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Abstract

The purpose of the Internet routing system is to construct a Di-
rected Acyclic Graph (DAG) for each destination. Although the num-
ber of paths and the connectivity of the graph are important properties,
constructing a DAG that includes all edges to increase the number of
paths and the connectivity has not been studied. In this paper we de-
scribe a new problem called all-to-one maximum flow routing problem
that maximizes the minimum of maximum flow among all nodes to a
destination. We studied an algorithm that utilizes the MA ordering to
find the desirable DAG for a given network. It is proven that the al-
gorithm produces the optimal solution, and the time complexity is the
same with that of the MA ordering, O(m+n log n) where m and n are
the number of edges and nodes, respectively. Simulations showed that
the routing calculated by MA ordering outperforms current shortest
path routing significantly in terms of maximum flow on each pair of
nodes, but for the link utilization on a traffic demand of random model
between multiple pair of nodes, MA ordering is outperformed by the
shortest path routing because of a lack of efficient method to compute
traffic split ratio.
Keywords: Algorithm, Multipath, Maximum flow problem

1 Introduction

The routing system in the Internet has a very important role since the path
of all communication sessions in the Internet follow its decision. The path
that the routing system decides determines the property of the commu-
nication session, such as availability, maximum amount of bandwidth and
communication delay.

The Internet is a hop-by-hop network and all routers in the network for-
ward packets autonomously, so they must agree on the paths to destinations
in order to avoid routing loops. Such a configuration of routes is said to be
a Directed Acyclic Graph (DAG) for the destination where routes to the
nexthop in each routers indicate directed edges in the DAG.

The routing in the Internet has been based on the shortest path routing,
in which each edge is given a cost for data to pass through, and the rout-
ing decision is made so that for each source and destination pair of nodes,
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the sum of the edge costs in the path is minimum. Since each router se-
lects a shortest path to a destination, the routes to the destination form a
tree rooted to the destination rather than a graph with multipaths to the
destination. Although the IP routing architecture allows multipaths to the
destination in a router where the path to the destination branches, multi-
paths to the destination in the shortest path routing require the costs to the
destination on these paths to be equal, which rarely happen. Multipaths
to the destination in the shortest path routing is called Equal Cost Multi
Paths (ECMPs).

The tree based routing with very little multipaths has some deficiencies.
First, if the shortest path includes malfunctioning routers or links on its way
to the destination, all communications are not possible until the routing
system detects the failure and recomputes the new shortest path. This
means that the redundancy of the network graph can be utilized only after
the routing change, and cannot be utilized totally if the routing system fails
to detect the failure. This is against the belief that a dense and complex
network graph structure exhibits reliability. Since making the network graph
complex does not give advantages such as increased reliability, there are still
many tree-based network graph structures in the Internet.

Second, the maximum available bandwidth between the source and the
destination is limited to that of the shortest path. If the transmission rate
exceeds the maximum available bandwidth of the shortest path, the short-
est path congests without using alternative roundabout paths with available
bandwidth even if they exist. It means that the network cannot support traf-
fic demands that have an excessive amount of traffic on a source-destination
pair compared to the shortest path, limiting the range of the maximum
traffic supported by the network.

We propose a novel multipath route calculation algorithm that construct
a DAG that includes all edges in the graph in this paper. A new graph
problem, all-to-one maximum flow routing problem, has been introduced to
describe the problem solved by our algorithm. Our algorithm utilizes MA
ordering [7, 8] to optimally solve the problem. The main contributions of
this paper are: (a) introducing a graph problem with new objective function;
(b) proposing a novel route calculation algorithm for the problem; (c) veri-
fying, for the first time, the tolerance property of the routing with maximum
multipaths against link congestion with a random model traffic demand.

The rest of this paper is organized as follows. Section 2 presents the
related work of multipath routing algorithms. Section 3 introduces the all-
to-one maximum flow routing problem to formulate the problem. Section 4
describes our algorithm that utilizes MA ordering. Section 5 gives the proof
of correctness of our algorithm. Section 6 presents some simulations to
evaluate the property of the algorithm. We conclude in Section 7.
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2 Related Work

Proposed multipath routing methods are based on the shortest path routing
and are essentially its extensions. MPDA [11], MDVA [12] and MPATH [10]
use the Loop Free Invariant (LFI) property of shortest path routing to com-
pute multipath routes. FIR [5] computes per network interface routing table
by executing Shortest Path First (SPF) calculations the number of times
equal to the number of neighbors for each router to route around the fail-
ure between the router and the neighbor. Deflection [13] extends the LFI
property utilizing the identity of the incoming network interface to produce
increased successor set.

3 Problem Description

We are given an undirected graph and a destination node. We choose some
edges from the given edges and decide directions of the chosen edges. To
avoid routing loops, the resulting directed graph should not have any di-
rected cycle; i.e., we want to find a DAG on the input graph. For the
purpose of reliability and robustness of the network, we consider the edge
connectivity from all nodes to the destination node. By maximizing the min-
imum connectivity among all nodes to the destination, we obtain a routing
that achieves the most robustness. By calculating such routing for each
destination, we obtain the routing that achieves the most robustness for all
source-destination node pairs. We call the problem of deciding the direc-
tions of edges to maximize the minimum connectivity among all nodes to
the destination the all-to-one maximum connectivity routing problem. The
formulation of this problem is obtained by setting the capacities of all edges
as 1 in the all-to-one maximum flow routing problem introduced below.

In order to support a traffic demand that has an excessive amount of traf-
fic on a source-destination pair compared to the shortest path, we consider
the maximum flow from every node to the destination node. By maximizing
the minimum maximum flow among all nodes to the destination, we obtain
a routing that achieves the best support for the excessive amount of traffic
to the destination. By calculating such routing for every destination, we
obtain the routing that achieves the best support for all source-destination
node pairs. We call the problem of maximizing the minimum maximum
flow among all nodes to the destination the all-to-one maximum flow rout-
ing problem.

The formulation of the all-to-one maximum flow routing problem is as
follows. We are given a capacitated undirected graph G = (V,E, cap). Let
n = |V | and m = |E|, and cap(v, u) gives the capacity of the edge (v, u) if
(v, u) ∈ E, otherwise 0. We are also given a node t ∈ V as the destination.
For each orientation p of the edges, we denote by fp(v, t) the amount of max-
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imum flow from v to t. (We assume fp(t, t) = +∞ for every orientation p.)
The problem is to find an orientation of the given graph that maximizes
the minimum maximum flow among all nodes to the destination t under the
condition that the resulting graph is acyclic.

Maximize:
min
v∈V

fp(v, t).

4 Algorithm

We design an algorithm for the all-to-one maximum flow routing problem.
Instead of deciding the direction of each edge explicitly, we determine a
permutation of nodes (i.e., nodes are labeled from 1 to n), and set the
direction of each edge from higher-labeled node to lower-labeled node. It
is known that constructing a DAG on an undirected graph is equivalent to
deciding a topological order of nodes [1]. We propose to use the maximum
adjacency (MA) ordering for solving the problem.

First, we explain the MA ordering proposed by Nagamochi and Ibaraki [7].
Let G = (V, E) be an undirected graph that has n nodes and m edges. An
ordering v1, v2, . . . , vn of nodes is called an MA ordering if an arbitrary node
is chosen as v1, and after choosing the first i nodes v1, v2, . . . , vi, the (i+1)-st
node vi+1 is chosen from the nodes v that have the largest number of edges
between v and {v1, . . . , vi}. It is known that the MA ordering is useful for
various problems on graphs such as to identify a minimum cut between two
nodes and to solve the edge-connectivity augmentation problem. An algo-
rithm to compute an MA ordering is given in Algorithm 1, where d(v, S)
denotes the number of edges between a node v and a set of nodes S.

Algorithm 1 MA ordering algorithm
1: procedure MA ordering(G = (V,E), s ∈ V )
2: v1 ← s, S = {s}, T = V \ {s}
3: i ← 2
4: while i ≤ |V | do
5: choose a node v ∈ T with the largest d(v, S)
6: vi ← v, S = S ∪ {v}, T = T \ {v}
7: i ← i + 1
8: end while
9: output ordering (v1, v2, . . . , vn) of nodes

10: end procedure

For a capacitated undirected graph G = (V, E, cap), an ordering similar
to the MA ordering is also defined. In this case, we choose a node v ∈ T in
Line 5 of Algorithm 1 as the maximum

∑
u∈S cap(v, u) instead of d(v, S).

By using an appropriate data structure such as Fibonacci heap [4], an MA
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Figure 1: The relation between v, V ′, v′, V ′′, X and t in Lemma 5.1

ordering for a (capacitated) undirected graph and for a node s ∈ V can be
obtained in O(m + n log n) time [7].

Now, we propose an algorithm for the all-to-one maximum flow routing
problem. Our algorithm is very simple: We compute an MA ordering for a
capacitated undirected graph G = (V, E, cap) using a destination node t ∈
V as an initial node s. We then output the direction of each edge from
the higher-labeled node to the lower-labeled node. This algorithm runs in
O(m + n log n) time. We show the optimality of our algorithm in the next
section.

5 Correctness of our algorithm

In this section, we give a proof for the optimality of our algorithm proposed
in the previous section. In other words, we show that an MA ordering of
nodes gives an optimal solution for the all-to-one maximum flow routing
problem.

Let a capacitated undirected graph G = (V, E, cap) and a destination
node t ∈ V be given, where the graph has n nodes including the destination
node. We first show the following lemma on the minimum cut and the
maximum flow for a bottleneck node, when an orientation p of edges is
given with a permutation of nodes; i.e., nodes are labeled from 1 to n and
each edge is headed to the lower-labeled node.

Lemma 5.1 Let v be the lowest-labeled node with the minimum fp(v, t).
Then, fp(v, t) =

∑
u∈V ′ cap(v, u) holds, where V ′ is the set of nodes which

have lower-labels than v.

Proof. By using a relationship between the cut and flow on a DAG,
fp(u′, t) ≤

∑
u cap(u′, u) holds for every node u′ 6= t, where u has a lower

label than u′.
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We prove the equality by contradiction. Suppose that fp(v, t) <
∑

u∈V ′ cap(v, u)
holds. The max-flow min-cut theorem on a directed graph [2] implies that
there exists a directed cut X (i.e., a partition of nodes) whose value is equal
to fp(v, t). Let v′ is the lowest-labeled node such that v and v′ belong to
the same subset of nodes partitioned by X. Then, the following inequalities
hold:

fp(v, t) ≥
∑

u∈V ′′

cap(v′, u) ≥ fp(v′, t)

where V ′′ is the set of nodes which have lower-labels than v′. (The relation
between v, V ′, v′, V ′′, X, and t is shown in Figure 1.) This contradicts the
assumption that v is the lowest-labeled node with the minimum maximum
flow to t. ¤

Theorem 5.2 The MA ordering solves the all-to-one maximum flow rout-
ing problem optimally.

Proof. Suppose that the MA ordering algorithm using the destination
node t as an initial node gives a label i to node vi for every node in V
(i.e., we assume the destination node t = v1 and it has a label 1). We set
the direction of each edge from the higher-labeled node to the lower-labeled
node. We call this orientation “ma,” and let gma be the objective value for
this orientation. We define Vi = {v1, v2, . . . , vi−1} as the set of nodes which
have smaller labels than vi. Let c(v, V ′) denote

∑
u∈V ′ cap(v, u). By the

definition of c(v, V ′), c(v,B) ≤ c(v,A) if B ⊆ A holds.
Let vk be the lowest-labeled node whose maximum flow value fma(vk, t)

to the destination node t is the smallest. By using Lemma 5.1, we have the
following equalities:

gma = fma(vk, t) = c(vk, Vk).

From the MA ordering algorithm, c(vi, Vk) ≤ c(vk, Vk) holds for i = k +
1, k + 2, . . . , n, because vk is labeled earlier than vi.

We assume that there exists another ordering of nodes, whose orienta-
tion is denoted by “opt” and gopt > gma holds. Let vl be the node with
the smallest label in opt among a set of nodes {vk, vk+1, . . . , vn}. This is
illustrated in Figure 2. Then, the following equalities and inequalities hold:

gopt ≤ fopt(vl, t) ≤ c(vl, V
′) ≤ c(vl, Vk) ≤ c(vk, Vk) = gma,

where V ′ is the set of nodes which have smaller labels than vl in opt. This
contradicts the assumption that there exists an orientation opt with gopt >
gma. ¤
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Figure 2: The optimality proof of MA ordering

6 Evaluation

We evaluate our method in three aspects; robustness (Section 6.1), max-
imum flow amount on a pair of nodes (Section 6.3), and link utilization
(Section 6.4).

6.1 Robustness

Constructing a DAG that includes all edges in the graph increases the re-
dundancy of paths and the robustness of the network. Our method is used
by Ohara et al. [9] along with some extensions to the IP architecture for the
redundancy purpose, and showed the improved failure avoidance property
of our method compared to a recent existing method [13].

6.2 Simulation methodology

We ran two simulations to show the property of our method. One is to
show that our method increases the maximum flow amount for each source-
destination node pair. The other is to show how the routing derived from our
method exhibits the link utilization property in the network with random
model traffic demands between multiple pair of nodes.

A virtual topology generated by BRITE [6] is used in the simulations.
The configurations of the BRITE are as follows:

1. Topology generation model is the Barabási-Albert model.

2. Number of nodes in the graph (N) is 20.

3. The node placement is random in the plane size HS = 1,000 and LS
= 100.

4. The number of neighboring nodes each new node connects (m) is 4.

5. The distribution of bandwidth in links (BWDist) are uniform in the
range between 100 and 1,000.
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Figure 3: The maximum flow amount per source-destination node pair

We compared our method to the classic Dijkstra’s algorithm with two
cost settings: the inverse capacity and the minimum hop. Dijkstra’s algo-
rithm with inverse capacity cost setting is called “dijkstra invcap,” and the
cost of each link is configured to the value that is inversely proportional to
the bandwidth generated by BRITE. The edge’s cost c is derived by the
equation c = 100, 000/bandwidth. Dijkstra’s algorithm with minimum hop
cost setting is called “dijkstra minhop,” and the costs of all links are config-
ured as 1. In both cost settings, the Equal Cost Multi Paths (ECMPs) are
properly calculated and considered in the simulation results. Our method
is called “MA ordering.”

6.3 Maximum flow amount on a pair of nodes

The Cumulative Distribution Function (CDF) of maximum flow amount
in all source-destination node pairs is given in Figure 3. As is proven in
Section 5, our method calculates the routing for hop-by-hop network that
maximize the minimum maximum flow amount among all source-destination
node pairs. Our method outperforms the other two significantly. 84.2%
of the source-destination pairs have more than 1,000 maximum available
bandwidth in MA ordering, while in dijkstra minhop it is only 7.6% and in
dijkstra invcap it is 0%.

6.4 Link utilization

We also examined the link utilization with traffic demands on multiple
source-destination node pairs. The traffic model is drawn from the pre-
vious work of Fortz and Thorup [3]. It is a random model with two notions,
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Figure 4: The link utilization for each link

one models hot spot node that sends and receives more data, and the other
models relatively more demand between pair of nodes that are close in terms
of Euclidean distance generated by BRITE. The scaling parameter α is set
to 100. The result of loading a traffic demand derived from the model on
the network is present in Figure 4. Our method of using MA ordering is
outperformed by the two classical routing methods significantly.

The reason for this is closely related to the traffic splitting ratio in each
node. In this simulation, we split the traffic that the node is forwarding, in
the ratio of the outgoing edge’s bandwidth to the sum of bandwidth of all
outgoing edges from the node to the destination. This method does not con-
sider the relation between the amount of traffic that the node splits and the
link bandwidth capacity that the traffic will pass through. Consequently, in
terms of link utilization, this method is outperformed by the other methods
that are simple and classical. For the same reason, MA ordering is also
outperformed, in terms of the maximum link utilization among all links, by
dijkstra invcap. Each maximum link utilization in the network is 0.398 in
dijkstra invcap, 0.521 in dijkstra minhop, and 0.507 in MA ordering.

Generally the method of constructing a DAG that includes all edges
in the graph calculates significantly longer paths that are roundabout. If
the paths are roundabout, the efficiency of using link bandwidth against
the amount of traffic load decreases, since the same amount of traffic is
forwarded in longer path consuming additional link bandwidth.

These results can be considered as either trade-off for the increased ro-
bustness of the network, or simply the non-optimal settings of the traffic
splitting ratio. Improving the settings of the traffic splitting ratio in the
multipath routing calculated by our method is necessary, and we consider it
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as the future work.

7 Conclusion

In this paper, we presented a novel edge orientation problem “all-to-one
maximum flow routing problem,” in which the objective is to maximize the
minimum maximum flow amount from all nodes to the destination. We
introduced the application of MA ordering to an edge orientation problem,
and this application is proved to find an optimal ordering of nodes (thus an
optimal DAG) for the purpose.

Multipath routing has been researched for long time, but this paper
studied for the first time an approach to construct a DAG that includes all
edges in the network graph. The lack of efficient method to compute the
traffic split ratio on each node is found to be problematic when our method
is applied in the communication networks as multipath routing. In order to
gain the robustness property our method provides, the method to compute
the traffic split ratio on a DAG needs to be developed.
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