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Abstract

A novel shift strategy is proposed for the differential quotient dif-
ference with shift (dqds) algorithm for the computation of singular
values of bidiagonal matrices. While maintaining global convergence,
the proposed shift realizes asymptotic superquadratic convergence of
the dqds algorithm.

1 Introduction

Every n × m real matrix A of rank r can be decomposed into

A = UΣV T

with suitable orthogonal matrices U ∈ Rn×n and V ∈ Rm×m, where

Σ =
(

D Or,m−r

On−r,r On−r,m−r

)
, D = diag(σ1, . . . , σr),

and σ1 ≥ · · · ≥ σr > 0. The notation Ok,l means a k × l zero matrix. The
nonzero diagonal elements σ1, . . . , σr are the singular values of A, which
play important roles in application areas. Accordingly, numerical methods
for computing singular values are of great importance in practice.

The singular values of A are equal to the square roots of the eigenvalues
of ATA and hence an iterative computation is inevitable for singular values.
Usually, the given matrix A is first transformed to a bidiagonal matrix to
reduce the overall computational cost. In the case of n ≥ m, for example,
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the matrix A can be transformed, with appropriate orthogonal matrices
Ũ ∈ Rn×n and Ṽ ∈ Rm×m, as

ŨTAṼ =
(

B
On−m,m

)
,

where B ∈ Rm×m is an upper bidiagonal matrix. The singular values of B
coincide with those of A.

Most of the current methods for computing singular values of bidiagonal
matrices are based on the QR algorithm [3, 16]. Demmel and Kahan’s
improvement [4] upon the QR algorithm, awarded the second SIAM prize in
numerical linear algebra, is open to the public as DBDSQR in LAPACK [2,
10].

In relation to the study of this algorithm, the differential quotient dif-
ference (dqd) algorithm was proposed by Fernando–Parlett [8] in 1994, with
subsequent introduction of shifts to accelerate the convergence. This al-
gorithm is now called the differential quotient difference with shift (dqds)
algorithm. The dqds algorithm has received majority support due to its
accuracy, speed and numerical stability, and is implemented as DLASQ in
LAPACK [2, 10, 13]. The dqds is integrated into Multiple Relatively Robust
Representations (MR3) algorithm [5, 6, 7].

As for theoretical analysis about the dqds algorithm, locally quadratic
or cubic convergence, and global convergence has been discussed in [8, 14]
under certain assumptions. A recent paper of the present authors [1] has
shown a general theorem for global convergence and revealed the asymptotic
rate of 1.5 for the Johnson bound shift.

The objective of this paper is to propose a novel shift strategy for the
dqds algorithm and to give a theoretical proof that the proposed shift re-
alizes asymptotic superquadratic convergence while maintaining global con-
vergence.

2 Problem setting

We assume that the given real matrix A has already been transformed to a
bidiagonal matrix

B =


b1 b2

b3
. . .
. . . b2m−2

b2m−1

 , (1)

to which the dqds algorithm is applied.
Following [8], we assume

Assumption (A) The bidiagonal elements of B are positive,
i.e., bk > 0 for k = 1, 2, . . . , 2m − 1．
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This assumption guarantees (see [12]) that the singular values of B are all
distinct: σ1 > · · · > σm > 0.

Assumption (A) is not restrictive, in theory or in practice. In fact, if
a subdiagonal element is zero, i.e., b2k = 0 for some k, then the problem
reduces to two independent problems on matrices of smaller sizes, k × k
and (m − k) × (m − k). If there is a zero element on the diagonal, several
iterations of the dqd algorithm (i.e., the dqds algorithm without shifts)
suffice to remove the diagonal zero, and the problem is again separated into
a set of smaller problems (see [8] for details). Finally it is easy to see that
the singular values are invariant if bk is replaced by |bk|.

In our problem setting we have assumed real matrices, whereas the sin-
gular value decomposition is also defined for complex matrices. Our restric-
tion to real matrices is justified by the fact that any complex matrix can
be transformed to a real bidiagonal matrix by, say, (complex) Householder
transformations, while keeping its singular values [8].

3 The dqds algorithm

In this section, we describe the dqds. We first review the pqds algorithm,
which is mathematically equivalent to the dqds and serves as the main tar-
get in the subsequent theoretical analysis. The pqds algorithm is the pqd
algorithm where shifts are incorporated to accelerate the convergence [9, 15].
Recall that the pqd algorithm consists of the so-called rhombus rules (Figure
1).
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Figure 1: The rhombus rules
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Algorithm 3.1 The pqds algorithm

Initialization: q
(0)
k = (b2k−1)2 (k = 1, 2, . . . ,m); e

(0)
k = (b2k)2 (k =

1, 2, . . . ,m − 1)
1: for n := 0, 1, · · · do
2: choose shift s(n)(≥ 0)
3: e

(n+1)
0 := 0

4: for k := 1, · · · ,m − 1 do
5: q

(n+1)
k := q

(n)
k − e

(n+1)
k−1 + e

(n)
k − s(n)

6: e
(n+1)
k := e

(n)
k q

(n)
k+1/q

(n+1)
k

7: end for
8: q

(n+1)
m := q

(n)
m − e

(n+1)
m−1 − s(n)

9: end for

The pqds algorithm, in computer program form, is shown in Algorithm 3.1.
The outermost loop is terminated when some suitable convergence criterion,
say, ∥e(n)

m−1∥ ≤ ϵ for some prescribed constant ϵ > 0, is satisfied. At the ter-
mination we have

σm
2 ≈ q(n)

m +
n−1∑
l=0

s(l) (2)

and hence σm can be approximated by
√

q
(n)
m +

∑n−1
l=0 s(l). Then by the

deflation process the problem is shrunk to an (m − 1) × (m − 1) problem,
and the same procedure is repeated until σm−1, . . . , σ1 are obtained in turn.

It turns out to be convenient to introduce additional notations e
(n)
0 and

e
(n)
m with “boundary conditions”:

e
(n)
0 = 0, e(n)

m = 0 (n = 0, 1, . . .)

to simplify the expression of the algorithm. Put

B(n) =


b
(n)
1 b

(n)
2

b
(n)
3

. . .

. . . b
(n)
2m−2

b
(n)
2m−1

 , (3)

b
(0)
k = bk (k = 1, 2, . . . , 2m − 1), and

q
(n)
k = (b(n)

2k−1)
2 (k = 1, 2, . . . ,m; n = 0, 1, . . .), (4)

e
(n)
k = (b(n)

2k )2 (k = 1, 2, . . . ,m − 1; n = 0, 1, . . .). (5)

Then Algorithm 3.1 can be rewritten in terms of the Cholesky decomposition
(with shifts):

(B(n+1))TB(n+1) = B(n)(B(n))T − s(n)I, (6)
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where B(0) = B. It follows that

(B(n))TB(n) = W (n)

(
(B(0))TB(0) −

n−1∑
l=0

s(l)I

)
(W (n))−1, (7)

where W (n) = (B(n−1) · · ·B(0))−T is a nonsingular matrix. Therefore the
eigenvalues of (B(n))TB(n) are the same as those of (B(0))TB(0)−

∑n−1
l=0 s(l)I.

If s(n) < (σ(n)
min)

2 in each iteration n, where σ
(n)
min is the smallest singular value

of B(n), B(n) converges to a diagonal matrix as n → ∞, and then, by (7),
the singular values of B can be obtained from the diagonal elements of B(n)

with sufficiently large n (see Theorem 4.1). Moreover, if s(n) < (σ(n)
min)

2, the
variables in the pqds algorithm are always positive so that the algorithm
does not break down (see Lemma 4.1).

The dqds algorithm is obtained from the pqds algorithm by introducing
auxiliary quantities d

(n+1)
k defined as follows [8]:

d
(n+1)
1 = q

(n)
1 − s(n); d

(n+1)
k = q

(n)
k − e

(n+1)
k−1 − s(n) (k = 2, . . . ,m).

The resulting algorithm is presented as Algorithm 3.2.

Algorithm 3.2 The dqds algorithm

Initialization: q
(0)
k = (b2k−1)2 (k = 1, 2, . . . ,m); e

(0)
k = (b2k)2 (k =

1, 2, . . . ,m − 1)
1: for n := 0, 1, · · · do
2: choose shift s(n)(≥ 0)
3: d

(n+1)
1 := q

(n)
1 − s(n)

4: for k := 1, · · · ,m − 1 do
5: q

(n+1)
k := d

(n+1)
k + e

(n)
k

6: e
(n+1)
k := e

(n)
k q

(n)
k+1/q

(n+1)
k

7: d
(n+1)
k+1 := d

(n+1)
k q

(n)
k+1/q

(n+1)
k − s(n)

8: end for
9: q

(n+1)
m := d

(n+1)
m

10: end for

Generally, the dqds algorithm outperforms the pqds algorithm in numer-
ical stability. Since the variables of the dqds algorithm are positive and no
subtractions are used in the algorithm except for computing the shifts, the
numerical instability due to loss of significant digits is less likely to happen
in the dqds algorithm. However we will work with the pqds in place of the
dqds in the following convergence analysis.
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4 Fundamental facts about convergence

Some relevant facts about the dqds algorithm are reviewed in this section.
We begin with the fundamental convergence theorem. Recall that σ1 >

σ2 > · · · > σm are singular values of B and σ
(n)
min denotes the smallest

singular value of B(n).

Theorem 4.1 (Convergence of the dqds algorithm [1]). Suppose the matrix
B satisfies Assumption (A), and the shift in the dqds algorithm (or in the
pqds algorithm) satisfies 0 ≤ s(n) < (σ(n)

min)
2 for all n = 0, 1, 2, . . .. Then

∞∑
n=0

s(n) ≤ σm
2. (8)

Moreover,

lim
n→∞

e
(n)
k = 0 (k = 1, 2, . . . ,m − 1), (9)

lim
n→∞

q
(n)
k = σk

2 −
∞∑

n=0

s(n) (k = 1, 2, . . . ,m). (10)

In matrix form, we have

lim
n→∞

(B(n))TB(n) = diag

(
σ1

2 −
∞∑

n=0

s(n), . . . , σm
2 −

∞∑
n=0

s(n)

)
.

Remark 4.1. As mentioned in Section 1, global convergence has also been
discussed in [8] and [14]. Those results, however, are not sufficient for our
rigorous argument below, where we need the guarantee of global convergence
for an arbitrary matrix B satisfying Assumption (A) and for any choice of
shift in the range 0 ≤ s(n) < (σ(n)

min)
2. The theorem in [8] is restricted to

the case of s(n) = 0, and the theorem in [14] is restricted to generic (or
nondegenerate) cases although it deals with general shifts satisfying 0 ≤
s(n) < (σ(n)

min)
2.

The variables are guaranteed to remain positive, as follows. This fact is
crucial to the proof of the convergence theorem above as well as to numerical
stability of the algorithm.

Lemma 4.1. Suppose the dqds algorithm is applied to the matrix B satisfy-
ing Assumption (A). If s(l) < (σ(l)

min)
2 for l = 0, 1, . . . , n, then (B(l+1))TB(l+1)

are positive definite for l = 0, 1, . . . , n, and hence q
(l+1)
k > 0 (k = 1, . . . ,m)

and e
(l+1)
k > 0 (k = 1, . . . ,m − 1) for l = 0, 1, . . . , n.
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Proof. For completeness we give a proof based on [1]. The proof is by
induction on n. Under Assumption (A), we have q

(0)
k > 0, e

(0)
k > 0 and that

(B(0))TB(0) is positive definite. Suppose that (B(n))TB(n) is positive definite
and q

(n)
k > 0, e

(n)
k > 0. By (6), if s(n) < (σ(n)

min)
2, then (B(n+1))TB(n+1) is

positive definite because B(n)(B(n))T−s(n)I is positive definite. Therefore all
the diagonal elements of B(n+1) are nonzero (b(n+1)

2k−1 ̸= 0) and hence q
(n+1)
k >

0 because of (4). By the 6th line of Algorithm 3.1, we have e
(n+1)
k > 0.

The asymptotic rate of convergence of the dqds algorithm is given by
the following lemma.

Lemma 4.2 ([1]). Under the same assumption as in Theorem 4.1, we have

lim
n→∞

e
(n+1)
k

e
(n)
k

=
σk+1

2 −
∑∞

n=0 s(n)

σk
2 −

∑∞
n=0 s(n)

< 1 (k = 1, . . . ,m − 1). (11)

Therefore, e
(n)
k (k = 1, . . . ,m− 2) are of linear convergence as n → ∞. The

bottommost element e
(n)
m−1 is of superlinear convergence if σ2

m−
∑∞

n=0 s(n) =
0.

In Theorem 4.1 the condition 0 ≤ s(n) < (σ(n)
min)

2 imposed on the shift is
not easy to verify, since σ

(n)
min is not known to us. To make use of the theorem

in designing effective shift strategies we have to translate this condition to
another form that is suitable for computational verification.

The following lemma shows that this is in fact possible and the condition
can be checked by running one iteration of the dqds algorithm.

Lemma 4.3. For a fixed n, assume e
(n)
k > 0 (k = 1, . . . ,m − 1) and

q
(n)
k > 0 (k = 1, . . . ,m), and apply Algorithm 3.1 with shift s(n) to compute

q
(n+1)
k (k = 1, . . . ,m). Then s(n) < (σ(n)

min)
2 if and only if q

(n+1)
k > 0 (k =

1, . . . ,m).

Proof. First suppose that s(n) < (σ(n)
min)

2 is true. Then by (6) we have
b
(n+1)
2k−1 ̸= 0 (k = 1, . . . ,m), which are diagonal elements of B(n+1). Therefore

we have q
(n+1)
k > 0 (k = 1, . . . ,m) from (4).

Conversely suppose that q
(n+1)
k > 0 (k = 1, . . . ,m). Then the diagonal

elements of B(n+1) are positive by (4). Furthermore, by the 6th line of
Algorithm 3.1 we see e

(n+1)
k > 0 (k = 1, . . . ,m − 1), and hence B(n+1) is

a real matrix by (5). Therefore (B(n+1))TB(n+1) is positive definite, and
hence we have s(n) < (σ(n)

min)
2 from (6).

The above arguments suggest the following scheme to set the shift in the
2nd line of Algorithm 3.1.
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1. Somehow choose a candidate value for the shift, say ŝ(n).

2. Check for the condition ŝ(n) < (σ(n)
min)

2 on the basis of Lemma 4.3.

3. Set s(n) := ŝ(n) if the condition is satisfied; otherwise set s(n) := 0.

Note that the assumption of Lemma 4.3 is satisfied for n = 0 by As-
sumption (A). By Lemma 4.1 the assumption of Lemma 4.3 will be met for
all n if the condition 0 ≤ s(n) < (σ(n)

min)
2 is satisfied. Theorem 4.1, on the

other hand, guarantees the convergence, whereas Lemma 4.2 shows that the
convergence rate is at least linear.

5 Shift for superquadratic convergence

Our shift strategy is proposed in this section. It leads to asymptotic su-
perquadratic convergence, as will be shown later in Theorem 6.1.

Let us start with the motivation of our shift strategy. From Algorithm 3.1
we see

e
(n+2)
m−1

(e(n+1)
m−1 )2

=
q
(n+1)
m

e
(n+1)
m−1 q

(n+2)
m−1

=
1

q
(n+2)
m−1

(
q
(n)
m − s(n)

e
(n+1)
m−1

− 1

)

=
q
(n+1)
m−1

q
(n+2)
m−1

(
q
(n)
m − s(n)

e
(n)
m−1q

(n)
m

− 1

q
(n+1)
m−1

)

=
q
(n+1)
m−1

q
(n+2)
m−1

(
q
(n)
m − s(n)

e
(n)
m−1q

(n)
m

− 1

q
(n)
m−1 − e

(n+1)
m−2 + e

(n)
m−1 − s(n)

)
,(12)

where the first equality is due to the 6th line (with k = m−1 and n replaced
by n + 1), the second is to the 8th line, the third is to the 6th line (with
k = m − 1), and the last is to the 5th line (with k = m − 1).

The ideal choice of the shift s(n) would be such that the right-hand side
of (12) vanishes, but this is impossible since the right-hand side involves
e
(n+1)
m−2 , a value to be determined in the future. As a feasible substitute we

replace e
(n+1)
m−2 with e

(n)
m−2 and determine s(n) from the equation

q
(n)
m − s(n)

e
(n)
m−1q

(n)
m

− 1

q
(n)
m−1 − e

(n)
m−2 + e

(n)
m−1 − s(n)

= 0. (13)

Since e
(n)
m−2 is expected to be close to e

(n+1)
m−2 , at least for large n, we can

reasonably expect that e
(n+2)
m−1 /(e(n+1)

m−1 )2 tends to zero as n → ∞. This
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would mean superquadratic convergence, although we also have to take care
of the condition 0 ≤ s(n) < (σ(n)

min)
2 for convergence, as dictated in Theorem

4.1.
We propose the following procedure to determine the shift s(n). First we

take λ(n) such that

q
(n)
m − λ(n)

e
(n)
m−1q

(n)
m

− 1

q
(n)
m−1 − e

(n)
m−2 + e

(n)
m−1 − λ(n)

= 0. (14)

This amounts to solving a quadratic equation:

(λ(n))2 − (q(n)
m−1 + q(n)

m − e
(n)
m−2 + e

(n)
m−1)λ

(n) + (q(n)
m−1 − e

(n)
m−2)q

(n)
m = 0 (15)

to set

λ(n) =
1
2

(
X(n) −

√
(X(n))2 − 4q

(n)
m (q(n)

m−1 − e
(n)
m−2)

)
, (16)

where
X(n) = q

(n)
m−1 + q(n)

m − e
(n)
m−2 + e

(n)
m−1.

Note that we have chosen the smaller root if X(n) > 0, which is the case for
large n. Then the shift is determined as follows.

s(n) =

{
λ(n) if λ(n) is real and 0 ≤ λ(n) < (σ(n)

min)
2,

0 otherwise.
(17)

Before we can implement this shift strategy, we have to be able to see
if λ(n) < (σ(n)

min)
2 is true or not, without computing the value of (σ(n)

min)
2.

Fortunately we can do this by virtue of Lemma 4.3 as follows, where we
assume that λ(n) is a positive real number.

Algorithm to check for λ(n) < (σ(n)
min)

2

1: ê0 := 0
2: for k := 1, · · · ,m − 1 do
3: q̂k := q

(n)
k − êk−1 + e

(n)
k − λ(n)

4: if q̂k ≤ 0 then
5: λ(n) < (σ(n)

min)
2 is false

6: return
7: end if
8: êk := e

(n)
k q

(n)
k+1/q̂k

9: end for
10: q̂m := q

(n)
m − êm−1 − λ(n)

11: if q̂
(n)
m ≤ 0 then

12: λ(n) < (σ(n)
min)

2 is false

9



13: else
14: λ(n) < (σ(n)

min)
2 is true

15: end if
16: return

It is emphasized here that the shift determined by (17) is a valid choice
in the sense of Theorem 4.1, and hence the variables are convergent. In the
next section, we shall establish a theorem for asymptotic superquadratic
convergence. It will be shown in particular that s(n) = λ(n) < (σ(n)

min)
2 holds

true for all sufficiently large n.

6 Theorem of superquadratic convergence

In this section, we prove that the asymptotic superquadratic convergence
is realized by the shift strategy proposed in the previous section. Recall
that the general convergence theorem (Theorem 4.1) applies to the dqds
algorithm with our shift strategy (17).

First, we show that the use of λ(n) is effective for all sufficiently large n.

Lemma 6.1. In the shift strategy (17) we have s(n) = λ(n) < (σ(n)
min)

2 for all
sufficiently large n.

Proof. The proof consists of showing two facts: (i) λ(n) given by (16) is a
positive real number for all sufficiently large n, and (ii) λ(n) < (σ(n)

min)
2 for

all sufficiently large n.
(i) For the discriminant D(n) of the quadratic equation (15) we have

lim
n→∞

D(n)

= lim
n→∞

(
(q(n)

m−1 + q(n)
m − e

(n)
m−2 + e

(n)
m−1)

2 − 4(q(n)
m−1 − e

(n)
m−2)q

(n)
m

)
= (σm−1

2 − σm
2)2 > 0.

Hence λ(n) is real for all sufficiently large n. In (15) we have

lim
n→∞

(q(n)
m−1 + q(n)

m − e
(n)
m−2 + e

(n)
m−1) = q

(∞)
m−1 + q(∞)

m > 0,

lim
n→∞

(q(n)
m−1 − e

(n)
m−2)q

(n)
m = q

(∞)
m−1q

(∞)
m ≥ 0

from Theorem 4.1, where q
(∞)
k = σk

2−
∑∞

n=0 s(n) denotes the limit of q
(n)
k as

n → ∞ given in (10). The above inequalities mean that, for all sufficiently
large n, the sum and product of the two roots of (15) are positive, and hence
λ(n) > 0. We can also see that

lim
n→∞

λ(n) = q(∞)
m . (18)
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(ii) We prove λ(n) < (σ(n)
min)

2 on the basis of Lemma 4.3. As observed
at the end of Section 4, we can assume that q

(n)
k > 0 (k = 1, . . . ,m) and

e
(n)
k > 0 (k = 1, . . . ,m − 1). Then, by Lemma 4.3, it suffices to show

q
(n+1)
k > 0 (k = 1, . . . ,m) when λ(n) is used as the shift s(n).

In the 5th line of Algorithm 3.1 we have

lim
n→∞

q
(n+1)
k = lim

n→∞

(
q
(n)
k − e

(n+1)
k−1 + e

(n)
k − λ(n)

)
= q

(∞)
k − q(∞)

m > 0

for k = 1, . . . ,m − 1 by (18). Hence q
(n+1)
k > 0 (k = 1, . . . ,m − 1) for all

sufficiently large n. Note that this implies e
(n+1)
k > 0 (k = 1, . . . ,m − 1) by

the 6th line of Algorithm 3.1.
The remaining case of k = m can be treated as follows. We see

q(n+1)
m = q(n)

m − e
(n+1)
m−1 − λ(n)

=
e
(n)
m−1q

(n)
m

q
(n)
m−1 − e

(n)
m−2 + e

(n)
m−1 − λ(n)

− e
(n+1)
m−1

=
q
(n+1)
m−1 e

(n+1)
m−1

q
(n)
m−1 − e

(n)
m−2 + e

(n)
m−1 − λ(n)

− e
(n+1)
m−1

=

(
q
(n)
m−1 − e

(n+1)
m−2 + e

(n)
m−1 − λ(n)

q
(n)
m−1 − e

(n)
m−2 + e

(n)
m−1 − λ(n)

− 1

)
e
(n+1)
m−1

=
(e(n)

m−2 − e
(n+1)
m−2 )e(n+1)

m−1

q
(n)
m−1 − e

(n)
m−2 + e

(n)
m−1 − λ(n)

, (19)

where the first equality is due to the 8th line of Algorithm 3.1, the second
is to (14), the third is to the 6th line (with k = m − 1) and the fourth is to
the 5th line (with k = m − 1). On the right-hand side of the last equality,
the numerator is positive for all sufficiently large n by Lemma 4.2 and the
denominator is positive for all sufficiently large n, since

lim
n→∞

(
q
(n)
m−1 − e

(n)
m−2 + e

(n)
m−1 − λ(n)

)
= q

(∞)
m−1 − q(∞)

m > 0.

Therefore we obtain q
(n+1)
m > 0 for all sufficiently large n.

For the convergence of the diagonal elements we can show the following.

Lemma 6.2. With the shift strategy (17) in the dqds algorithm we have

∞∑
n=0

s(n) = σm
2, (20)

lim
n→∞

q
(n)
k = σk

2 − σm
2 (k = 1, . . . ,m − 1); lim

n→∞
q(n)
m = 0. (21)

11



Proof. By Lemma 6.1, the equality of (18), and (8) in Theorem 4.1, we have
limn→∞ q

(n)
m = 0．This, together with (10), proves (20) and (21).

We now state the main theorem of this paper, which shows the su-
perquadratic convergence of the dqds algorithm with our shift strategy. In
view of (2) we introduce the notation

r(n)
m = q(n)

m +
n−1∑
l=0

s(l) − σm
2 (22)

to represent the error in the approximated smallest eigenvalue of BTB.

Theorem 6.1 (Superquadratic convergence of the dqds). In the dqds algo-
rithm with the shift strategy (17) we have

lim
n→∞

e
(n+1)
m−1

(e(n)
m−1)2

= 0, (23)

lim
n→∞

q
(n+1)
m

(q(n)
m )2

=
1

σm−2
2 − σm

2
, (24)

lim
n→∞

r
(n+1)
m

(r(n)
m )2

= 0. (25)

Therefore e
(n)
m−1 and r

(n)
m are of superquadratic convergence, and q

(n)
m is of

quadratic convergence. Moreover, we have

lim
n→∞

r
(n)
m

e
(n)
m−1

= 0. (26)

Proof. By Lemma 6.1 the shift is equal to λ(n) for all sufficiently large n,
and accordingly we assume s(n) = λ(n) below. By the first equality of (12)
and (19) (with λ(n) = s(n)) we have

e
(n+2)
m−1

(e(n+1)
m−1 )2

=
q
(n+1)
m

e
(n+1)
m−1 q

(n+2)
m−1

=
e
(n)
m−2 − e

(n+1)
m−2

q
(n+2)
m−1 (q(n)

m−1 − e
(n)
m−2 + e

(n)
m−1 − s(n))

.

Hence, with the aid of (11) and (20) as well as limn→∞ s(n) = 0, we see

lim
n→∞

e
(n+2)
m−1

e
(n+1)
m−2 (e(n+1)

m−1 )2
= lim

n→∞

e
(n)
m−2/e

(n+1)
m−2 − 1

q
(n+2)
m−1 (q(n)

m−1 − e
(n)
m−2 + e

(n)
m−1 − s(n))

=
(σm−2

2 − σm
2)/(σm−1

2 − σm
2) − 1

(σm−1
2 − σm

2)2

=
σm−2

2 − σm−1
2

(σm−1
2 − σm

2)3
. (27)

12



This implies

lim
n→∞

e
(n+2)
m−1

(e(n+1)
m−1 )2

=
σm−2

2 − σm−1
2

(σm−1
2 − σm

2)3
lim

n→∞
e
(n+1)
m−2 = 0.

We also have

q(n+1)
m = q

(n+2)
m−1 e

(n+2)
m−1 /e

(n+1)
m−1 , q(n)

m = q
(n+1)
m−1 e

(n+1)
m−1 /e

(n)
m−1 (28)

from the 6th line of Algorithm 3.1. Therefore we have

lim
n→∞

q
(n+1)
m

(q(n)
m )2

= lim
n→∞

(
q
(n+2)
m−1 e

(n+2)
m−1

e
(n+1)
m−2

·
(e(n)

m−1)
2

(q(n+1)
m−1 )2(e(n+1)

m−1 )2

)

= lim
n→∞

(
q
(n+2)
m−1

(q(n+1)
m−1 )2

·
e
(n+2)
m−1

e
(n+1)
m−2 (e(n+1)

m−1 )2
·
e
(n)
m−2(e

(n)
m−1)

2

e
(n+1)
m−1

·
e
(n+1)
m−2

e
(n)
m−2

)

=
1

σm−1
2 − σm

2
· σm−2

2 − σm−1
2

(σm−1
2 − σm

2)3
· (σm−1

2 − σm
2)3

σm−2
2 − σm−1

2
· σm−1

2 − σm
2

σm−2
2 − σm

2

=
1

σm−2
2 − σm

2
,

where (28) is used in the first equality, and Lemma 6.2 and (27) are used in
the third equality.

Finally, we prove (25) and (26). Adding both sides of the 5th line of
Algorithm 3.1 over n with k = m, we have

q(n)
m = q(0)

m −
n−1∑
l=0

e
(l+1)
m−1 −

n−1∑
l=0

s(l). (29)

Letting n → ∞ and noting
∑∞

l=0 e
(l+1)
m−1 is convergent (see [1] for the detail),

we have also

q(∞)
m = q(0)

m −
∞∑
l=0

e
(l+1)
m−1 −

∞∑
l=0

s(l),

and hence, from (10) in Theorem 4.1,

σm
2 = q(∞)

m +
∞∑
l=0

s(l) = q(0)
m −

∞∑
l=0

e
(l+1)
m−1 . (30)

Therefore we see

r(n)
m = q(n)

m +
n−1∑
l=0

s(l) − σm
2 =

∞∑
l=n+1

e
(l)
m−1 (31)

13



by (22), (29) and (30). It then follows from (31) that

lim
n→∞

r
(n)
m

e
(n+1)
m−1

= lim
n→∞

1

e
(n+1)
m−1

∞∑
l=1

e
(n+l)
m−1 = 1.

Hence we obtain

lim
n→∞

r
(n+1)
m

(r(n)
m )2

= lim
n→∞

e
(n+2)
m−1

(e(n+1)
m−1 )2

= 0,

lim
n→∞

r
(n)
m

e
(n)
m−1

= lim
n→∞

e
(n+1)
m−1

e
(n)
m−1

= 0

from (23).

Note that the critical variables for convergence are e
(n)
m−1 and r

(n)
m ; the

former is used for the convergence criterion and the latter represents the er-
ror in the approximation of σm

2. Furthermore, when the iteration is stopped
at the nth loop, the equation (26) indicates that r

(n)
m is small enough com-

pared to e
(n)
m−1. This property is useful in practice. Theorem 6.1 does not

say anything about other variables, but this is already sufficient from the
algorithmic point of view, since whenever the lower right elements, e

(n)
m−1

and q
(n)
m , converge to zero, the deflation is applied to reduce the matrix size.

Remark 6.1. Our shift strategy gives a concrete example of the ideal shift
for the quadratic convergence discussed in Fernando–Parlett [8].

Their analysis went as follows. From the 5th and the 6th line of Algo-
rithm 3.1, we see

e
(n+1)
m−1 q(n+1)

m = e
(n+1)
m−1

(
q(n)
m − e

(n+1)
m−1 − s(n)

)
=

e
(n)
m−1q

(n)
m

q
(n+1)
m−1

(
q(n)
m −

e
(n)
m−1q

(n)
m

q
(n+1)
m−1

− s(n)

)
. (32)

Hence, if we can choose a shift s(n) that satisfies the condition∣∣∣∣∣q(n)
m − s(n) −

e
(n)
m−1q

(n)
m

q
(n+1)
m−1

∣∣∣∣∣ ≤ e
(n)
m−1q

(n)
m

q
(n+1)
m−1

, (33)

we will have
|e(n+1)

m−1 q
(n+1)
m |

(e(n)
m−1q

(n)
m )2

≤ 1

(q(n+1)
m−1 )2

. (34)

If, furthermore, the shift is almost ideal in the sense that

s(n) ≃ (σ(n)
min)

2, (35)
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then q
(n+1)
m−1 ≃ σm−1

2−σm
2, and thus (34) approximately yields the quadratic

convergence of e
(n)
m−1q

(n)
m in this single step, where it is noted that e

(n)
m−1q

(n)
m

is the lower right subdiagonal element of (B(n))TB(n) .
Our shift in fact asymptotically realizes this ideal situation. Lemma 6.1

shows that for all sufficiently large n the shift s(n) = λ(n) is effective, and
we also see that∣∣∣∣∣q(n)

m − s(n) −
e
(n)
m−1q

(n)
m

q
(n+1)
m−1

∣∣∣∣∣ =
∣∣∣q(n)

m − s(n) − e
(n+1)
m−1

∣∣∣
=

∣∣∣∣∣ (e(n)
m−2 − e

(n+1)
m−2 )e(n+1)

m−1

q
(n)
m−1 − e

(n)
m−2 + e

(n)
m−1 − s(n)

∣∣∣∣∣
=

e
(n)
m−1q

(n)
m

q
(n+1)
m−1

∣∣∣∣∣ e
(n)
m−2 − e

(n+1)
m−2

q
(n)
m−1 − e

(n)
m−2 + e

(n)
m−1 − s(n)

∣∣∣∣∣
≤

e
(n)
m−1q

(n)
m

q
(n+1)
m−1

for all sufficiently large n, where the first equality is due to the 6th line
of Algorithm 3.1 (with k = m − 1), the second equality is to (19), the
third equality is to the 6th line of Algorithm 3.1 (with k = m − 1) and
to the positivity of variables in our shift strategy, and the inequality is
to Theorem 4.1. Therefore the condition (33) is met by our shift for all
sufficiently large n. The second condition (35) is also satisfied by our shift
because both s(n) and σ

(n)
min asymptotically tend to zero (see Lemma 6.2).

Actually, Theorem 6.1 for our shift gives a sharper estimate:

lim
n→∞

e
(n+1)
m−1 q

(n+1)
m

(e(n)
m−1q

(n)
m )2

= 0.

Thus the convergence of e
(n)
m−1q

(n)
m has turned out to be superquadratic in our

algorithm.
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