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Abstract

A tree metric is known to be representable as the sum of split metrics. This classical result can
be derived geometrically via the polyhedral split decomposition of a tree metric. The present paper
investigates the polyhedral split decomposition from the viewpoint of discrete convex analysis.

In discrete convex analysis, a distance such as a tree metric and split metric on a finite set
is regarded as a positively homogeneous M-convex function. With the aid of the polyhedral split
decomposition, the positively homogeneous M-convex function for a tree metric is decomposed into
the sum of split functions. This paper shows that those split functions are positively homogeneous
M-convex functions for split metrics. Then, we notice that the decomposition is in contrast with
the general case of M-convex functions because the sum of M-convex functions is not necessarily
an M-convex function. We study the decomposition by means of polyhedral subdivisions induced
by M-convex functions. Those polyhedral subdivisions are known as matroid subdivisions.

This paper also deals with quadratic M-convex functions. The directional derivatives of an
M-convex function can be defined at each point in the domain, and moreover, each of them is
a positively homogeneous M-convex function as a function of directions. A discrete function on
a finite set is called split-decomposable if its convex extension is represented as the sum of split
functions and a linear function. For example, a tree metric is split-decomposable. This paper
shows that each of the directional derivatives of a quadratic M-convex function is represented
as the sum of a tree metric and a linear function. Thus, a quadratic M-convex function is a
split-decomposable function at every point.

Keywords: positively homogeneous M-convex function, quadratic M-convex function, distance,
tree metric, polyhedral split decomposition, matroid subdivision, split-decomposable.

1 Introduction

A tree metric is known to be representable as the sum of split metrics. This classical result can be
derived geometrically via the polyhedral split decomposition of a tree metric [10]. The present paper
investigates the polyhedral split decomposition from the viewpoint of discrete convex analysis [12].

In order to review the previous results, we begin by classifying a distance, metric, tree metric
and split metric on a finite set X. A distance is defined as a function d : X × X → R such that
d(i, i) = 0 for all i ∈ X and d(i, j) ≤ d(i, k)+d(k, j) for all i, j, k ∈ X. A metric d is a symmetric and
nonnegative distance, that is, a distance d such that d(i, j) = d(j, i) ≥ 0 for all i, j ∈ X. A metric d
is called a tree metric if there exits a tree with nonnegative edge lengths such that d(i, j) is equal to
the length of the path in the tree between the vertices indexed by i and j for all i, j ∈ X. An X-splits
is a partition of X into two non-empty sets, i.e., a pair {A,B} of A and B such that ∅ 6= A ⊆ X,
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Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan, E-mail: Syungo Koichi@mist.i.u-tokyo.ac.jp.

1



∅ 6= B ⊆ X, A ∩ B = ∅ and A ∪ B = X. The split metric ξ{A,B} : X × X → {0, 1} associated with
an X-split {A,B} is defined by

ξ{A,B}(i, j) =

{
0 if i, j ∈ A or i, j ∈ B,

1 otherwise,

for all i, j ∈ X. Let X be the set of the vertices in a tree. Then, deleting an edge from the tree
induces an X-split. As a consequence of this fact, we obtain the classical result that a tree metric can
be represented as the sum of the split metrics corresponding to the edges of its designating tree. This
classical result can be derived geometrically as a special case of the polyhedral split decomposition.

The polyhedral split decomposition of polyhedral convex functions is introduced by Hirai [5, 6] in
order to extend the results of Bandelt and Dress [1]. A polyhedral convex function is a function whose
epigraph is a convex polyhedron. By polyhedral split decomposition, a polyhedral convex function f
on Rn can be decomposed as

f(x) =
∑

(a,r)∈Rn×R,

0<c
f
a,r<+∞

cf
a,r|〈a, x〉 − r| + f ′(x) (x ∈ Rn),

where cf
a,r is given by cf

a,r = sup{t ≥ 0 | f(x) − t|〈a, x〉 − r| is convex in x} and f ′, called the residue
of f , is a polyhedral convex function such that cf ′

a,r ∈ {0, +∞} for any (a, r) ∈ Rn × R. A function
la,r(x) := |〈a, x〉 − r| of x is called a split function.

The polyhedral split decomposition is extended to discrete functions with the aid of their homo-
geneous convex extensions. A discrete function is a function g : K → R defined on a finite set K of
points/vectors in Rn. The homogeneous convex extension of g is defined by

g(x) = sup
{
〈p, x〉 | p ∈ Rn, 〈p, y〉 ≤ g(y) (y ∈ K)

}
(x ∈ Rn).

By definition, g is a positively homogeneous polyhedral convex function with domg = coneK. Then,
from the polyhedral split decomposition of g, we obtain the discrete split decomposition of g as

g(x) =
∑

(a,r)∈Rn×R,

0<c
g
a,r<+∞

cg
a,rl

K
a,r(x) + g′(x) (x ∈ K),

where lKa,r denotes the restriction of a split function la,r on K and cg′
a,r ∈ {0,+∞} for any (a, r) ∈

Rn × R.
The polyhedral split decomposition is applied to distances as follows. Let X = {1, 2, . . . , n}. For

A ⊆ X, we denote by χA the characteristic vector of A defined by χA(i) = 1 if i ∈ A and χA(i) = 0
if i /∈ A. In particular, we write χi instead of χ{i} for each i ∈ X. A distance d : X × X → R can be
considered as a discrete function d on the point set Ω = {χi − χj | i, j ∈ X} by the correspondence:
d(χi − χj) ← d(i, j). The convex extension of d on Ω is as follows:

d(x) = sup
{
〈p, x〉 | p ∈ Rn, p(i) − p(j) ≤ d(χi − χj) (i, j ∈ X)

}
(x ∈ Rn). (1.1)

This d is a polyhedral convex function. Hence, the polyhedral split decomposition is applicable to d.
In [10], we show that, for a metric d, the polyhedral split decomposition of d is given by

d(x) =
∑

{A,B}∈Σb(d)

cd
χA−χB ,0

|〈χA − χB, x〉|
2

+ d′(x) (x ∈ Rn),
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where Σb(d) is defined by Σb(d) = {{A,B} | {A,B} : X-split, cd
χA−χB ,0 > 0}. Moreover, we reveal

that cd
χA−χB ,0 for an X-split {A,B} coincides with the Buneman index [2] for the X-split and that

the residue d′ of d vanishes if and only if d is a tree metric.
On the other hand, in discrete convex analysis established by Murota [12], the notion of M-convex

functions is introduced as a generalization of valuated matroids of Dress and Wenzel [4]. The class of
positively homogeneous M-convex functions is the most fundamental one of M-convex functions and
closely related to distances on a finite set. Indeed, it is known that d is a positively homogeneous
M-convex function and every positively homogeneous M-convex function can be represented as (1.1)
for some distance.

In this paper, we show that the split functions in the polyhedral split decomposition of d are
positively homogeneous M-convex functions for split metrics. Moreover, even if d is not a tree
metric, the residue of d is a positively homogeneous M-convex function. Hence, the polyhedral
split decomposition of d can be interpreted as a decomposition of a positively homogeneous M-convex
function into the sum of positively homogeneous M-convex functions, which is in contrast with the
general case of M-convex functions because the sum of M-convex functions is not necessarily an
M-convex function. We study the decomposition by means of polyhedral subdivisions induced by
M-convex functions. Those polyhedral subdivisions are known as matroid subdivisions [11, 12, 14].

The notion of split-decomposability is suggested by Hirai [5, 6] in association with the polyhedral
split decomposition. A discrete function g : K → R is split-decomposable if its convex extension g can
be decomposed into the sum of split functions and a linear function. The class of split-decomposable
functions depends only on K [5, 6]. In fact, for an origin-symmetric points set K, such as Ω, the class
is determined by the matroid associated with K [10]. In the case of Ω, a split-decomposable function
coincides with a function such that it is represented as the sum of a tree metric and a linear function.
Hence, the path metric d : {i, j, k, l} → R on a square, i.e., d(i, j) = d(j, k) = d(k, l) = d(l, i) = 1 and
d(i, k) = d(j, l) = 2 is not split-decomposable on Ω despite that d can be represented as the sum of
the split metrics ξ{i,j},{k,l} and ξ{i,l},{j,k}.

This paper also deals with quadratic M-convex functions. It is known that there is a one-to-
one correspondence between tree metrics and quadratic M-convex functions on Zn [8]. For an M-
convex function on Zn, a directional derivative can be defined at each point in the domain, where
the directional derivative is considered as a function of the directions along the vectors in Ω. In
addition, the directional derivatives are positively homogeneous M-convex functions. We show that
every directional derivative of a quadratic M-convex function can be represented as the sum of a tree
metric and a linear function. Thus, a quadratic M-convex function is a split-decomposable function
at every point.

The present paper is organized as follows. Section 2 contains definitions, notation and some fun-
damental lemmas. In Section 3, we describe a relation between distances and positively homogeneous
M-convex functions and introduce some basic terms in discrete convex analysis. In Section 4, we
introduce the polyhedral split decomposition of polyhedral convex functions and the discrete split
decomposition of discrete functions. In Section 5, we apply the discrete split decomposition to a
distance which is regarded as a discrete function on Ω. As a result, we obtain the polyhedral split
decomposition of a positively homogeneous M-convex function which is the convex extension of the
distance. In Section 6, we show that a quadratic M-convex function is split-decomposable at every
point.

2 Preliminaries

Let R, R+, R++ be the set of real numbers, nonnegative real numbers, and positive real numbers,
respectively. We denote by Rn the n dimensional Euclidean space with the standard inner product
〈·, ·〉. For a set S ⊆ Rn, we denote by convS and coneS the convex hull and the conical hull,
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respectively, i.e.,

convS =
{∑

t∈T

λtt | T ⊆ S : a finite set, λ ∈ RT
+,

∑

t∈T

λt = 1
}

,

coneS =
{∑

t∈T

λtt | T ⊆ S : a finite set, λ ∈ RT
+

}
.

For a set S ⊆ Rn, let riS denote the relative interior of S and let intS denote the interior of S.
For a function f : Rn → R ∪ {+∞}, we define domf = {x ∈ Rn | f(x) < +∞}, which is the

effective domain of f , and epif = {(x, β) ∈ Rn × R | β ≥ f(x)}, which is the epigraph of f . The
subdifferential of a function f at point x ∈ domf is defined to be the set

∂f(x) = {p ∈ Rn | f(y) − f(x) ≥ 〈p, y − x〉 (∀y ∈ Rn)}.

The directional derivative of f at point x ∈ domf in a direction d ∈ Rn is defined by

f ′(x; d) = lim
t↘0

f(x + td) − f(x)
t

.

The indicator function of a set S ⊆ Rn is the function δS : Rn → R ∪ {+∞} defined by

δS(x) =

{
0 if x ∈ S,

+∞ if x /∈ S.

The conjugate of a function f : Rn → R∪{+∞} with domf 6= ∅ is the function f• : Rn → R∪{+∞}
defined by

f•(p) = sup
x∈Rn

{〈p, x〉 − f(x)} (p ∈ Rn). (2.1)

For a function f and a vector p ∈ Rn, f [−p] denotes the function defined by

f [−p](x) = f(x) − 〈p, x〉 (x ∈ Rn).

A function f is said to be positively homogeneous if f(λx) = λf(x) holds for λ ≥ 0 and x ∈ Rn. If f
is positively homogeneous, then f• = δ∂f(0) holds and hence f = (δ∂f(0))• is the support function of
the set ∂f(0).

The addition of support functions is equivalent to the Minkowski sum of sets.

Lemma 2.1. Let δ•B1
and δ•B2

be the support functions of sets B1 and B2, respectively. Then we have

δ•B1
+ δ•B2

= δ•B1+B2
,

where B1 + B2 denotes the Minkowski sum of B1 and B2.

For x, y ∈ Rn, let [x, y] denote the closed line segment between x and y. We refer to an (n − 1)
dimensional affine subspace of Rn as a hyperplane. In particular, for (a, r) ∈ Rn × R, we define
a hyperplane Ha,r = {x ∈ Rn | 〈a, x〉 = r}, closed half spaces H−

a,r = {x ∈ Rn | 〈a, x〉 ≤ r}
and H+

a,r = {x ∈ Rn | 〈a, x〉 ≥ r}, and open half spaces H−−
a,r = {x ∈ Rn | 〈a, x〉 < r} and

H++
a,r = {x ∈ Rn | 〈a, x〉 > r}. A set P ⊆ Rn is said to be a polyhedron if P can be represented as an

intersection of finitely many closed half spaces.
A convex function f is said to be polyhedral if its epigraph epif is a polyhedron. A polyhedral

convex function f is represented as

f(x) = max
i∈I

{
〈pi, x〉 − qi

}
+

∑

j∈J

δH−
aj,bj

(x) (x ∈ Rn), (2.2)

where {(pi, qi) | i ∈ I} and {(aj , bj) | j ∈ J} are finite subsets of Rn × R. The conjugate function f•

of a polyhedral function f is also polyhedral and f•• = f holds. We give a fundamental property of
polyhedral convex functions in the following lemma.
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Lemma 2.2. The subdifferential of a polyhedral convex function f in (2.2) is given by

∂f(x) = conv{pi | i ∈ I, f(x) = 〈pi, x〉 − qi} + cone{aj | j ∈ J, x ∈ Haj ,bj
} (x ∈ domf).

A polyhedral complex C is a finite collection of polyhedra such that

(1) if P ∈ C, all the faces of P are also in C, and

(2) the nonempty intersection P ∩ Q of two polyhedra P,Q ∈ C is a face of P and Q.

The dimension of C, denoted by dim C, is the largest dimension of a polyhedron in C. The underlying
set of C is the set |C| =

⋃
P∈C P . A polyhedral subdivision of a polyhedron P is a polyhedral complex

C with |C| = P . A polyhedral subdivision is pure if its inclusionwise maximal elements are of the
same dimension.

For a polyhedral convex function f , lower faces of epif are bijectively projected on domf , and
determine a polyhedral subdivision of domf , which is denoted by T (f). A polyhedral subdivision
constructed in this way is said to be regular.

Lemma 2.3. For a polyhedral convex function f , the polyhedral subdivision T (f) is given by

T (f) = {F ⊆ Rn | F = argminf [−p] for some p ∈ Rn}.

For two polyhedral subdivisions C1 and C2, the common refinement C1 ∧C2 is defined by C1 ∧C2 =
{F ∩ G | F ∈ C1, G ∈ C2, F ∩ G 6= ∅}. Note that C1 ∧ C2 is a polyhedral subdivision of |C1| ∩ |C2|. In
particular, for a finite set of hyperplanes H, we define the polyhedral subdivision A(H) of Rn as

A(H) =
∧

H∈H
{H, H+, H−}.

Namely, A(H) is the partition of Rn by hyperplanes in H.
The polyhedral subdivision by the sum of two polyhedral convex functions amounts to the common

refinement of the polyhedral subdivisions by the two polyhedral convex functions.

Lemma 2.4. For two polyhedral convex functions f, g with domf ∩ domg 6= ∅, we have

T (f + g) = T (f) ∧ T (g).

Let K be a finite set of points in Rn. For a discrete function f : K → R, the homogeneous convex
extension of f is defined by

f(x) = inf
{ ∑

y∈K

λyf(y) |
∑

y∈K

λyy = x, λy ≥ 0 (y ∈ K)
}

+ δconeK(x) (x ∈ Rn). (2.3)

By definition, f is a positively homogeneous polyhedral convex function with domf = coneK.
By linear programming duality, f is also expressed as

f(x) = sup
{
〈p, x〉 | p ∈ Rn, 〈p, y〉 ≤ f(y) (y ∈ K)

}
(x ∈ Rn).

Hence f is the support function of the polyhedron

Q(f) = {p ∈ Rn | 〈p, y〉 ≤ f(y) (y ∈ K)},

and Q(f) = ∂f(0). The polyhedral subdivision T (f) of coneK is the intersection of the normal fan
of Q(f) with coneK.

For a function f : Rn → R, we denote the restriction of f to K by fK . A function f : K → R is
said to be convex-extensible if it satisfies f

K = f . The set of convex-extensible functions is recognized
as a fundamental class in discrete convex analysis [12].
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3 Positively homogeneous M-convex functions

In this section, we describe a relation between the homogeneous convex extensions of a distance and
the positively homogeneous M-convex function.

3.1 The convex extension of a distance

Let X = {1, 2, . . . , n}, and let a finite set Ω defined by

Ω = {χi − χj | i, j ∈ X}.

A distance γ on X is regarded as a discrete function defined on the set Ω by the correspondence:

γ(χi − χj) ← γ(i, j) (i, j ∈ X).

The homogeneous convex extension of γ is defined by

γ(x) = inf{
∑

i,j∈X

λijγ(χi − χj) |
∑

i,j∈X

λij(χi − χj) = x, λij ≥ 0 (i, j ∈ X)} + δconeΩ(x)

= sup{〈p, x〉 | p ∈ Rn, 〈p, χi − χj〉 ≤ γ(χi − χj) (i, j ∈ X)} (x ∈ Rn). (3.1)

The effective domain of γ is coneΩ = {x ∈ Rn |
∑

i∈X x(i) = 0}. From (3.1), γ is the support function
of the polyhedron

Q(γ) = {p ∈ Rn | 〈p, χi − χj〉 ≤ γ(χi − χj) (i, j ∈ X)} (3.2)

The convex-extensibility is equivalent to satisfying the triangle inequality, i.e., a distance is a
convex-extensible function on Ω.

Lemma 3.1. A discrete function f : Ω → R with f(0) = 0 is convex-extensible if and only if f
satisfies f(χi − χj) ≤ f(χi − χk) + f(χk − χj) for all i, j, k ∈ X.

3.2 M-convex functions

For x ∈ Rn, we define supp+x = {i | x(i) > 0, i ∈ X} and supp−x = {i | x(i) < 0, i ∈ X}.

Definition 3.2 (M-convex function). A function f : Zn → R ∪ {+∞} with domf 6= ∅ is said to
be M-convex if it satisfies the following exchange property:

(M-EXC[Z]) For x, y ∈ domf and u ∈ supp+(x− y), there exists v ∈ supp−(x− y) such
that

f(x) + f(y) ≥ f(x − χu + χv) + f(y + χu − χv).

Definition 3.3 (polyhedral M-convex function). A polyhedral convex function f : Rn → R ∪
{+∞} with domf 6= ∅ is said to be M-convex if it satisfies the following exchange property:

(M-EXC[R]) For x, y ∈ domf and u ∈ supp+(x − y), there exist v ∈ supp−(x − y) and
a positive number α0 ∈ R++ such that

f(x) + f(y) ≥ f(x − α(χu − χv)) + f(y + α(χu − χv))

for all α ∈ [0, α0].

6



A polyhedral M-convex function that is positively homogeneous is called a positively homoge-
neous M-convex function. The effective domain of a polyhedral M-convex function is an M-convex
polyhedron, which is defined as follows.

Definition 3.4 (M-convex polyhedron). A nonempty polyhedron B ⊆ Rn is defined to be an
M-convex polyhedron if it satisfies the following:

(B-EXC[R]) For x, y ∈ B and u ∈ supp+(x − y), there exist v ∈ supp−(x − y) and a
positive number α0 ∈ R++ such that x − α(χu − χv) ∈ B and y + α(χu − χv) ∈ B for all
α ∈ [0, α0].

A cone that is an M-convex polyhedron is called an M-convex cone.

Remark 3.5. As the property M-EXC[Z] in Definition 3.2 reflects an exchange axiom of matroids,
M-convex function is originally introduced as a generalization of valuated matroids for functions on
integer lattice points. The property M-EXC[R] in Definition 3.3 is devised to propagate the concept
of M-convexity for functions in real variables through an appropriate adaptation of M-EXC[Z]. Poly-
hedral M-convex functions are further extension of M-convexity M-EXC[R] to polyhedral functions.

Recall that a positively homogeneous convex function is the support function of some convex set.
In particular, a positively homogeneous M-convex function is the support function of some L-convex
polyhedron [12, Theorem 8.4], which is defined as follows.

For two vectors p, q ∈ Rn, p∨ q and p∧ q are, respectively, the vectors of componentwise maxima
and minima of p and q; i.e.,

(p ∨ q)(i) = max(p(i), q(i)), (p ∧ q)(i) = min(p(i), q(i)) (1 ≤ i ≤ n).

Definition 3.6 (L-convex polyhedron). A nonempty polyhedron D ⊆ Rn is defined to be an
L-convex polyhedron if it satisfies

(SBS[R]) p, q ∈ D ⇒ p ∨ q, p ∧ q ∈ D,
(TBS[R]) p ∈ D ⇒ p + α1 ∈ D (∀α ∈ R).

We associate a distance γ : X × X → R with the two-way directed complete graph Kn such that
the length of an edge (i, j) is γ(i, j) for all i, j ∈ X, where we distinguish an edge (i, j) from its
opposite edge (j, i). If the graph Kn has no negative cycle, where a negative cycle means a directed
cycle of negative length, we say that γ has no negative cycle.

It is known that Q(γ) is the empty set for a distance γ having negative cycles. Moreover, there
is a one-to-one correspondence between L-convex polyhedra and distances having no negative cycle
[12, §5.2]. Every L-convex function is represented as (3.2) for a distance γ having no negative cycle.
Therefore, γ is a positively homogeneous M-convex function.

We close this section by discussing the sum of M-convex functions. By Definitions 3.2 and 3.3,
we see that, in general, the sum of M-convex functions is not necessarily an M-convex function, i.e.,
it does not necessarily satisfy (M-EXC[Z]) or (M-EXC[R]). This paper introduces a case that the
sum of M-convex functions is also an M-convex function. In order to resolve the case, we apply the
following theorem; see also [12, Theorem 6.63].

Theorem 3.7 (Murota and Shioura [13, Theorem 5.2]). For a polyhedral convex function
f : Rn → R ∪ {+∞} with domf 6= ∅, the following two conditions (1) and (2) are equivalent.

(1) f is a polyhedral M-convex function.

(2) argminf [−p] is an M-convex polyhedron for every p ∈ Rn with inf f [−p] > −∞.
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Theorem 3.7 is one of the characterizations of polyhedral M-convex functions. According to
Lemma 2.3 and Theorem 3.7, a polyhedral M-convex function induces a polyhedral subdivision such
that each polyhedron in the polyhedral subdivision is an M-convex polyhedron. Such a polyhedral
subdivision is called a matroid subdivision. Matroid subdivisions are studied in tropical geometry
[14], surgery on Grassmannian [11], and discrete convex analysis [12]; see also [9]. Because the sum
of polyhedral M-convex functions is obviously a polyhedral convex function, the M-convexity of the
sum depends on whether the polyhedral subdivision induced by the sum is a matroid subdivision
or not. This paper gives an example that the common refinement of matroid subdivisions is also a
matroid subdivision.

4 Polyhedral and discrete split decomposition

This section introduces the polyhedral split decomposition of polyhedral convex functions and the
discrete split decomposition of discrete functions. The discrete split decomposition of a discrete
function is summarized as the polyhedral split decomposition of the convex extension of the discrete
function.

4.1 Polyhedral split decomposition

We briefly explain the polyhedral split decomposition of polyhedral convex functions. The proofs of
the propositions in this section can be found in [5, §2], [10, §7].

Definition 4.1 (split function). For a hyperplane H = Ha,b with ‖a‖ = 1, the split function
lH : Rn → R associated with H is defined by

lH(x) = |〈a, x〉 − b|/2 (x ∈ Rn).

By Lemma 2.2, the polyhedral subdivision induced by split function is given as follows.

Proposition 4.2. Let lH be the split function associated with a hyperplane H = Ha,b with ‖a‖ = 1.
The subdifferential of lH is given by

∂lH(x) =





{a/2} if x ∈ H++,

[−a/2, a/2] if x ∈ H,

{−a/2} if x ∈ H−−,

and polyhedral subdivisions T (lH) and T (l•H) are given by

T (lH) = {H, H+,H−},
T (l•H) = {{a/2}, {−a/2}, [−a/2, a/2]}.

For a polyhedral convex function f : Rn → R and a hyperplane H, we define the quotient cH(f)
of f by lH as

cH(f) = sup{t ∈ R+ | f − tlH is convex},

and the set of hyperplanes H(f) as

H(f) = {H | 0 < cH(f) < +∞}.

The basic idea for the polyhedral split decomposition of a polyhedral convex function f is to subtract
split functions associated with hyperplanes in H(f) from f successively. In fact, if dim domf = n,
this idea directly applies to f because of the following proposition. Note that, for H1,H2 ∈ H(f) with
H1 ∩ intdomf 6= ∅ and H2 ∩ intdomf 6= ∅, we have H1 = H2 if and only if H1 ∩domf = H2 ∩domf .
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Proposition 4.3. Let f : Rn → R∪ {+∞} be a polyhedral convex function. Then, for H,H ′ ∈ H(f)
and t ∈ [0, cH(f)], we have

H = H ′ ⇒ cH′(f − tlH) = cH′(f) − t,

H ∩ domf 6= H ′ ∩ domf ⇒ cH′(f − tlH) = cH′(f).

If domf is not full-dimensional, there exist infinitely many hyperplanes having the same inter-
section with domf . Moreover, cH′(f − tlH) may not be equal to cH′(f) for H, H ′ ∈ H(f) and
t ∈ [0, cH(f)] despite that H 6= H ′. Hence, in the case of dim domf 6= n, we must restrict H(f) to the
set such that there are no hyperplanes having the same intersection with domf in the set. Technically
speaking, we define the equivalence relation ∼ by letting H ∼ H ′ if H ∩ domf = H ′ ∩ domf . Since
a collection of representatives from the equivalence classes has the desirable property, we decompose
f by using the representatives. Note that representatives is finite because T (f) is finite. If we fix
representatives, denoted by H¦(f), of H(f)/∼, the polyhedral split decomposition of f is uniquely
defined as in the next theorem; see also [6, Thorem 2.2].

Theorem 4.4 ([10, Theorem 7.8]). A polyhedral convex function f : Rn → R∪ {+∞} is uniquely
decomposable as

f =
∑

H∈H¦(f)

cH(f)lH + f ′, (4.1)

where f ′ : Rn → R∪{+∞} is a polyhedral convex function with cH′(f ′) ∈ {0, +∞} for any hyperplane
H ′.

Incidentally, the quotient cH(f) of f by lH is written explicitly as in the next proposition.

Proposition 4.5. Let f : Rn → R∪{+∞} be a polyhedral convex function, and let H be a hyperplane
in Rn. Then we have

cH(f) =
1
2

inf





f(x) − f(w)
lH(x)

+
f(y) − f(w)

lH(y)

∣∣∣∣∣
x ∈ domf ∩ H++,
y ∈ domf ∩ H−−,
{w} = [x, y] ∩ H



.

We conclude this section by the following lemma, which is used in Section 5.2.

Lemma 4.6. For a polyhedral convex function f : Rn → R, the polyhedral subdivision T (f) is
decomposed as

T (f) = A(H(f)) ∧ T (f ′). (4.2)

Proof. By Proposition 4.2, we have T (αlH) = {H, H+,H−} for any α ∈ R++. Hence, by Lemma 2.4,
we have (4.2) from the decomposition (4.1).

4.2 Discrete split decomposition

We briefly describe the discrete split decomposition of discrete functions defined on a finite set K of
points of Rn. The proofs of the propositions in this section can be found in [5, §3], [6, §3], [10, §8].

The discrete split decomposition is based on the next proposition [6, Theorem 3.2] and Theorem
4.4. Recall that f is defined by (2.3).
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Proposition 4.7. For f : K → R, H ∈ H(f), and t ∈ [0, cH(f)], we have

f = tlH + f − tlKH .

We mention that the essential contents of the following theorem is derived as Theorem 3.2 in [6].

Theorem 4.8 ([10, Theorem 8.7]). Let f : K → R be a discrete function. Then, f is uniquely
decomposable as

f =
∑

H∈H¦(f)

cH(f)lKH + f ′,

where f ′ : K → R satisfies cH′(f ′) ∈ {0, +∞} for any linear hyperplane H ′. Furthermore, we have

f =
∑

H∈H¦(f)

cH(f)lH + f ′.

If, in addition, f is convex-extensible, then f ′ is also convex-extensible.

We here describe a relation between K and H(f). Let f be a convex-extensible discrete function
on K. Note that since T (f) is the intersection of the normal fan of Q(f) with coneK, each hyperplane
H ∈ H(f) is linear, i.e., H = Ha,0 for some a ∈ Rn. From the regularity of the subdivision T (f)
induced by f , we notice that possible hyperplanes appearing in H(f) is limited by the point set K.
Then, we make the next definition.

Definition 4.9 (K-admissible). A set of linear hyperplanes H is K-admissible if H satisfies

(A1) H ∩ riconeK 6= ∅ for each H ∈ H, and

(A2) cone(F ∩ K) = F ∩ coneK for each F ∈ A(H).

Note that K-admissibility is determined solely by K. A justification for Definition 4.9 follows
from the next lemma.

Lemma 4.10. For f : K → R, the set of hyperplanes H(f) is K-admissible.

Note that if a set of linear hyperplanes H is K-admissible, then any subset of H is also K-
admissible. So we define the set of linear hyperplanes HK as

HK = {H | H : a linear hyperplane, {H} is K-admissible}.

By Lemma 4.10, H(f) ⊆ HK holds for any f : K → R. In the case of dimdomf 6= n, we restrict HK

to representatives, denoted by H¦
K , of HK/∼, so that we have H¦(f) = H(f) ∩H¦

K ⊆ H¦
K .

The next theorem implies that the discrete split decomposition can be carried out without explicit
construction of convex extensions; the quotient cH(f) can be calculated without the construction.

Theorem 4.11 (Hirai [6, Theorem 3.4]). For a discrete function f : K → R and a hyperplane
H ∈ HK , let c̃H(f) be defined by

c̃H(f) =
1
2

inf





f(x) − fK∩H(w)
lH(x)

+
f(y) − fK∩H(w)

lH(y)

∣∣∣∣∣
x ∈ K ∩ H++,
y ∈ K ∩ H−−,
{w} = [x, y] ∩ H



.

Then we have

cH(f) = max{0, c̃H(f)}.
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χj − χi
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χi − χk

χk − χi γ(i, j)
γ(j, k)

γ(k, i)

γ(i, k)
γ(j, i)

γ(k, j)

(a) (b) (c)

Figure 1: The homogeneous convex extension of a metric γ on X = {i, j, k}.

We close this section by introducing the notion of split-decomposability. A function f ∈ RK is said
to be split-decomposable if f −

∑
H∈H¦(f) cH(f)lKH is the restriction of a linear function. We explain

the relation between split-decomposable functions on K and K-admissible sets of hyperplanes.

Lemma 4.12. Let f : K → R be a discrete function. Then we have

cf + (〈q, ·〉)K = cf + 〈q, ·〉 + δconeK (c ∈ R+, q ∈ Rn).

By Lemma 4.12, the quotient of cf + (〈q, ·〉)K by a split function depends only on cf . Hence, the
discrete split decomposition of cf + (〈q, ·〉)K is determined by cf .

Proposition 4.13. For H ⊆ H¦
K and α ∈ RH

++, let f =
∑

H∈H αH lKH . Then the following conditions
(a), (b) and (c) are equivalent.

(a) f =
∑

H∈H αH lH + δconeK .

(b) H = H¦(f) and αH = cH(f) for H ∈ H.

(c) H is K-admissible.

By Lemma 4.12 and Proposition 4.13, every split-decomposable function is constructed from a
K-admissible set of hyperplanes, i.e., the sum of a positive combination of the restrictions of the
split functions associated with the hyperplanes and the restriction of a linear function. Thus, split-
decomposable functions are also determined by K through the K-admissible sets of hyperplanes since
the K-admissibility depends on K.

5 The polyhedral split decomposition of a positively homogeneous
M-convex function

5.1 The discrete split decomposition of a distance

In this subsection, we apply the discrete split decomposition to γ : Ω → R. Recall that Ω = {χi−χj |
i, j ∈ X}. Figure 1 (c) illustrates the homogeneous convex extension of a metric γ on X = {i, j, k}.
Since X on a linear space as in Figure 1 (a), we can project {(χi − χj , γ(i, j)) | i, j ∈ X} to 3-
dimensional space as shown in Figure 1 (b).

Although γ is a polyhedral convex function, its effective domain domγ is not fully dimensional.
Then, we define representatives H¦

Ω as mentioned in Section 4.2. For an X-split {A,B}, we denote
H

(χA−χB)/2
√

|X|,0 by H{A,B}. Let 1 be the all-one vector. Hereafter, coefficients for scaling vectors

to unit ones are omitted for simplicity. We obtain HΩ := {H | H : a linear hyperplane, {H} :
Ω-admissible} as in the next proposition.
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Proposition 5.1. HΩ = {Hα(χA−χB)+β1,0 | {A,B} : an X-split, α, β ∈ R}.

Since it is immediate that

H{A,B} ∩ domγ = Hα(χA−χB)+β1,0 ∩ domγ

for all α, β ∈ R, we define the hyperplanes:

H¦
Ω := {H{A,B} | {A,B} : an X-split}.

Proposition 5.2. For each H ∈ HΩ, there exists a hyperplane H¦ such that

H ∩ domγ = H¦ ∩ domγ

in H¦
Ω. Moreover, for all H,H ′ ∈ H¦

Ω, H ∩ domγ = H ′ ∩ domγ if and only if H = H ′.

By Proposition 5.2, H¦
Ω constitutes representatives of HΩ/∼. Hence, Theorem 4.8 can be applied

to γ and γ is decomposed uniquely with hyperplanes in H(γ) ∩ H¦
Ω. We apply Theorem 4.11 to γ,

and then c̃H{A,B}(γ) is equal to the minimum of

γ(χi − χk) − γΩ∩H{A,B}(w)
2lH{A,B}(χi − χk)

+
γ(χl − χj) − γΩ∩H{A,B}(w)

2lH{A,B}(χl − χj)
,

where i, j ∈ A, k, l ∈ B, and {w} = H{A,B} ∩ [χi − χk, χl − χj ]. Hence, we have

c̃H{A,B}(γ) =

√
|X|
2

min
i,j∈A,k,l∈B

{
γ(χi − χk) + γ(χl − χj) − 2γΩ∩H{A,B}

(χi − χk + χl − χj

2

)
,

γ(χi − χl) + γ(χk − χj) − 2γΩ∩H{A,B}
(χi − χl + χk − χj

2

)}
.

Since γ satisfies the triangle inequality, we obtain

γΩ∩H{A,B}
(χi − χk + χl − χj

2

)
=

1
2
(γ(χi − χj) + γ(χl − χk))

and

γΩ∩H{A,B}
(χi − χl + χk − χj

2

)
=

1
2
(γ(χi − χj) + γ(χk − χl)).

Thus, we have

c̃H{A,B}(γ) =

√
|X|
2

min
i,j∈A,k,l∈B

{
γ(χi − χk) + γ(χl − χj) − γ(χi − χj) − γ(χl − χk),

γ(χi − χl) + γ(χk − χj) − γ(χi − χj) + γ(χk − χl)
}

=

√
|X|
2

min
i,j∈A,k,l∈B

{
γ(i, k) + γ(l, j) − γ(i, j) − γ(l, k), γ(i, l) + γ(k, j) − γ(i, j) − γ(k, l)

}
,

(5.1)

and so, we have cH{A,B}(γ) = max{0, c̃H{A,B}(γ)}. As a result, the next theorem is obtained.

12



Theorem 5.3. Let γ : X × X → R be a distance. Then γ can be decomposed as

γ =
∑

σ∈Σ(γ)

cHσ(γ)lΩHσ
+ γ′,

where Σ(γ) is defined by

Σ(γ) = {σ | σ : an X-split, cHσ(γ) > 0}

and γ′ : X × X → R is a distance with cHσ′ (γ′) = 0 for any X-split σ′. Furthermore, we have

γ =
∑

σ∈Σ(γ)

cHσ(γ)lHσ + γ′. (5.2)

We here define the compatibility of X-splits.

Definition 5.4 (compatible). Let {A, B} and {C, D} be X-splits. Two X-splits {A,B} and {C, D}
are compatible if at least one of the sets A ∩ C, A ∩ D, B ∩ C and B ∩ D is the empty set.

A collection of X-splits is called pairwise compatible if any two X-splits in the collection are
compatible. For a subset H of H¦

Ω, we denote ΣH = {{A,B} | {A,B} : an X-split,H{A,B} ∈ H}. We
can translate the Ω-admissibility of H into the pairwise compatibility of ΣH.

Proposition 5.5 ([10, Proposition 9.8]). A set of hyperplanes H ⊆ H¦
Ω is Ω-admissible if and

only if ΣH is pairwise compatible.

Hence, we obtain the following proposition.

Proposition 5.6. A metric γ is a tree metric if and only if γ is decomposed as

γ =
∑

σ∈Σ(γ)

cHσ(γ)lΩHσ
.

By Proposition 5.6, a split-decomposable function on Ω corresponds to the sum of a tree metric
and a linear function.

We introduce the Buneman index for the convenience. For a metric γ : X×X → R and an X-split
{A,B}, the Buneman index is defined by

bγ
{A,B} =

1
2

min
i,j∈A,k,l∈B

{
min

{
γ(i, k) + γ(j, l),
γ(i, l) + γ(j, k)

}
− γ(i, j) − γ(k, l)

}
.

If γ is a metric, we obtain from (5.1)

c̃H{A,B}(γ) =

√
|X|
2

min
i,j∈A,k,l∈B

{
min

{
γ(i, k) + γ(j, l),
γ(i, l) + γ(j, k)

}
− γ(i, j) − γ(k, l)

}

=
√

|X| bγ
{A,B}.

Therefore, we have cH{A,B}(γ) = max{0, c̃H{A,B}(γ)} =
√

|X|max{0, bγ
{A,B}}. As a result of the

discrete split decomposition of metrics on Ω, the next theorem is obtained.
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Theorem 5.7. Let γ : X × X → R be a metric. Then γ can be decomposed as

γ =
∑

σ∈Σb(γ)

√
|X| bγ

σlΩHσ
+ γ′, (5.3)

where Σb(γ) is defined by

Σb(γ) = {σ | σ : an X-split, bγ
σ > 0}

and γ′ : X × X → R is a metric with bγ′

σ′ ≤ 0 for any X-split σ′.

Figure 2 illustrates the polyhedral split decomposition of a metric on X with |X| = 3. It is known
that every 3-point metric is representable as the sum of split metrics, i.e., γ′ = 0 in the decomposition
(5.3).

= ++

Figure 2: The polyhedral split decomposition of a metric on X = {i, j, k}.

5.2 M-convexity of split functions

In this subsection, we describe the split functions in the polyhedral split decomposition of a distance
are also positively homogeneous M-convex functions and unravel why the sum of the split functions
is an M-convex function as the main result of this paper.

Theorem 5.8. Let lH{A,B} : Rn → R be the split function associated with an X-split {A,B}. Then
φ := lH{A,B} + δconeΩ is a positively homogeneous M-convex function from Rn into R.

Theorem 5.8 implies that φ is the support function of some L-convex polyhedron. Then we
prove Theorem 5.8 by taking the conjugate of φ and showing that it is the indicator function of
an L-convex polyhedron, which is represented as (3.2) for a (scalar multiple) split metric. Hence,
φ = lH{A,B} + δconeΩ turn out to be the homogeneous convex extension of the (scalar multiple) split
metric ξ{A,B}. Note that Theorem 5.8 can be obtained as a consequence of the fact that φΩ is a
(scalar multiple) split metric and Proposition 4.13.

Proof of Theorem 5.8. For simplicity, we redefine φ :=
√

|X| lH{A,B} +δconeΩ. Obviously, the effective
domain of φ is coneΩ. By the definition (2.1), the conjugate of φ is defined as follows:

φ•(p) = sup
{
〈p, x〉 − φ(x)

∣∣ x ∈ Rn
}

= sup
{
〈p, x〉 − |〈(χA − χB)/2, x〉|

∣∣ x ∈ coneΩ
}

= max
{
max

{
〈p − (χA − χB)/2, x〉

∣∣ x ∈ coneΩ, x(A) ≥ x(B)
}
,

max
{
〈p + (χA − χB)/2, x〉

∣∣ x ∈ coneΩ, x(A) ≤ x(B)
}}

(p ∈ Rn).

The maximum; max
{
〈p − (χA − χB)/2, x〉

∣∣ x ∈ coneΩ, x(A) ≥ x(B)
}

is zero if p − (χA − χB)/2 =
α1 + β(−χA + χB) for some α ∈ R and β ∈ R+, otherwise +∞. Hence, we have

p(i) =

{
α − β + 1

2 (i ∈ A),
α + β − 1

2 (i ∈ B),
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and so

p(i) − p(j) =

{
0 (i, j ∈ A or i, j ∈ B),
−2β + 1 (i ∈ A, j ∈ B).

Similarly, the maximum; max
{
〈p + (χA − χB)/2, x〉

∣∣ x ∈ coneΩ, x(A) ≤ x(B)
}

is zero if p +
(χA − χB)/2 = ξ1 + η(χA − χB) for some ξ ∈ R and η ∈ R+, otherwise +∞. Hence, we have

p(i) =

{
ξ + η − 1

2 (i ∈ A),
ξ − η + 1

2 (i ∈ B),

and so

p(i) − p(j) =

{
0 (i, j ∈ A or i, j ∈ B),
2η − 1 (i ∈ A, j ∈ B).

Since β and η must satisfy −2β + 1 = 2η − 1, β ≥ 0 and η ≥ 0, we have 0 ≤ β ≤ 1, 0 ≤ η ≤ 1.
Therefore, the effective domain of φ• is the polyhedron Q(φ) defined by

Q(φ) =

{
p ∈ Rn

∣∣∣∣∣
p(i) − p(j) ≤ 0 (i, j ∈ A or i, j ∈ B),
p(i) − p(j) ≤ 1 (i ∈ A, j ∈ B or i ∈ B, j ∈ A)

}
.

Obviously, Q(φ) is the L-convex polyhedron defined by the split metric ξ{A,B} and φ•(p) takes zero
for p ∈ Q(φ) and +∞ for p /∈ Q(φ). Therefore, φ is the support function of the L-convex polyhedron
Q(φ), that is, φ is a positively homogeneous M-convex function.

Note that a residue γ′ appearing in (5.2) is also a positively homogeneous M-convex function
because γ′ is a distance. As a consequence of Theorem 5.8, γ is decomposed as the sum of positively
homogeneous M-convex functions, which is a case that the sum of M-convex functions is also an
M-convex function. As mentioned in Section 3, we give a description based on Theorem 3.7 for this
case.

By Theorem 3.7, it is sufficient for showing the M-convexity of γ that each cone in T (γ) is an
M-convex cone by Lemma 2.3. We begin by proving the next proposition, which, combined with
Theorem 3.7, provides an alternative proof of Theorem 5.8 since coneΩ is obviously M-convex cone.

Proposition 5.9. For an M-convex cone D, we define Y = {χi − χj ∈ D | i, j ∈ X}. Let {A,B} be
an X-split. Then the following (1), (2) and (3) hold.

(1) cone(H{A,B} ∩ Y ) = H{A,B} ∩ coneY if and only if H{A,B} ∩ coneY is an M-convex cone.

(2) cone(H+
{A,B} ∩ Y ) = H+

{A,B} ∩ coneY if and only if H+
{A,B} ∩ coneY is an M-convex cone.

(3) cone(H−
{A,B} ∩ Y ) = H−

{A,B} ∩ coneY if and only if H−
{A,B} ∩ coneY is an M-convex cone.

Proof. We show (1). Every M-convex cone B0 can be represented as

B0 = {
∑

(i,j)∈F

cij(χi − χj) | cij ≥ 0 ((i, j) ∈ F )}

for some F ⊆ X ×X, where we may assume that F is transitive, i.e., (i, j) ∈ F and (j, k) ∈ F imply
(i, k) ∈ F . Hence, cone(H{A,B} ∩ Y ) is obviously an M-convex cone, from which the necessity is
immediate because H{A,B} ∩ coneY = cone(H{A,B} ∩ Y ).
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We show the sufficiency. By hypothesis, H{A,B} ∩ coneY is an M-convex cone. Thereby H{A,B} ∩
coneY is represented as

H{A,B} ∩ coneY = {
∑

(i,j)∈F ′

cij(χi − χj) | cij ≥ 0 ((i, j) ∈ F ′)}

for some F ′ ⊆ X × X. By definition, Y is transitive, i.e., χi − χj ∈ Y and χj − χk ∈ Y imply
χi − χk ∈ Y . It follows that χi − χj ∈ coneY is equivalent to χi − χj ∈ Y . Hence, we have
χi − χj ∈ H{A,B} ∩ Y for any (i, j) ∈ F ′, and thus cone(H{A,B} ∩ Y ) = H{A,B} ∩ coneY .

The assertions (2) and (3) are shown similarly.

By Lemma 4.6, T (γ) is the common refinement of A(H¦(γ)) and T (γ′). We interpret T (γ) as
the result of the successive refinements of T (γ′) by hyperplanes in H¦(γ). Note on T (γ′) as the
initial state that each cone in T (γ′) is an M-convex cone since γ′ is a distance. A hyperplane in
H¦(γ) satisfies for each cone in T (γ′) the conditions in the left-hand sides of (1), (2), and (3) in
Proposition 5.9. Thus, the common refinement of T (γ′) and the hyperplane consists of M-convex
cones. We repeat such a refinement process until we obtain T (γ). At each step, a refinement of T (γ′)
is composed of M-convex cones because of Proposition 5.9 and the Ω-admissibility of H¦(γ) as in
Lemma 4.10. Therefore, we obtain the following proposition.

Proposition 5.10. Let H ⊆ H¦(γ). Each polyhedron in the common refinement of T (γ′) and A(H)
is an M-convex cone. Therefore, each polyhedron in the polyhedral subdivision T (γ) is an M-convex
cone.

It follows from Theorem 3.7 and Proposition 5.10 that γ is a positively homogeneous M-convex
function.

Remark 5.11. The conjugate structure is revealed as follows. By Lemma 2.1 and Theorem 5.8,
the decomposition of γ implies that Q(γ) is the Minkowski sum of L-convex polyhedra. We know
that Q(γ) is also an L-convex polyhedron. Note that, in general, the Minkowski sum of L-convex
polyhedra is not necessarily an L-convex polyhedron. The L-convex polyhedron corresponding to a
split function is a line segment (+{α1 | α ∈ R}) by Proposition 4.2. Since the Minkowski sum of line
segments is a zonotope, the polyhedral split decomposition of γ provides a decomposition of Q(γ) into
the Minkowski sum of a zonotope and some polyhedron, which is the dual operation of the polyhedral
split decomposition. The zonotope is closely related to a tight span in T-theory [3]; see also [8].

6 Tree metrics and quadratic M-convex functions

In this section, we focus on the property of M-convex functions as described in the next theorem; see
also [12, Theorem 6.61].

Theorem 6.1 (Murota and Shioura [13, Theorem 4.15]). For an M-convex function f : Zn → R
and x ∈ domf , define γf,x(u, v) = f(x + χu − χv) − f(x) (u, v ∈ X). Then γf,x is a distance.

By Theorem 6.1, γf,x can be regraded as a discrete function on Ω for each x ∈ domf by the
correspondence:

γf,x(χi − χj) ← γf,x(i, j) (i, j ∈ X).

In fact, the discrete split decomposition is applicable to γf,x. We are particularly interested in the case
that f is a quadratic M-convex function on Zn ∩ coneΩ, i.e., f can be represented as f(x) = 1

2x>Ax
for all x ∈ Zn ∩ coneΩ with some coefficient matrix A. The reason is that tree metrics and quadratic
M-convex functions are closely related. For a tree metric d : X × X → R+, an n × n square matrix
D = (dij) is defined as dij = d(i, j) for all i, j ∈ X and called a tree metric matrix.
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Theorem 6.2 (Hirai and Murota [8, Theorem 3.1]). A quadratic form f(x) defined on Zn ∩
coneΩ is M-convex if and only if there exists a tree metric d : X × X → R+ such that

f(x) = −1
2
x>Dx (x ∈ Zn ∩ coneΩ),

where D is a tree metric matrix for d.

Let f be a quadratic M-convex function on Zn ∩ coneΩ, and let f(x) = −1
2x>Dx for some tree

metric matrix D. Then γf,x for f and x ∈ Zn ∩ coneΩ is as follows:

γf,x(u, v) = f(x + χu − χv) − f(x)

= −1
2
(x + χu − χv)>D(x + χu − χv) +

1
2
x>Dx

= −x>Dχu + x>Dχv −
1
2
χ>

u Dχu + χ>
v Dχu +

1
2
χ>

v Dχv

= 〈−x>D, χu − χv〉 + d(u, v) (u, v ∈ X).

Therefore, by the correspondence:

d(χi − χj) ← d(i, j) (i, j ∈ X),

γf,x can be regarded as a discrete function on Ω as follows:

γf,x(·) = d(·) + (〈−x>D, ·〉)Ω.

By Lemma 4.12, we have γf,x = d + 〈−x>D, ·〉 + δconeΩ. Furthermore, c̃HA,B
(γf,x) for H{A,B} is

represented as follows:

c̃H{A,B}(γf,x) =

√
|X|
2

min
i,j∈A,k,l∈B

{
γf,x(χi − χk) + γf,x(χl − χj) − 2γ

Ω∩H{A,B}
f,x

(χi − χk + χl − χj

2

)
,

γf,x(χi − χl) + γf,x(χk − χj) − 2γ
Ω∩H{A,B}
f,x

(χi − χl + χk − χj

2

)}

=

√
|X|
2

min
i,j∈A,k,l∈B

{
d(i, k) + d(l, j) − d(i, j) − d(l, k), d(i, l) + d(k, j) − d(i, j) − d(k, l)

}

=
√

|X| bd
{A,B}

because, by direct calculation, we have

γ
Ω∩H{A,B}
f,x

(χi − χk + χl − χj

2

)
=

1
2
(d(χi − χj) + 〈−x>D,χi − χj〉 + d(χl − χk) + 〈−x>D, χl − χk〉)

and

γΩ∩H{A,B}
(χi − χl + χk − χj

2

)
=

1
2
(d(χi − χj) + 〈−x>D, χi − χj〉 + d(χk − χl) + 〈−x>D,χk − χl〉).

Since d is a tree metric, we have

γf,x(·) =
∑

σ∈Σb(d)

√
|X| bd

σlΩHσ
(·) + (〈−x>D, ·〉)Ω

by Theorem 5.7 and Proposition 5.6.
For an M-convex function f : Zn → R and x ∈ domf , the convex extension of γf,x(·) coincides

with the directional derivative f ′(x; ·) of the convex extension of f , where f ′(x; ·) is considered as a
function of directions. Then, we regard γf,x(·) as the directional derivative of f at a point x. Hence,
for a quadratic M-convex function f on Zn∩coneΩ, we conclude that the directional derivative γf,x(·)
for each x ∈ Zn ∩ coneΩ is split-decomposable.
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