pgs(2))¢¥pgs(2) is holomorphic on Dy. It follows from (3.5)
that

|/ (pEs (2))¥Des (2))]

og(exp((m/2)sinh z p-1
(el ) oy

~ (m/2) cosh z - exp((m/2) sinh z)
exp((m/2)sinhz) 4+ 1

holds for all z € Dy. Accordingly we choose as g(z) the right-hand side above. Then (5.10) is
satisfied. This function g(z) satisfies (5.11) by Lemma 5.6 below with B = 3. As for (5.12), on
the other hand, it can be shown (cf. (5.19), (5.23) below) that

9(0)] < A explol) exp (-7 exp(le)

holds for all x € R with a constant A > 0. Thus ¢ is valid in Lemma 5.3 and therefore
f(¥pEs(2))¥hgs(2) satisfies the assumptions of Theorem 5.2 for B = 73/4 and v = 1. Thus we
have proven Theorem 3.5.
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Lemma 5.6. Let d be a constant with 0 < d < 7/2 and B > 0 be a positive constant. Then
the function

. B-1
9(z) = (1 fig?ﬁf}g{j};ﬁ?ﬂ?;fl)) - exp(—Blog(exp((m/2) sinh z) + 1))

~(m/2) cosh z - exp((m/2) sinh 2)
exp((7/2)sinh z) + 1

satisfies (5.11).

Proof. Let z,y € R and |y| < d, and set z = x +iy. We consider asymptotic estimates as
T — 00 Or & — —00.
First we consider the case of x — oco. Since |log(exp((7/2)sinh z) + 1)| — oo, we have

< log(exp((m/2) sinh z) + 1) >Bl
1+ log(exp((m/2) sinh z) + 1)

<C (5.17)

for a constant C7 > 0. Furthermore, in a similar manner, we have

exp((m/2) sinh z)
exp((m/2)sinh z) + 1

’ <Oy (5.18)

for another constant Co > 0. The remaining part of g is expressed as

(m/2) cosh z

2 hz- —Bl1 2) sinh 1)) = : 1
(/2) cosh z - exp( og(exp((m/2)sinh z) + 1)) (oxp((r/2) sinh 2) + 1) (5.19)
By (5.17), (5.18), and (5.19) we obtain the desired estimate (5.11).
Next, we consider the case where x — —oo. In this case we have
! <cC (5.20)
lexp((7/2)sinhz) + 1| = ° ‘
for a constant C's > 0, and
1
—Bl1 2) sinh )] = < 21
Jexp(~Blog(exp((r/2)sinh ) + 1) = (o <O (521
for another constant Cy > 0. The remaining part of g is
log(exp((m/2)sinh z) + 1) "™ .
. 2 hz)- 2 h z. .22
<1—|—log(exp((7r/2) sinh z) + 1) exp((r/2)sinh z) - (/2) cosh 2 (5.22)

In general, for ¢ € C with || < 1/2, we have

loa(¢ + 1) = S (-1 10 <1 S 1! = S <1
n=1 n=1
and therefore

' log(¢ +1) '< logC+1)| _ Icl/—I) _ Kl
T log(C+1)| = T—[log(C+ 1) = T— ¢/~ [c) ~ T-2[]
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Here (1 — 2|¢|)~! is bounded for ¢ with sufficiently small absolute values. and therefore the
absolute value of (5.22) is bounded by

Cs| exp((m/2) sinh 2)|B~1 - | exp((7/2) sinh 2)| - |(7/2) cosh 2|

= Cs|exp((m/2) sinh 2)|P - |(7/2) cosh 2| (5.23)
for a constant C5 > 0. Taking this estimate, (5.20), and (5.21) into consideration, we obtain the
desired estimate. |
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