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Abstract

The DE-Sinc formulas, resulting from a combination of the Sinc approximation formula
with the double exponential (DE) transformation, provide a highly efficient method for func-
tion approximation. In many cases they are more efficient than the SE-Sinc formulas, which
are the Sinc approximation formulas combined with the single exponential (SE) transfor-
mations. Function classes suited to the SE-Sinc formulas have already been investigated in
the literature through rigorous mathematical analysis, whereas this is not the case with the
DE-Sinc formulas. This paper identifies function classes suited to the DE-Sinc formulas in a
way compatible with the existing theoretical results for the SE-Sinc formulas. Furthermore,
we identify alternative function classes for the DE-Sinc formulas, as well as for the SE-Sinc
formulas, which are more useful in applications in the sense that the conditions imposed on
the functions are easier to verify.

1 Introduction

The Sinc approximation formula, expressed as

N
f(x)= Y f(kh)S(k,h)(x), (1.1)
k=—N

is an interpolation formula to approximate a function f on the real line R based on sampled
values {f(kh) | =N < k < N} at a finite number of equally-spaced points on R, where N € N
and h > 0. Here S(k, h) denotes the Sinc function defined as

_sin[m(x/h — k)]

S M) (@) = = (1.2)

The formula (1.1) is known to achieve very high accuracy if f is a well-behaved function decaying
sufficiently rapidly as |z| tends to infinity. Numerical methods based on this Sinc approximation,
initiated by McNamee, Stenger and Whitney [2], have been developed and applied to various



scientific computations in the last three decades. They are now accepted under the name of Sinc
numerical methods [6, 7, 11].

The formula (1.1) can be adapted to approximations on general intervals with the aid of
appropriate variable transformations = = 1(t). When f is approximated on an interval I C R,
the formula is modified to

N
fle) = Y f(kh) S(kh)( " (x)) (1.3)
k=—N

with a transformation function 1 : R — I. This approach works if ¢ is chosen appropriately so
that the transformed function f(1(-)) satisfies certain conditions, say, about the decay rate.

As the transformation function (t) we can employ an appropriate double exponential (DE)
transformation such as

YpE1 ¢ (—00,00) — (—1,1), ¢pg1(t) := tanh((7/2)sinh t), (1.4)
YpE2 : (—00,00) — (—00,00), Yppe(t) := sinh((7/2) sinh t), (1.5)
YpEs @ (—00,00) — (0,00), ¥pr3(t) := exp((w/2)sinht), (1.6)
YpE4 1 (—00,00) — (0,00),  Ypra(t) := exp(t — exp(—t)), (1.7)
YpEs 1 (—00,00) — (0,00), Ypgs(t) := log(exp((m/2)sinht) + 1). (1.8)

More explicitly, the formulas with these transformations are as follows:

flz) ~ k_ZN:N f(pe1(kh)) S(k, h)($pE1 " (7))
= kﬁ:N f(tanh((w/2) sinh(kh))) S(k, h)(arcsinh((2/7) arctanh z))  (z € (—1,1)),
flx) ~ kzj\i:N f(pr2(kh)) S(k, h)(¥pE2 ™~ (7))
= ki:N f(sinh((r/2) sinh(kh))) S(k, h) (arcsinh((2/7) arcsinh z))  (z € (—o0, 00)),
N

fle)~ Y f(vors(kh)) S(k, b)(¢pes ™" (@)
k=N

N
= Z f(exp((m/2) sinh(kh))) S(k, h)(arcsinh((2/7)logx)) (x € (0,00)),
k=—N
N
f@)= Y f(opa(kh) S(k, h)(voes ™" (2)
k=—N
N
= Y flexp(kh — exp(—kh))) S(k. h)(¢(log z)) (x € (0,00)),
k=—N



N
fle)~ Y f(ors(kh)) S(k, b)(¢pes " (@)
k=—N

N
= Z f(log(exp((m/2)sinh(kh)) 4+ 1)) S(k, h)(arcsinh((2/7) log(expx — 1)))
k=—N

(z € (0,00)),

where ¢ in the formula with ¢¥pg4 is the inverse function of ¢t — ¢t — exp(—t), i.e., such that
¢(t — exp(—t)) = t. These formulas are called the DE-Sinc approximation formulas.

The DE transformations were originally proposed for numerical integration by Takahasi and
Mori [12], followed by subsequent extensions and generalizations [3]; ¥pgs mentioned above is
proposed recently in [4]. Use of DE transformations in the Sinc approximation is due to Sugihara
8, 10].

On the other hand, use of single exponential (SE) transformations has been advocated by
Stenger [5, 6]. Formulas (1.3) with SE transformations v are called the SE-Sinc approximation
formulas, where the explicit forms of the SE transformations as well as the SE-Sinc formulas
are given in Section 2. Historically, the SE-Sinc approximation formulas preceded the DE-Sinc
formulas by twenty years.

It is understood in general terms that the SE-Sinc formulas are applicable to larger classes
of functions than the DE-Sinc formulas, whereas the DE-Sinc formulas are more efficient for
well-behaved functions. Rigorous error analysis has been done for the SE-Sinc formulas and
certain classes of functions suited to the SE-Sinc formulas have been identified by Stenger [6].
For the DE-Sinc formulas, on the other hand, Sugihara [8, 10] made an error analysis that led to
an observation that the DE-Sinc formulas are nearly optimal in a certain mathematical sense.
It must be said, however, that no theorems exist that describe precisely those function classes
for which the DE-Sinc formulas are successful.

The first objective of this paper is to identify the function classes suited to the DE-Sinc
formulas in a way compatible with the existing results for the SE-Sinc formulas. The DE-
Sinc formulas are applicable to more restricted classes of functions, but more efficient for such
functions. It may be said that the essence of the present results is already implicit in [8, 10] and
the contribution of this paper is to tailor the implicit observation there to explicit statements
that are compatible with the corresponding results for the SE-Sinc formulas.

Our theorems for DE-Sinc formulas, as well as the existing theorems of Stenger for SE-Sinc
formulas, involve some conditions that are not convenient to verify from the practical point
of view. To be more specific, the theorems require certain estimates of the function f over
complex regions, although approximations are sought on real intervals. To make the theoretical
analysis more useful in applications, we present another set of theorems that describe alternative
function classes for the DE-Sinc formulas, as well as for the SE-Sinc formulas. The point is that
the theorems do not involve upper-bound conditions over complex regions but refer only to
conditions on the real intervals on which the approximations of f are considered.

Thus the objective of this paper is twofold:

1. To identify function classes for DE-Sinc formulas in parallel to Stenger’s results for SE-Sinc
formulas, and

2. To relax the conditions for easier verification, both for DE-Sinc formulas and for SE-Sinc
formulas.



This paper is organized as follows. In Section 2, we review Stenger’s theorems for the SE-Sinc
formulas by way of comparison with our results. In Section 3, we present our theorems of error
estimates for the DE-Sinc formulas as the main result of this paper. Similar error estimates are
derived under weaker assumptions, for the DE-Sinc formulas in Section 4 and for the SE-Sinc
formulas in Section 5. The proofs of the theorems in Sections 3, 4, and 5 are given in Sections
6, 7, and 8, respectively.

2 Function Classes for Successful SE-Sinc Approximations

This section is a review of some relevant results on the approximation formulas based on single
exponential transformations.
The single exponential transformations are given by the following functions:

Ysp1 1 (—o0,00) — (—1,1), gE1(t) := tanh(t/2), (2.1)
spa ¢ (—00,00) — (—00,00), sEa(t) ;= sinht, (2.2)
Ysgs 1 (—00,00) — (0,00), ¢sgs(t) = expt, (2.3)
Yspa : (—00,00) — (0,00), tsr4(t) := arcsinh(expt). (2.4)

Accordingly, the approximation formulas with these transformations are given as follows:

Z f(Wsma(kh)) S(k, h) ($ser " ()

k=

N
Z f(tanh(kh/2)) S(k,h)(2arctanhz) (x € (—1,1)),

N
Z f(spa(kh)) S(k, k) (Ysp2 " (x))

N
Z f(sinh(kh)) S(k,h)(arcsinhz) (x € (—o0,)),

N

Z f(sms(kh)) S(k, k) (Yses™ " (z))

N

Z f(exp(kh)) S(k,h)(logz) (x € (0,00)),

N

~ Y f(Wsea(kh)) S(k, B) (dspa (2))
k=—N

N

= Z f(arcsinh(exp(kh))) S(k, h)(log(sinhz)) (z € (0,00)).
k=—N

These formulas are called the SE-Sinc approximation formulas.
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Figure 2: Region Dsg2(1) and its boundary 0Dgga(1)

In the theorems below, functions suited to the SE-Sinc formulas are specified with reference
to complex regions. For d > 0 we define a strip region Dy as

Dyg:={z€C||Imz| < d}. (2.5)
Then we define Dgg;(d) as the image of Dy through gg;; that is,
Dsgi(d) :={z = Ysgi(w) |w € Dg} (i =1,...,4). (2.6)

Figures 1 to 4 illustrate these regions together with their boundaries 0Dgg;(d).
Theorems 2.1 to 2.4 below give asymptotic error estimates for the SE-Sinc formulas with
mathematical rigor.

Theorem 2.1 (Stenger [6]). Assume that f is holomorphic on Dgg;(d) for d with 0 <d <7
and satisfies

vz € Dspi(d) : [f(2)] < C1l(1 - 2%)7) (2.7)



-i

Figure 3: Region Dsg3(1) and its boundary 0Dggs(1)

-0.5

Figure 4: Region Dgry(1) and its boundary 0Dgga(1)



for constants C; > 0 and 8 > 0. Then there exists a constant C, independent of IV, such that

N
sup |f(x) = Y f(spi(kh) S(k,h) (e~ (@)

—1l<z<1 ke— N
wd
h=4/—-—.
\/ OGN

Theorem 2.2 (Stenger [6]). Assume that f is holomorphic on Dsga(d) for d with 0 < d < 7/2
and satisfies

< CVN exp (—\/ﬂ'dﬁN) ,

where

1

Vz € Dsga(d) = |f(2)] < Ch (1+ 22)8/2

(2.8)

for constants C7 > 0 and G > 0. Then there exists a constant C, independent of NV, such that

N
sup | f(@) = > f(wsma(kh)) S(k, h) (Wspe (@)| < OVN exp (—MWdﬁN),
k=—N

—oo<r<o0
| md
h —_— BW.

Theorem 2.3 (Stenger [6]). Assume that f is holomorphic on Dsg3(d) for d with 0 < d < 7/2
and satisfies

where

Vz € DSE3(d) : ]f(z)\ < Cl

8
: ‘ (2.9)

(1+22)

for constants C7 > 0 and 8 > 0. Then there exists a constant C, independent of NV, such that

N

sup {f(z) = > f(@ses(kh)) S(k, h)(vsps™ (x))

0<z<oo k=N
wd
h= | .
BN

Theorem 2.4 (Stenger [6]). Assume that f is holomorphic on Dgg4(d) for d with 0 < d < /2
and satisfies

< CVN exp (—\/ﬂdﬂN> )

where

Vz € DSE4(d) : \f(z)] < Cl (2.10)

<1:Z>B6Xp(—52)
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Figure 5: Region Dpg1(1) and its boundary 0Dpg;(1)
for constants C7 > 0 and 8 > 0. Then there exists a constant C, independent of IV, such that

N
sup_ | £(x) = D Fluisea(kh)) S(k.h) (s ()] < CVN exp (= /7dBN )
k=—N

0<x<oo
| wd
h —_— /BiN.

3 Function Classes for Successful DE-Sinc Approximations

where

In this section, we present our theorems for the error estimate of the DE-Sinc formulas. Recall

the transformation functions ¢¥pg; (¢ =1,...,5) given in (1.4)—(1.8):
YpE1 ¢ (—00,00) — (—1,1), ¢pg1(t) := tanh((7/2) sinh t),
Ypg2 : (—00,00) — (—00,00), Ypg2(t) := sinh((7/2)sinht),
YpEs : (—00,00) — (0,00),  ¢prs(t) := exp((m/2)sinh?),
YpE4 @ (—00,00) — (0,00), Ypra(t) := exp(t — exp(—t)),
YpEs : (—00,00) — (0,00), Yprs(t) := log(exp((7/2) sinht) + 1).

To state our theorems we need to introduce complex regions Dpg;(d) that are defined as the
images of Dy in (2.5) through the transformation functions ¥pg;; that is,

Dpri(d) :={z =¢Ypri(w) |w e Dy} (i=1,...,5).

Figures 5 to 9 illustrate these regions together with their boundaries 0Dpg;(d). We regard
Dpri(d) as a region on the Riemann surface.
We are now in the position to state the main theorems. The proofs are shown in Section 6.
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Figure 8: Region Dpr4(1) and its boundary 0Dpg4(1)
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Figure 9: Region Dpgs(1) and its boundary 0Dpgs (1)

Theorem 3.1. Assume that f is holomorphic on Dpgy(d) for d with 0 < d < 7/2 and satisfies
Vz € Dpgi(d) : |f(2)] < C1](1 — 22)P| (3.1)

for constants C; > 0 and 8 > 0. Then there exists a constant C, independent of IV, such that

N
B -1 T _
sup | f(x) k§_Nf(wDE1(kh))S(kahWDEl () log(2dN/B)

—1l<a<1

where

. log(2an/p)
_ Log(2dn/a)

Theorem 3.2. Assume that f is holomorphic on Dpga(d) for d with 0 < d < 7/2 and satisfies

1
(1+ 22)8/2

Vz € DDEQ(d) : |f(z)| < (]

(3.2)

for constants C7 > 0 and 8 > 0. Then there exists a constant C, independent of IV, such that

N
< Coxp (ot ).

N
sup |f(z) — Z f(¥pE2(kh)) S(k, h) (Yome ™ (2)) ~log(4dN/p)

—oo<r<oo ke_N

where

. _ log(4dN/3)
= el

Theorem 3.3. Assume that f is holomorphic on Dpgs(d) for d with 0 < d < 7/2 and satisfies

Vz € DDE3<d) : ]f(z)] <Cy (3.3)

B
(1+ 22)8

10



for constants C; > 0 and 8 > 0. Then there exists a constant C, independent of IV, such that

< 7dN
=L exp <_log(4dN/ﬂ)>’

0<z<oo

N
sup | f(z) — Y f(¥oms(kh)) S(k,h)(¢pes " (z))
k=—N

where

b log(4dN/j3)
B N

Theorem 3.4. Assume that f is holomorphic on Dpgy(d) for d with 0 < d < 7/2 and satisfies

(2= oot

for constants C7 > 0 and 8 > 0. Then there exists a constant C, independent of N, such that

< Cexp <_7”‘”V)
- log(ndN/B3) )’

Vz € Dprya(d) : |f(2)] < Cy (3.4)

N
sup |f(z) — Y f(vpea(kh)) S(k, h)(Ypes~ ' ()

0<x<oo ke N

where

b log(wdN/(3)
N N

Theorem 3.5. Assume that f is holomorphic on Dpgs(d) for d with 0 < d < 7/2 and satisfies

(sz) ’ exp(—f3z)

for constants C; > 0 and 8 > 0. Then there exists a constant C, independent of IV, such that

<0 wdN
=P <_10g(4dN/ﬁ)> ’

Vz € DDE5(d) : \f(z)] < Cl (3.5)

N
sup |f(x) — Y f(¥oms(kh)) S(k, h)($pes " (2))

0<z<oo P

where

h— log(4dN/3)
=— QN

4 Alternative Classes for DE-Sinc Approximations

Our theorems in the previous section involve upper bounds on the behavior of f over the complex
regions Dpg;(d). For instance, Theorem 3.1 imposes the condition in (3.1) that |f(z)| < C1|(1—
22)#| holds for all z € Dpgi(d). Such conditions, however, are difficult to verify in practical
situations. It would be nicer if they could be replaced by conditions only on real intervals, such
as | f(z)| < C1|(1 — 22)8| for all z € (—1,1).

The objective of this section is to establish theorems for the DE-Sinc formulas that do not
involve upper bound conditions over the complex regions Dpg;(d) but refer only to conditions
on the real intervals on which the approximations of f are considered. To be more precise each
theorem in this section puts two types of assumptions’:

'Boundedness of f is not assumed in Theorems 3.1 to 3.5 because it is implied by each of the conditions (3.1)
to (3.5).

11



1. f is holomorphic and bounded on Dpg;(d), and

2. f is upper-bounded by a certain simple function on the real interval,

under which error estimates similar to Theorems 3.1 to 3.5 are obtained.
We are now in the position to state the theorems. The proofs are shown in Section 7.

Theorem 4.1. Assume that f is holomorphic and bounded on Dpg;(d) for d with 0 < d < 7/2
and satisfies

va € (-1,1) ¢ |f(2)] < Ci|(1 - 2?)7] (4.1)

for constants C7 > 0 and 8 > 0. Then, for any € with 0 < £ < d, there exists a constant C,
independent of IV, such that

d—e)N
< Coexp <_7T<€>> ,

N
sup |f(z) — ;NfWDEl(kh))S(k>h)(¢DE1_1(x)) log(2dN/j3)

—1l<z<1 k

where
. log(2dN/3)
- N

Theorem 4.2. Assume that f is holomorphic and bounded on Dpgay(d) for d with 0 < d < 7/2
and satisfies

1
(1 + 22)8/2

for constants C7 > 0 and 8 > 0. Then, for any € with 0 < € < d, there exists a constant C.,
independent of N, such that

Vo € (—oo,00) @ |f(z)] < Cy

(4.2)

N
sup  |f(@) = > f(¥pra(kh)) S(k, h)(vpr2 " (x))

—oo<r<o0 k—_N

gCexp< w(d—s)N>7

-~ log(4dN/B)

where
b log(4dN/j3)
N N

Theorem 4.3. Assume that f is holomorphic and bounded on Dpgs(d) for d with 0 < d < 7/2
and satisfies

Vz € (0,00): |f(x)] <Cy (4.3)

7P
(1+ 22)8
for constants C; > 0 and 8 > 0. Then, for any ¢ with 0 < € < d, there exists a constant C.,

independent of N, such that

gC’exp< w(d—¢e)N >7

N
sup |f(x)— :ZNf(wDEB»(kh)) S(k,h)(¢prs ' (z)) " log(4dN/ ()

0<x<oo k

where

b= log(4dN/3)
n N

12



Theorem 4.4. Assume that f is holomorphic and bounded on Dpg4(d) for d with 0 < d < 7/2

and satisfies
<)
(1—1—ij> exp(—ﬁx)

for constants C; > 0 and 8 > 0. Then, for any € with 0 < € < d, there exists a constant C.,
independent of N, such that

Vr € (0,00): |f(x)] < Cy (4.4)

N
B w(d—e)N
sup |f(z) — Z fWora(kh)) S(k, h)(Ypra~ " (2)) _log(mlN//B)>’

0<z<oco ke N

SCexp(

where
b log(wdN/ ()
B N

Theorem 4.5. Assume that f is holomorphic and bounded on Dpgs(d) for d with 0 < d < 7/2
and satisfies

Vr e (0,00): |f(2)| < C1 (4.5)

(12.) ot

for constants C; > 0 and 8 > 0. Then, for any € with 0 < € < d, there exists a constant C.,
independent of N, such that

N
sup | f(z) = Y f(¥oms(kh)) S(k, h)(¢pes " (z))
k=—N

0<z<oo

gC’exp< w(d—e)N))

~log(4dN/B)

where

. _ log(4dN/3)
N

5 Alternative Classes for SE-Sinc Approximations

The objective of this section is to establish theorems for the SE-Sinc formulas that do not involve
upper bound conditions over the complex regions Dgg;(d) but refer only to conditions on the
real intervals on which the approximations of f is considered. This is exactly what we have done
in Section 4 for the DE-Sinc formulas.

The theorems read as follows, whereas the proofs are given in Section 8.

Theorem 5.1. Assume that f is holomorphic and bounded on Dgg;(d) for d with 0 < d < 7
and satisfies

Ve e (—1,1): |f(z)] < C1|(1 — 2?)f) (5.1)

for constants C; > 0 and 8 > 0. Then, for any ¢ with 0 < € < d, there exists a constant C.,
independent of N, such that

N
sup | fl@) = D flswr(kh)) S(k, h) (bse " (@))| < C-VN exp (= /m(d—2)3N)
=—N

—1l<z<1 k

13



where

d
h:”ﬂiN'

Theorem 5.2. Assume that f is holomorphic and bounded on Dgga(d) for d with 0 < d < 7/2
and satisfies

1
(1 + x2)8/2
for constants C; > 0 and 8 > 0. Then, for any ¢ with 0 < ¢ < d, there exists a constant C.,
independent of N, such that

Vo € (—o0,00) : |f(z)] < Cy (5.2)

N
sup [ f(2) = D f(¥sp2(kh)) S(k,h)(Psp2 " (2))

—oo<r<o0o Ek—_N
d
h=4|—-c-
OGN

Theorem 5.3. Assume that f is holomorphic and bounded on Dggs(d) for d with 0 < d < 7/2
and satisfies

< C.VNexp (—\/W) ;

where

B
x
Vo € (0,00): |f(z)] < Ch (1‘1'552)’8‘
for constants C; > 0 and 8 > 0. Then, for any ¢ with 0 < € < d, there exists a constant C.,

independent of N, such that

(5.3)

< C.V'Nexp (— m(d — a)ﬁN) ,

0<x<oco

N
sup | f(z) = D f(¢ss(kh)) S(k, h)(¢sps™ (x))
k=N

where

Theorem 5.4. Assume that f is holomorphic and bounded on Dggy(d) for d with 0 < d < 7/2

and satisfies
B8
(110%) exp(—ﬂx)

for constants C; > 0 and 8 > 0. Then, for any ¢ with 0 < ¢ < d, there exists a constant C.,
independent of IV, such that

Vi € (0,00) : |f(z)] < Cy (5.4)

N
sup | f(z) = Y f(vspa(kh)) S(k,h)(Pspa " (x))

0<x<oo ke N

< C.V/Nexp (—W) ;

where



6 Proofs of Theorems 3.1 to 3.5

In this section, we prove Theorems 3.1 to 3.5 in turn. The proofs are based on Theorem 6.1
below, which is a well-known error estimate for the Sinc formula on (—oo, 00) for functions with
double exponential decay.

6.1 Fundamental Theorems for DE-Sinc Formula

As a preliminary we present here the error estimate for the basic Sinc formula on (—o0, 00) for
functions with double exponential decay. For € with 0 < & < 1, we define

Dy(e) :={z€ C||Rez| <1/e, |Imz| <d(l—¢)} (6.1)
and also
Ni(f,Da) := lim |f(2)]|dz] (6.2)
&7V JDy(e)

for a function f on D,;. With these definitions, we introduce a function space
HY(D,) :={f: Dy — C | f is holomorphic on Dy and satisfies N1 (f, Dg) < oo}. (6.3)
Theorem 6.1 ([10] [11, Theorem 5]). Assume that a function f satisfies

f € H'(Da),
Ve e R: [f(x)] < A exp(—B exp(ylz])) (6.5)

for positive constants A, B, v and d, where vd < 7 /2. Then there exists a constant C, indepen-
dent of N, such that

N

sup (f(x) = > f(kh)S(k,h)(x)

—oo<r<o0 ke N

_ mdyN
< Cexp <_log(7rd7N/B)> ’ (6.6)

where

_ log(ﬁqu/B).

h
YN

(6.7)

Proof. A sketch of the proof is given here in view of its fundamental role in subsequent argu-
ments. We divide the error into two parts as

N
f@) = > f(kh)S(k, h)(x)
k=—N

foosll:f<oo
< swp (f(x)— D RS h)(x)| + sup | D f(R)S(RR)(@)|. (6.8)
—oo<x <00 k——o0 —oo<r<oo \k:|>N

15



The first term on the right-hand side may be referred to as the sampling error and the second
as the truncation error. For the sampling error it follows from (6.4), (6.7), and an estimate by
a contour integral that

fl@) = > f(kh)S(k,h)(x)

sup
—oo<Tr<oo ke —o0
d wdyN
<’ _T o S e S 6.9
= eXp( h) eXp( logwva/B))’ (6.9)

where C" > 0 is a constant. For the truncation error we have from (6.5) and (6.7) that

sup | Y f(kR)S(k,h)(z)| < Y |f(kh)]

—oo<r<oo

|k|>N |k|>N
< 2Aexp(—Bexp(yNh)) _ 24 exp(—2ndyN) (6.10)
Byexp(yNh) 2wdy2 N )
Hence follows the claim. |

The following lemma gives a sufficient condition for f to satisfy the first assumption f €
H!'(D,) in Theorem 6.1 above in term of a dominating function g of f.

Lemma 6.2. A function f holomorphic on Dy belongs to H!(D,), if there exists a function g
on D, such that

Vz € Dy : |f(2)] <lg(2)], (6.11)
VieR,Vy e R(ly| <d): |g(x+iy)| <A exp(—B exp(?/|z|)) (6.12)

for constants A’, B’,y > 0.
Proof. By (6.12) we have

/OO (lg(x +id)| + |g(z — id)]) dr < oo,

—0o0
d
lim lg(x +iy)|dy = 0.
r—+oo d
Then, by (6.11), we see that N1(f,Dg) < Ni(g,Dy) < oo. [ |

Some comment is in order on the inequality vd < /2 in Theorem 6.1. This inequality
condition is natural and inevitable because of the following fact, which is an immediate corollary
of [9, Lemma 4.2].

Theorem 6.3 (Vanishing Theorem). Let A and B be positive constants, and  and d be
positive constants with vd > /2. If a function f on Dy satisfies

f € HY(Dy),
VeeR: |f(z)] < A exp(=B exp(ylz])),
then f = 0.
It should be clear that the above theorem does not affect the proofs of the theorems and

lemmas in this paper.
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6.2 Proof of Theorem 3.1

In the proofs of Theorem 3.1 to 3.5 in Subsections 6.2 to 6.6, we show that the transformed
function f = f (YpEi(+)) satisfies the assumptions of Theorem 6.1 by demonstrating a dominating
function g for f as described in Lemma 6.2.

In this subsection we deal with ¥pg;. The transformed function f = f(¢¥pr1(-)) is holomor-

phic on Dy. Since

1
VzeDg: |f(¥pE1(2))] < C1 {COShQ((ﬂ/Q) sinh Z)}ﬂ

follows from (3.1), we can take

1
=G {cosh?((r/2) sinh 2)}5

9(2)

to meet the first requirement (6.11) in Lemma 6.2. We can also show that this function g(z)
satisfies (6.12) by letting B = 3 in Lemma 6.4 below. Therefore we have f(1pg1(-)) € HY(Dy)
by Lemma 6.2. For the condition (6.5) in Theorem 6.1, it follows from the above inequality
that, for x € R, we have

e ()] < 4 exp (=7 expll) )

for a constant A > 0. Therefore f(ipgi(-)) satisfies the assumptions of Theorem 6.1 for B =
73/2 and v = 1. Hence follows the claim of Theorem 3.1.

Lemma 6.4. Let d be a constant with 0 < d < 7/2, and B be a positive constant. Then the

function )

" Tcosh?((x/2) sinh 2)} B

9(2)
satisfies (6.12).
Proof. Let z,y € R and |y| < d. We have
| cosh((m/2) sinh(z 4 1)) |?
= cosh?((/2) sinh z cos ) — sin®((7/2) cosh z sin y)
> cosh?(((m/2) cos d) sinh z) — sin®((7/2) cosh  sin y)

- {1 —sin?((7/2) coshdsind) = 1/2 (lz] <9),
cosh?(((7/2) cosd) sinh ) — 1 = sinh?(((7/2) cosd) sinhz) (|z| > §),

where § = arccosh(1/(2sind)). Hence

2%0 |z < 9),

eyl {1/[Sinh(((7r/2) cosd)sinhz)]*" (|| > §).
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6.3 Proof of Theorem 3.2
First, the transformed function f(¢¥pg2(-)) is holomorphic on Dy. By (3.2), we have

1
Vz €Dg: |f(¥pr2(2))| <C1 {cosh?((r/2)sinh 2)}8/2 |

Then the rest of the proof is similar to that of Theorem 3.1. Note that we set B = (/2 in
Lemma 6.4 to show (6.12).

6.4 Proof of Theorem 3.3

First, the transformed function f(¢¥pgs(:)) is holomorphic on D,. By (3.3), we have

1 1

V2 € Da: | Woms) < 57 | o2y smh 2192 ||

Then the rest of the proof is similar to that of Theorem 3.1. Note that we set B = /2 in
Lemma 6.4 to show (6.12).

6.5 Proof of Theorem 3.4

First, the transformed function f(¢¥pg4(+)) is holomorphic on Dy. It follows from (3.4) that

Vz € Da: |f(¢¥pEa(2))] <C1

exp z B
{esz’+eXIIJ)(exp(—Z))} eXp(_ﬂesz'eXp(_eXp(—Z)))‘-

Accordingly we choose the right-hand side above as g(z) in Lemma 6.2. Then (6.11) is met. This
function ¢(z) satisfies (6.12) by Lemma 6.5 below with B = 3. Therefore we have f(¢¥pg4(-)) €
H!(D4) by Lemma 6.2. As for the other condition (6.5) in Theorem 6.1, it follows from the
above inequality that, for x € R we have

| (Ypra(2))] < Aexp(=fexp(|z]))

for a constant A > 0. Thus f(¢¥pra(-)) satisfies the assumptions of Theorem 6.1 for B = 3 and
~ = 1. Hence follows the claim of Theorem 3.4.

Lemma 6.5. Let d be a constant with 0 < d < 7/2 and B > 0 be a positive constant. Then
the function

exp z B
g(z) = {expz T exp(exp(—2)) } -exp(—Bexp z - exp(—exp(—=2)))

satisfies (6.12).

Proof. Let z,y € R and |y| < d, and put

= oXp 2 = -exp(—exp(—=z
91(2)—expz+exp(exp(_z)), 92(2) = exp(—Bexp z - exp(— exp(—2)))
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to obtain g(z) = g1(2)%g2(2). We note

. 1
e +iy)l = 1+ exp(exp(—z —iy) —z —1iy)
< ! : -
|1 — |exp(exp(—z —iy) —z —iy)]|
1
_ 6.13
|1 —exp(e~*cosy — x)|’ (6.13)
|92(z +1y)| = [exp(=Bexp(z +iy) - exp(— exp(—z — iy)))|
= exp{—B - Re (exp(z +1y) - exp(—exp(—z —iy)))}
=exp{—B -exp(z —e “cosy) - cos(y +e “siny)}. (6.14)

It turns out to be convenient to choose a (sufficiently large) positive number & such that
a:=i—-e%>0, §:=n/2—d—e*sind >0, (6.15)

and estimate |g(z)| by dividing into three cases: (i) z <0, (ii) 0 < z < &, and (iii) x > 2.
Case (i) with < 0: By (6.13) we have

1 1
< .
exp(e"®cosy —x) —1 = exp(e=®cosd) — 1

lg1(z +1y)| <
In (6.14) we have
exp(x —e “cosy) - cos(y+e “siny) > —1
and therefore
lg2(z +1y)| < exp B.

Combining the above two inequalities we obtain

exp B
exp(e % cosd) — 1)B’

gz +iy)| = g1 (z +1y)|P - |ga(z +iy)| < (

from which follows the inequality in (6.12).
Case (ii) with 0 < z < #: We can regard |g(z +1y)| as a continuous function on a bounded
and closed region with 0 <z < Z and |y| < d. Then there exists a constant C' such that

lg(xz +iy)| < C,

which implies the inequality in (6.12).
Case (iii) with = > #: Recall the definitions of o and § in (6.15). By (6.13) we have

1 1
< — = .
l—exple™®—2) ~ 1—exple®—2) 1—exp(—a)

lg1(z +iy)| <

In (6.14) we have

exp(z —e “cosy) > exp(x —e *) > exp(x — 1),
cos(y 4 e T siny) > cos(d + e Tsind) > cos(d + e ¥ sind) = cos(w/2 — §),
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and therefore,

B cos(n/2-0) w) |

(e + i) < exp (-0
It follows from the above two inequalities that

1
(1 —exp(—a)? P (‘

which implies the inequality in (6.12). [ ]

e +1y)] < BT o),

6.6 Proof of Theorem 3.5

First, the transformed function f(¢¥pgs()) is holomorphic on Dy. Since

Vz € Dy : | f(¥pEs(2))]

< log(exp((m/2) sinh 2) + 1)
1+ log(exp((m/2)sinh z) + 1

B8
<o )> exp(—f log(exp((r/2) sinh 2) + 1))

by (3.5), we can choose the right-hand side above as ¢g(z) in Lemma 6.2. Then (6.11) is met. This
function g(z) satisfies (6.12) by Lemma 6.6 below with B = (3. Therefore we have f(¢pgs(-)) €
H!'(D4) by Lemma 6.2. As for the second condition (6.5) in Theorem 6.1, it can be shown
(cf. (6.16), (6.18) below) that

oomae)] < 4 exp (=2 expl) )

holds for x € R with a constant A > 0. Therefore f(¢pgs(-)) satisfies the assumptions of
Theorem 6.1 for B = 7(3/4 and v = 1. Thus we have proven Theorem 3.5.

Lemma 6.6. Let d be a constant with 0 < d < 7/2, and B > 0 be a positive constant. Then
the function

(2) == < log(exp((7/2) sinh z) + 1)
1+ log(exp((w/2) sinh Z) 41

B
)> -exp(—Blog(exp((m/2) sinh z) + 1))

satisfies (6.12).

Proof. Let z,y € R and |y| < d, and set z = x +iy. We consider asymptotic estimates as
T — 00 Or T — —0Q.
First we consider the case of x — oco. Since |log(exp((7/2)sinh z) + 1)| — oo, we have

‘< log(exp((7/2)sinh z) + 1) >B <0
)

1+ log(exp((m/2)sinh z) + 1

for a constant C; > 0. The second factor of g can be rewritten as

1
(exp((w/2)sinh z) + 1)B"

exp(—Blog(exp((m/2)sinhz) 4+ 1)) = (6.16)

20



Table 1: Fundamental theorems for approximation on (—oo, c0)

DE-Sinc formula SE-Sinc formula
Theorem 6.1 Theorem 7.2 Theorem 8.1 Theorem 8.2
f€HYD;) hol/bnd on Dy f €HYDy) hol/bnd on Dy
double exponential decay on R single exponential decay on R

(“hol/bnd” = “holomorphic and bounded”)

Therefore, g satisfies (6.12) as x — 0.
Next, we consider the case where x — —oo. In this case we have
1
|(exp((7/2) sinh z) + 1)

| exp(—Blog(exp((7/2)sinh z) + 1))| = ] <Oy (6.17)

for a constant Co > 0. To estimate the first factor of g, we use the following general facts: for
¢ € C with |¢| < 1/2, we have

o0

St

n=1

[log(¢ +1)| =

S <l
<[y k= <1
2 =g

and therefore

‘ log(¢ +1) '< logC+D|  _ _Icl/a—ID) _ Kl
T loa(¢+1)| = T—[log(C+ 1) = T—I¢[/(1—[c) ~ T— 2]

Here (1 —2[¢|)~! is bounded for ¢ with sufficiently small absolute values, and therefore we have

log(exp((m/2)sinhz) + 1) \? _ B
< (- 2 h 1
‘ (1 + log(exp((7/2) sinh z) + 1) < Cslexp((m/2) sinh 2) (6.18)
for a constant C3 > 0. By (6.17) and (6.18) we see that (6.12) holds for g as © — —o0. [ ]

7 Proofs of Theorems 4.1 to 4.5

To cope with the weaker decay conditions in the theorems of Section 4 we first modify the
fundamental theorem (Theorem 6.1) for the Sinc formula on (—oo,00). To be specific, we relax
the assumption by replacing the requirement of f € H(Dy) in (6.4) with the condition that f is
holomorphic and bounded on Dy. The resulting theorem (Theorem 7.2), giving almost the same
error estimate under milder conditions, will serve as the basis of our proofs, just as Theorem 6.1
did for the theorems in Section 3; see Table 1.

The following is a key lemma.

Lemma 7.1 ([13, Lemma 5.5]). Assume that a function f is holomorphic and bounded on
Dy for d > 0, and it satisfies

Ve e R: |f(x)] < A exp(—B exp(ylz])) (7.1)
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for constants A, B > 0, and v > 0 with vd < 7/2. Then there exists a constant My such that

VeeR,Vy e R(Jy| <d): |f(z+1iy)| < My exp <—B Wexp(ﬂx\)) . (7.2)

With this lemma, we can show the following.

Theorem 7.2. Assume that a function f is holomorphic and bounded on Dy for d > 0, and it
satisfies

VzeR: |f(z)] < A exp(—B exp(v|z])) (7.3)

for constants A, B > 0 and > 0 with vd < 7/2. Then, for arbitrary ¢ with 0 < ¢ < d, there
exists a constant C., independent of NV, such that

d—e)yN
< CeeXP< md—c)y > ;

“Tog(r N/ ) i

—oo<r<oo

N
sup | f(x) = Y f(kR)S(k,h)(x)
k=—N

where
b log(mdyN/B)
= N .
Proof. By the assumption, f is holomorphic and bounded on Dy /5. It then follows from
Lemma 7.1 that
—_ sin(ye/2)
Di_e: <M -B—m————
VZ € d—e ‘f(Z)| —_ d—€/2 eXp < Sln(q/(d _ 6/2))
for some My_. 5. This implies f € H'(Dy—_.) by Lemma 6.2.
The rest of the proof is similar to that of Theorem 6.1. Just as (6.9) we have

exp(s/Re) )

fx) = Y f(kh)S(k,h)(x)

sup
—oo<r<0o0o b——o0

d—e¢) w(d—e)yN
< _L e S S A
<o (552 = ctew (-3

for the sampling error. For the truncation error we have

2A exp(—2mdyN)
2wd2 N ’

sup | > f(kh)S(k,h)(z)| <

—oo<r<oo |k|>N
the same estimate as in (6.10). Hence follows (7.4). [ ]
We now prove the theorems in turn.

Proof of Theorem 4.1. The transformed function f = f(¢pg1(+)) is holomorphic and bounded
on D,. For the condition (7.3) we have

e ()] < 4 exp (=2 expll)

for z € R with a constant A > 0. Therefore f = f(¢pg1(-)) satisfies the assumptions of Theorem
7.2 for B =7n(3/2 and v = 1. Hence follows the claim. [ ]
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Proof of Theorem 4.2. The transformed function f = f(¢pga(-)) is holomorphic and bounded
on D,. For the condition (7.3) we have

s
oma(e)] < 4 exp (-2 expl)
for z € R with a constant A > 0. Therefore f = f(¢pga(-)) satisfies the assumptions of Theorem
7.2 for B =7n(3/4 and v = 1. Hence follows the claim. [ ]
Proof of Theorem 4.3. The transformed function f = f(¢pgs(+)) is holomorphic and bounded

on Dy. For the condition (7.3) we have

omate)] < 4 exp (=22 expll)

for # € R with a constant A > 0. Therefore f = f (vpr3(+)) satisfies the assumptions of Theorem
7.2 for B = w3/4 and v = 1. Hence follows the claim. [ |

Proof of Theorem 4.4. The transformed function f = f(¢pg4(+)) is holomorphic and bounded
on Dy. For the condition (7.3) we have

|/ (¥pEa(2))] < A exp (=B exp(|z[))

for 2 € R with a constant A > 0. Therefore f = f(¢pga(-)) satisfies the assumptions of Theorem
7.2 for B = and v = 1. Hence follows the claim. |

Proof of Theorem 4.5. The transformed function f = f(¢pgs(+)) is holomorphic and bounded

on Dy. For the condition (7.3) we have

[ ops(a)] < A exp (-7 exp(lo))

for z € R with a constant A > 0. Therefore f = f(¢pgs(-)) satisfies the assumptions of Theorem
7.2 for B =7n(3/4 and v = 1. Hence follows the claim. [

8 Proofs of Theorems 5.1 to 5.4

8.1 Fundamental Theorems for SE-Sinc Formula

We mention here two fundamental theorems for the Sinc formula on (—oo, 00) for functions with
single exponential decay. The first is a well-known fact due to Stenger and the second is a similar
statement under a weaker assumption; see also Table 1.

Theorem 8.1 (Stenger [6]). Assume that a function f satisfies

f € H'(Dy),
Ve eR: [f(x)] < aexp(=fFlz])
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for positive constants «, 3, and d. Then there exists a constant C, independent of IV, such that

N

sup | f(x) — > f(kh)S(k,h)(x)

—oo<r<oo ke—N
d
h=4/—-—.
\/ BN

Proof. A sketch of the proof is given here in view of its fundamental role in subsequent argu-
ments. Recall (6.8). By the assumption (8.1), the sampling error is estimated as

< CV'N exp (—\/W) , (8.3)

where

sup | f(@) = D f(kh)S(k h)(x)

—oo<r<o0

< ' exp (—7‘:) = Cexp (—\/W) (8.4)

k=—o00

for a constant C’. By (8.2), on the other hand, the truncation error is estimated as

sup | S kS ) (@) < 3 15 Gkh)]

TOOSELO LIS N |k|>N

20 200/ N
< G b (ANR) = e (—deﬂN) . (8.5)

Hence follows (8.3). [ ]

To cope with the weaker decay conditions in the theorems of Section 5 we need to modify
the fundamental theorem above to the following form.

Theorem 8.2. Assume that a function f is holomorphic and bounded on Dy for d > 0, and it
satisfies

Vo€ R: |f(2)] < a exp(—Blal) (8.6)

for positive constants « and 3. Then, for arbitrary ¢ with 0 < & < d, there exists a constant C.,
independent of N, such that

N
sup_(f(2) = > FR)S(hh)(@)| < CoV/Nexp (—y/m(d—2)BN),  (87)
—oo<xr<oo ke N
where
wd
h =45
OGN
Proof. The proof will be given later in Subsection 8.3. |
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8.2 Proofs of Theorems in Section 5

On the basis of Theorem 8.2 we now prove the theorems in Section 5 in turn.

Proof of Theorem 5.1. The transformed function f(¢sgi(+)) is holomorphic and bounded on
Dy. For the condition (8.6) we have

|f (Ysg1 ()] < o exp (= ]]) (8.8)

for x € R with a constant a > 0. Therefore f(isgi(-)) satisfies the assumptions of Theorem
8.2. Hence follows the claim. |

Proof of Theorem 5.2. The transformed function f(¢sga(+)) is holomorphic and bounded on
Dy. For the condition (8.6) we have (8.8) for a constant o > 0. Therefore f(1sga(-)) satisfies
the assumptions of Theorem 8.2. Hence follows the claim. |

Proof of Theorem 5.3. The transformed function f(¢sgs(-)) is holomorphic and bounded on
Dy. For the condition (8.6) we have (8.8) for a constant o > 0. Therefore f(¢sg3(-)) satisfies
the assumptions of Theorem 8.2. Hence follows the claim. |

Proof of Theorem 5.4. The transformed function f(¢sg4(-)) is holomorphic and bounded on
Dgy. For the condition (8.6) we have (8.8) for a constant aw > 0. Therefore f(1¢sg4(-)) satisfies
the assumptions of Theorem 8.2. Hence follows the claim. |

8.3 Proof of Theorem 8.2

We will prove Theorem 8.2 by establishing a new lemma (Lemma 8.5), which plays the role of
Lemma, 7.1 in the proof of Theorem 7.2.

We start with the following theorem, a variant of the Phragmén-Lindel6f theorem [1, Theo-
rem 1.4.1]. As in Figure 10 (left) we define a complex region W as

W:={z+iy|z,y € R, 2,y >0, 22 +y* > 1}.

25



Theorem 8.3. Assume that a function f : W — C is holomorphic on W and continuous on
W. Also assume that

Yw e W : |f(w)| < M

for a constant M > 0. If there exists a real number p < 2 such that

‘f (Tew)‘ =O(exp(r?)) (r — o0)
holds uniformly with respect to § € (0,7/2), then we have
YweW: |f(w)| < M.
Proof. The proof is similar to that of [1, Theorem 1.4.1], and is omitted here. |
For d > 0 define a complex region Z; (see Figure 10) as
Zi={rx+iy|z,yeR, >0, 0<y<d}

and a mapping z4 : W — Z; as

2
zg(w) == ?d log w,

where the logarithm is considered on the region C\ (—o0, 0] with the argument in (—, ).
By translating Theorem 8.3 for W to a statement for Z; through the mapping z; we obtain
the following.

Corollary 8.4. For d > 0 assume that a function f : Z; — C is holomorphic on Z; and
continuous on Z,, and that
Vz2e0Z: |f(2)| <M

for a constant M > 0. If there exists a real number p < 2 such that
@ +iy)| =0 (exp (exp (F52))) (@ = o)
holds uniformly with respect to y € (0,d), then we have
Vze Zg: |f(2)] < M.
The following is the key lemma, which we derive from Corollary 8.4 above.

Lemma 8.5. For d > 0 assume that a function f : D; — C is holomorphic on D, and continuous
on Dy, and that

Vz€Dg: |f(2)| <M (8.9)
for a constant M > 0. Also assume that
Vo€ R: [f(z)] < Mexp(—pla]) (8.10)

for a constant § > 0. Then we have

VeeR,Vye R(ly|<d): |f(x+1iy)| < Mexp (—ﬁ <1— “?) ]w|>
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Proof. We assume z > 0 and 0 <y < d and define F(z) := f(z)w(z) with

w(z) :==exp (ﬂ (1 +1i ﬁ) )

o (5 (14 757 ) i) = e (5 (1= §) ).

we have |F(z)| < M for all z € 0Z,. In addition, for sufficiently large =, we have

Since

wia +iy)| =

|F(z+1iy)| < Mexp(Bx) < Mexp (exp (25 ))
with p > 0. Therefore, by Corollary 8.4, we obtain
Vze Zg: |F(z)] < M.

Finally we note that

Y
FG)] = 1P/ w()] < Mexp (=8 (1= 2) 2).
Thus we have done with the case where > 0 and 0 < y < d. Other cases, with x < 0 and/or
0 > y > —d, can be treated in a similar manner. |

With the lemma above we can prove Theorem 8.2 as follows. By the assumptions, f is
holomorphic and bounded on Dy_./4. It then follows from Lemma 8.5 that there exists a
constant M > 0 such that

Vi€ D 1) < e (-9 7L ireal )

This implies f € Hl(Dd,E/z) by Lemma 6.2.
The rest of the proof is similar to that of Theorem 8.1. Just as (8.4) we have

= 3 F(kR)S (R, )(2)

sup
—oo<r<oo k= —oo
d—¢e/2
< Clexp (—W( ha—:/ )>

:Céexp< Vr((d—¢/2) 2/d)ﬁN)
SC’;eXp(— W(d—é)ﬂN)

for the sampling error. For the truncation error we have

2 20z\/N
s %Nﬂkh)smh)(x) < G o0 (-ON) = Zom e (~/mdBN).

the same estimate as in (8.5). Hence follows (8.7). This completes the proof of Theorem 8.2.
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