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Abstract

In this paper, we present a new approach to investigate the exis-
tence and design of reduced-order proper H∞ controllers that provide
the same level of performance as that of full-order controllers. By ex-
amining some special features of the LMI-based solvability conditions
for the H∞ control problem for descriptor systems, we obtain a refined
bound on the order of H∞ controllers, which is independent of (invari-
ant under the allowed transformations on) a descriptor realization of
the generalized plant. Moreover, we provide two LMI-based algorithms
to design reduced-order controllers; and we demonstrate the validity
of the theoretical results obtained in this paper via two numerical ex-
amples. This paper not only extends in a satisfying way the results
on reduced-order H∞ controllers for state-space systems to descriptor
systems, but also provides insight into the mechanism by which the
order of H∞ controllers for descriptor systems can be reduced through
a consideration of the unstable finite zeros or infinite zeros.

1 Introduction

In many practical applications, the descriptor (also known as implicit, singu-
lar, semistate) system description provides a natural mathematical represen-
tation of many practical systems because it is able to describe nondynamic
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constraints, and finite dynamic and impulsive behavior simultaneously (see
[8] and references therein).

Glover et al. [5] provided a descriptor representation of all the solutions
to the four-block general distance problem, which arises in standard H∞
optimal control. To remove the assumptions required in [2] on the infinite
and finite jω-axis zeros of the generalized plant in the state-space model,
Hara et al. [6] and Copeland and Safonov [1] employed a descriptor system
representation and demonstrated that it is useful for solving the singular
H∞ control problem.

Subsequent studies have dealt with the descriptor H∞ control problem,
which treats the generalized plant in descriptor form [10], [15], [16], [20].
One application is to tackle the mixed sensitivity problem for a physical
plant with nonproper weights, because it is often desirable to choose some
nonproper weights [9] and because relaxing the requirements of the state-
space model of the generalized plant provides more freedom in choosing the
weights.

Without making any extra assumptions about the direct feedforward
matrices in a descriptor realization of the generalized plant, Masubuchi [11,
12] obtained better solvability conditions for the H∞ control problem for
descriptor systems in terms of LMIs and a rank constraint, he showed that
there exists a proper H∞ controller with an order not greater than rankE
for a solvable descriptor H∞ control problem, see (3) for the definition of E.

For practical applications, it is very important to design reduced-order
controllers; and a great deal of research has been done on reduced-order
H∞ controllers for state-space systems. Studies employing an LMI-based
approach have appeared on the existence and design of reduced-order con-
trollers for the H∞ control problem with infinite zeros [21], with real unstable
transmission zeros [19], and with unstable invariant zeros [22].

This paper concerns the existence and design of reduced-order proper
H∞ controllers with an order strictly less than rank E for descriptor sys-
tems, a topic that has not received much attention. If we directly apply
the approach to analyzing and designing reduced-order H∞ controllers for
state-space systems in [22] to the LMI-based results in [11, 12], we can ob-
tain a bound on the order of H∞ controllers. Although this bound includes
the corresponding result for state-space systems in [22] as a special case, it
is dependent on a descriptor realization of the generalized plant and can not
reveal the existence of a reduced-order controller for a particular descriptor
realization.

In this paper, we present a new approach to investigate the existence and
design of reduced-order proper H∞ controllers by examining some special
features of the LMI-based solvability conditions for the H∞ control problem
for descriptor systems. We obtain a refined bound on the order of H∞
controllers, which is expressed in terms of the original parameter matrices of
a descriptor realization of the generalized plant. We show that a prominent
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feature of this bound is the invariance under the allowed transformations,
which are proposed by Verghese et al. [18] and are widely used in analyzing
descriptor systems, on a descriptor realization of the generalized plant. In
this sense, this bound is independent of a particular descriptor realization
of the generalized plant. Moreover, we provide two LMI-based algorithms
to design reduced-order controllers; and we demonstrate the validity of the
theoretical results obtained in this paper via two numerical examples.

This paper not only extends the results on reduced-order H∞ controllers
for state-space systems to descriptor systems, but also provides insight into
the mechanism by which the order of a controller can be reduced through a
consideration of the unstable finite zeros or infinite zeros, and reveals some
special features of the descriptor H∞ control problem.

Notation

1. C: the open complex plane.

2. R
m×r: the set of all m × r constant real matrices.

3. In: identity matrix of size n × n.

4. AT: the transpose of matrix A.

5. HeA: A + AT for the square matrix A.

6. B⊥: full-row-rank matrix with the maximal number of rows satisfying
B⊥B = 0; that is, the rows of B⊥ represent the basis of the left null
space of B.

7. X > 0 (X ≥ 0, X < 0): X is symmetric positive (semi-positive,
negative) definite.

2 Preliminaries

2.1 Descriptor Systems, and Finite and Infinite Zeros of Ma-
trix Pencils

Consider system Σ with the following descriptor realization:

Σ :
{

Eẋ = Ax + Bw
z = Cx + Dw

, (1)

where x ∈ R
n is the descriptor variable, w is the input, and z is the output

of the system. Assume that E ∈ R
n×n and −sE + A is regular; that is,

det(−sE + A) �≡ 0. The finite eigenvalues of the pencil −sE + A (which are
the roots of det(−sE + A) = 0) are called the finite dynamic modes of Σ.
The infinite eigenvalues of −sE + A are defined to be the zero eigenvalues
of −sA + E. The infinite eigenvalues corresponding to grade-one infinite
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generalized eigenvectors, v1
i , that satisfy Ev1

i = 0 are called the nondynamic
modes of Σ. The infinite eigenvalues corresponding to the grade-k (k ≥ 2)
infinite generalized eigenvectors, vk

i , that satisfy Evk
i = Avk−1

i are called
the impulsive modes of Σ. The system Σ is admissible if Σ has neither any
impulsive modes nor any unstable finite dynamic modes.

For the pencil (regular or singular) H(λ) = −λK + L, λ0 ∈ C is a finite
zero of H(λ) if rankH(λ0) < normal rankH(λ), where normal rankH(λ) is
the rank of H(λ) almost everywhere in λ ∈ C. The zero structure of H(λ)
at infinity is defined as the zero structure of H(λ−1) at λ = 0 Verghese et
al. [17] concluded that a kth-order infinite elementary divisor of a pencil (in
the terminology of the Kronecker pencil theory) corresponds to a (k − 1)th-
order zero at infinity.

We review the definitions of the restricted system equivalence (RSE)
transformations [13] and the allowed transformations [18] in Appendix A.
The latter ones, which include the former ones as special cases, preserve the
transfer function matrix of the original system, and are used more often in
analyzing descriptor systems.

2.2 LMI-Based H∞ Control for Descriptor Systems

We recall the LMI-based solvability conditions for the H∞ control prob-
lem for descriptor systems in [11, 12]. Consider a generalized plant, G(s),
described by[

z
y

]
= G(s)

[
w
u

]
=

[
G11(s) G12(s)
G21(s) G22(s)

] [
w
u

]
. (2)

Its descriptor realization is⎧⎨⎩
Eẋ = Ax + B1w + B2u,

z = C1x + D11w + D12u,
y = C2x + D21w + D22u, with D22 = 0,

(3)

where x ∈ R
n is the descriptor variable vector, w ∈ R

m1 is the exogenous
input vector, u ∈ R

m2 is the control input vector, z ∈ R
p1 is the controlled

error vector, and y ∈ R
p2 is the observation output vector. Assume that

E ∈ R
n×n and −sE + A is regular. Let r = rankE.

Consider a controller, C(s), given by[
Ecẋc

u

]
=

[
Ac Bc

Cc Dc

] [
xc

y

]
, (4)

where xc ∈ R
nc and Ec ∈ R

nc×nc .
For a given γ > 0, the (suboptimal) H∞ control problem is to find a

control law, u(s) = C(s)y(s), such that the closed-loop system is admissible
(stable and impulsive-free) and ||Tzw(s)||∞ < γ, where Tzw(s) is the closed-
loop transfer function matrix from w to z.
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Lemma 1 [11, 12] For a given γ > 0, the H∞ control problem for the
generalized plant (3) is solvable if and only if there exist matrices X ∈ R

n×n,
Y ∈ R

n×n, W ∈ R
n×m1 , and Z ∈ R

m1×n such that[
ETX ET

E EY T

]
≥ 0, (5)

ETW = 0, EZT = 0, (6)

LB(Y, Z) < 0, (7)

LC(X, W ) < 0, (8)

where

LB(Y, Z) =

⎡⎣ B2

D12

0

⎤⎦⊥ ⎡⎣ AY T + Y AT Y CT
1

C1Y
T −γI

BT
1 + ZAT DT

11 + ZCT
1

B1 + AZT

D11 + C1Z
T

−γI

⎤⎦⎡⎣ B2

D12

0

⎤⎦⊥T

, (9)

LC(X, W ) =

⎡⎣ CT
2

DT
21

0

⎤⎦⊥ ⎡⎣ ATX + XTA
BT

1 X + WTA
C1

XTB1 + ATW CT
1

BT
1 W + WTB1 − γI DT

11

D11 −γI

⎤⎦⎡⎣ CT
2

DT
21

0

⎤⎦⊥T

. (10)

If (5)–(8) are satisfied, then an H∞ controller exists in the state-space form
with order, rc, satisfying

rc ≤ r0(X, Y ) := rank
[

ETX ET

E EY T

]
− r. (11)

♦
Using a solution satisfying (5)–(8), Masubuchi [11, 12] provided a synthe-

sis method for obtaining Ec, Ac, Bc, Cc, and Dc in (4) such that rankEc =
r0(X, Y ) and −sEc + Ac is impulsive-free by solving an LMI and, if nec-
essary, adding a small perturbation to the solution. Owing to r0(X, Y ) ≤
rank E = r, there exists an H∞ controller in the state-space form with order,
rc, satisfying rc ≤ r.

Since finding a solution satisfying (5)–(8) and r0(X, Y ) < r, in general,
is non-convex, we will study the existence conditions and LMI-based design
algorithms for reduced-order proper H∞ controllers with order strictly less
than r. We investigate how to reduce the order of an H∞ controller, mainly
by exploiting LMI (7), and dually, how to reduce the order by exploiting
LMI (8).
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3 A Bound on the Order of H∞ Controllers for
Descriptor Systems: A Direct Approach

Without separating the matrix variables EY T and ETX, which determine
the order of the H∞ controller (see (11)), from other matrix variables in
the LMIs of Lemma 1, we obtain the following proposition via a direct
application of a previous result on the analysis and design of reduced-order
H∞ controllers for state-space systems in [22] (which is Lemma B1 in the
Appendix B of this paper).

Propostion 1 For a given γ > 0, suppose that the H∞ control problem
for the generalized plant (3) is solvable. Then, there exists a proper H∞
controller whose order, rc, satisfies

rc ≤ nb0 := min
{

min
Re [λ]≥0

ρ0(λ), ρ0∞
}

≤ r, (12)

where Re [λ] denotes the real part of λ ∈ C, and

ρ0(λ) := rank
[ −λE + AE+E B2

C1E
+E D12

]
− rank

[
B2

D12

]
, (13)

ρ0∞ := rank
[

E B2

0 D12

]
− rank

[
B2

D12

]
, (14)

where E+ is the Moore-Penrose pseudoinverse of E. ♦

Proof: See Appendix C.
For the special case E = In, Proposition 1 reduces to the one in [22]

for state-space systems. However, nb0 in Proposition 1, is dependent on a
descriptor realization of a given transfer matrix, G(s). To see this, first,
for nonsingular matrices T and P , since in general (TEP )+ �= P−1E+T−1

(because both TEE+T−1 and P−1E+EP being symmetrical is, in general,
not true), nb0 in (12) is, in general, variant under a RSE transformation on
(3).

Second, we illustrate that the values of nb0 are different for two descriptor
realizations of G(s) which can be transformed to each other via some allowed
transformations. Consider a proper G(s), for which a state-space realization
is given in (3) with E = In. By introducing an additional descriptor variable
in two different ways, we obtain the following two descriptor realizations for
G(s): ⎡⎢⎢⎣

ẋ
0
z
y

⎤⎥⎥⎦ =

⎡⎢⎢⎣
A 0 B1 B2

0 Im1 −Im1 0
C1 0 D11 D12

C2 0 D21 0

⎤⎥⎥⎦
⎡⎢⎢⎣

x
xa

w
u

⎤⎥⎥⎦ , (15)
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⎡⎢⎢⎣
ẋ
0
z
y

⎤⎥⎥⎦ =

⎡⎢⎢⎣
A 0 B1 B2

0 Im2 0 −Im2

C1 0 D11 D12

C2 0 D21 0

⎤⎥⎥⎦
⎡⎢⎢⎣

x
xb

w
u

⎤⎥⎥⎦ . (16)

Using (12), we know that nb0 for realization (15) is the same as the bound
in [22]. However, we can see that nb0 for realization (16) is

nb0 = min
Re [λ]≥0

rank
[ −λIn + A

C1

]
, (17)

which is greater than or equal to the bound in [22].
Thus, for a given descriptor realization, the bound in Proposition 1 may

fail to reveal the existence of a reduced-order controller. Indeed, from the
two numerical examples in this paper, we can see that a reduced-order con-
troller cannot be shown to exist by using Proposition 1. Let us consider the
following generalized plant, G(s), taken from [15], which considered the H∞
control problem for GT(s) with γ = 1.

G(s) =

⎡⎢⎣ 2s

s + 1
s

s2 + 2s − 1
s + 1

2 s + 2 s + 1

⎤⎥⎦ . (18)

A descriptor form representation of this plant is

E =

⎡⎣ 1 0 0
0 1 0
0 0 0

⎤⎦ , A =

⎡⎣ −1 0 0
0 0 −1
1 1 0

⎤⎦ ,

B1 =

⎡⎣ 1 0
1 1
0 1

⎤⎦ , B2 =

⎡⎣ 1
0
1

⎤⎦ ,

C1 =
[

0 1 1
]
, C2 =

[
1 0 1

]
,

D11 =
[

0 0
]
, D12 = 1, D21 =

[
0 1

]
.

Takaba et al. [15] gave the following controller, for which ||Tzw||∞ = 0.934:

C(s) =
−(s + 1.807)(s + 1.452)
2(s + 1.301)(s + 2.043)

. (19)

Since G12(s) has an unstable transmission zero at s = −1+
√

2, based on
the fact of controller order reduction owing to an unstable invariant zero for
state-space systems, we expect the existence of a reduced-order controller
for (18). However, from (12) in Proposition 1, we obtain nb0 = 2, which fails
to show that a reduced-order controller exists.

Therefore, a direct application of the result for the state-space realization
to the descriptor system is not good enough; and further investigation is
needed to obtain a refined result, which is discussed in the next section.
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4 A Refined Bound on the Order of H∞ Controllers
and A Design Algorithm

4.1 A Refined Bound on the Order of H∞ Controllers

By examining some special features of the LMI-based solvability conditions
for the H∞ control problem for descriptor systems, we can separate EY T and
ETX, which determine the order of the H∞ controller, from other matrix
variables in the LMIs of Lemma 1. This yields more freedom in the choice
of matrix variables EY T and ETX for obtaining a refined bound on the
order of H∞ controllers. This bound is expressed in terms of the original
parameter matrices of a descriptor realization of the generalized plant, and
is invariant under the allowed transformations on the system matrix of the
descriptor realization.

First, we present the following theorem.

Theorem 1 For a given γ > 0, suppose that the H∞ control problem for the
generalized plant (3) is solvable. Then, there exists a proper H∞ controller
whose order, rc, satisfies

rc ≤ nb := min
{

min
Re [λ]≥0

ρ(λ), ρ∞
}

, (20)

where

ρ(λ) : = rankE + rank
[ −λE + A B2

C1 D12

]
− rank

⎡⎣ E 0
A B2

C1 D12

⎤⎦ , (21)

ρ∞ := rank

⎡⎣ 0 E 0
E A B2

0 C1 D12

⎤⎦ − rank

⎡⎣ E 0
A B2

C1 D12

⎤⎦ . (22)

Moreover, the following inequalities hold:

ρ(λ) ≤ ρ0(λ) ≤ r, ρ∞ ≤ ρ0∞ ≤ r, nb ≤ nb0, (23)

where ρ0(λ), ρ0∞, and nb0 are defined in (13), (14), and (12), respectively.
♦

Proof: See Appendix D.
For the special case E = In, Theorem 1 reduces to the one in [22] for

state-space systems. Moreover, the values of nb for the two descriptor real-
izations (15) and (16) are the same as the one in [22] for state-space systems.

Next, we present the following theorem to reveal a prominent difference
between nb0 in (12) and nb in (20).

8



Theorem 2 For the generalized plant G(s) with its descriptor realization
in (3), the inequality in (20) holds with nb being invariant under the allowed
transformations on the system matrix of (3). ♦

Proof: See Appendix E.
We present a dual result of Theorems 1 and 2.

Theorem 3 For a given γ > 0, suppose that the H∞ control problem for the
generalized plant (3) is solvable. Then, there exists a proper H∞ controller
whose order, rc, satisfies

rc ≤ ñb := min
{

min
Re [λ]≥0

ρ̃(λ), ρ̃∞
}

, (24)

where

ρ̃(λ) := rankE + rank
[ −λE + A B1

C2 D21

]
− rank

[
E A B1

0 C2 D21

]
, (25)

ρ̃∞ := rank

⎡⎣ 0 E 0
E A B1

0 C2 D21

⎤⎦ − rank
[

E A B1

0 C2 D21

]
. (26)

Moreover, the inequality in (24) holds with ñb being invariant under the
allowed transformations on the system matrix of (3). ♦

The following corollary yields from Theorems 1 and 3.

Corollary 1 Suppose the H∞ control problem for the generalized plant (3)
is solvable. If the system matrix of G12(s) or G21(s) induced from (3), which
is

Γ12(s) :=
[ −sE + A B2

C1 D12

]
, or (27)

Γ21(s) :=
[ −sE + A B1

C2 D21

]
, (28)

has unstable finite zeros or infinite zeros, then there exists a proper H∞
controller whose order, rc, is strictly less than rankE. ♦

The system matrices of G12(s) and G21(s) play an important role in
GARE (generalized algebraic Riccati equation) based solutions of the H∞
control problem for the descriptor system [15, 20]. However, their role is
somewhat unclear in the LMI-based approach to this problem. We clarified
their role in LMI-based solutions by establishing the relationship between
the bound on the order of the H∞ controller, and the (unstable finite or
infinite) zeros of the system matrices.

Finally, we present a remark to reveal some special features of the LMI-
based solvability conditions for the H∞ control problem for descriptor sys-
tems in [11, 12].
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Remark 1 Using the projection lemma for variable elimination in LMIs
(C8) and (C9), as we illustrated in (D3) and (D4) for LMI (C8), we can
show that the LMI-based solvability conditions in [11, 12] are equivalent to
the negative definiteness of ten constant matrices, and the feasibility of three
LMIs which contain only the matrix variables determining the controller
order and have the same forms as those for the H∞ control problem for
state-space systems (see (B1)–(B3) in the Appendix B). ♦

4.2 A Constructive Design Algorithm

Using the results in Appendices C and D, we provide an algorithm for com-
puting a reduced-order H∞ controller. The algorithm assumes that Γ12(s)
in (27) has unstable finite zeros or infinite zeros and G(s) has the structure
of (C2).

Algorithm 1

1). Solve LMIs (C4), (C9), (D3), and (D4) to obtain a solution, which is
denoted (Yp11, Yp22, Zp2, Xp, Wp).

2). Let λ0 be an unstable finite zero or infinite zero of Γ12(s). Using
J⊥

2 N1, J⊥
2 J1 (which is related to LMI (D3)), λ0, Xp11, and Yp11, apply

Algorithm 1 in [22] to obtain Ȳp11 such that rank (Xp11 − Ȳp11) ≤
rank ρ(λ0) < r.

3). Solve (C8) for Y12 with Y11 = Ȳp11, Y22 = Yp22, and Z2 = Zp2. Let a
solution be Ȳp12.

4). Construct a reduced-order proper controller of order rank (Xp11−Ȳp11)
using the algorithm in [11, 12], and the solution (Ȳp11, Ȳp12, Yp22,
Zp2, Xp, Wp) to LMIs (C4), (C8), (C9), (D3), and (D4).

We apply Theorem 1 and Algorithm 1 to the generalized plant (18), for
which Γ12(s) has an unstable finite zero at s = λ0 = −1 +

√
2. From (20)

in Theorem 1, we have nb = rank ρ(λ0) = 1. This means that a first-order
H∞ controller exists. Using Algorithm 1 with the aid of the LMI control
toolbox [4], we obtain

Xp11 =
[

2.4313 −1.8865
−1.8865 4.4750

]
, Zp2 =

[
0.0000
1.0000

]
,

Yp11 =
[

4.2950 1.5860
1.5860 1.0833

]
,

Xp21 =
[ −9.7506 −4.6344

]
, Xp22 = −7.2085,

Yp22 = 9.1729, Wp2 =
[ −1.6530 −12.8281

]
,
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Ȳp11 =
[

4.2599 1.6706
1.6706 0.8792

]
, Ȳp12 =

[ −1.0420
4.5950

]
.

The eigenvalues of Xp11 −Yp11 are 3.3711 and 1.0189, while those of Xp11 −
Ȳp11 are 1.5226 and 6 × 10−16. We thus obtain

C(s) =
−0.4152(s + 1.643)

s + 1.721
. (29)

Under this controller, the closed-loop system is impulsive-free and has the
poles −3.2946, −1.7569, and −1; and ||Tzw||∞ = 0.8029. In addition, γopt =
0.7678, which was obtained by solving (C4), (C8), and (C9), provides the
optimal H∞ performance for G(s).

5 Efficient Algorithm for Designing Reduced-Order
H∞ Controllers

For the H∞ control problem for state-space systems, Skelton et al. [14] (p.
167) suggested the use of min trace (X + Y ) in combination with the three
LMIs as a heuristic method of constructing a reduced-order H∞ controller;
and Xin [22] proved that such linear objective minimization always yields a
controller of order not greater than the bound determined by the unstable
invariant zeros or infinite zeros of G12(s) or G21(s). We can extend this
result to descriptor systems as shown in the following theorem.

Theorem 4 For a given γ > 0, suppose that the H∞ control problem for
the generalized plant (3) is solvable. Then, there exist scalars εB > 0 and
εC > 0 such that

LB(Y, Z) + εBI ≤ 0, LC(X, W ) + εCI ≤ 0, (30)

where LB(Y, Z) and LC(X, W ) are defined in (9) and (10), respectively. Let

(Xm, Ym, Wm, Zm) = arg min
X,Y,W,Z

trace (ETX + EY T)

subject to (5), (6), and (30). (31)

Then, Xm and Ym satisfy

rank
[

ETXm ET

E EY T
m

]
− r ≤ min(nb, ñb), (32)

where nb and ñb are defined in (20) and (24), respectively. ♦

Note that, if (7) and (8) rather than (30) are used in the optimiza-
tion problem (31), then the optimal solution may lie on the boundary of
LB(Y, Z) < 0 or LC(X, W ) < 0.
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Proof: Let (Xp, Yp, Wp, Zp) be a solution of (5)–(8). Then, (30) holds
for any scalars εB and εC satisfying 0 < εB < λmin(−LB(Yp, Zp)) and 0 <
εC < λmin(−LC(Xp, Wp)), where λmin(Ψ) denotes the minimal eigenvalue of
matrix Ψ > 0.

Without loss of generality, we assume that the generalized plant (3)
has the structure of (C2). Owing to (C3), we have trace (ETX + EY T) =
trace (X11 + Y11). The rest of the proof is similar to that of Theorem 4 in
[22].

We now provide an algorithm for computing a reduced-order H∞ con-
troller based on Theorem 4.

Algorithm 2

1). Solve LMIs (5)–(8) to obtain a solution, which is denoted (Xp, Yp, Wp, Zp).

2). Choose the scalars εB and εC such that 0 < εB < λmin(−LB(Yp, Zp))
and 0 < εC < λmin(−LC(Xp, Wp)).

3). Solve (31) to obtain (Xm, Ym, Wm, Zm).

4). Construct a reduced-order proper controller using the algorithm in
[11, 12], and the solution (Xm, Ym, Wm, Zm).

We apply Algorithm 2 to the following G(s), for which the H∞ control
problem was studied in [11, 12]:

G(s) =

⎡⎢⎢⎢⎢⎢⎣
s2 + 3s + 5
s2 + 2s + 3

0
s3 + 8s2 + 14s + 4

(s2 + 2s + 3)(s2 + 5s + 2)
0 0 1

s2

s2 + 2s + 3
1

s(s4 + 8s3 + 21s2 + 21s + 6)
(s2 + 2s + 3)(s2 + 5s + 2)

⎤⎥⎥⎥⎥⎥⎦ (33)

with the descriptor form representation of this plant being E = diag(I5, 0)
and

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0
−2 −5 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 1 0 0
0 1 0 −3 −2 1 0
0 0 0 0 0 −1 0
0 0 −1 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
0
1
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 0
0 0
1 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, CT

1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
2 0
1 0
−2 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, CT

2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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D11 =
[

3 0
0 0

]
, D12 =

[
0
1

]
, D21 =

[
0 1

]
.

Masubuchi [11, 12] stated that γopt = 1.7064 provides the optimal H∞ per-
formance.

From (12), we obtain nb0 = 5. This fails to show that a reduced-order
controller exists. Notice that G12(s) and G21(s) are both proper and have
neither finite zeros nor infinite zeros; and note that G11(s) and G22(s) are
stable. This means that the system matrices of G12(s) and G21(s) have no
unstable finite zeros. However, since G22(s) is improper (that is, it has a
pole at infinity), the system matrices of G12(s) and G21(s) inherit that pole
as their infinite zero. Indeed,

[
A22 B22

C12 D12

]
=

⎡⎢⎢⎣
−1 0 0
0 0 1
−2 0 0
0 0 1

⎤⎥⎥⎦ ,

[
A22 B12

C22 D21

]
=

⎡⎣ −1 0 1 0
0 0 0 0
0 1 0 1

⎤⎦
are not full-rank matrices. From (20)–(22) in Theorem 1, we obtain nb =
4 < 5. This shows that a reduced-order H∞ controller exists.

Setting γ = 1.8 > γopt = 1.7064 and using Algorithm 1, we obtain the
following fourth-order controller:

C(s) =
−0.001(s − 315.4)(s + 4.562)(s − 1.74)(s + 0.4383)

(s + 4.226)(s + 0.3838)(s2 + 2.844s + 2.192)
, (34)

under which the closed-loop system is impulsive-free and has the poles
−721.28, −4.5576, −4.4998, −1.7756±1.6896i, −1.2197±0.2362i, −0.4384,
and −0.3693; and ||Tzw||∞ = 1.7294.

Now, by using Algorithm 2 with εB = εC = 0.02, we obtain (Xm, Ym, Wm, Zm),
with the largest eigenvalue of Xm11−Y −1

m11 being 0.8647 and the others being
less than 8 × 10−7. This yields the following first-order controller:

C(s) =
−0.0344(s + 3.899)

s + 0.2612
. (35)

Under this controller, the closed-loop system is impulsive-free and has the
poles −33.654, −4.5701, −1.0369 ± 1.3359i, −0.4433, and −0.2337; and
||Tzw||∞ = 1.7489 < 1.8. For this particular plant and the performance
γ = 1.8, minimizing the trace of the linear combination of the matrix vari-
ables yields a first-order H∞ controller for which the order is less than that
determined by the bound nb.

6 Conclusions

This paper concerns the existence and design of reduced-order proper H∞
controllers for descriptor systems with the same level of performance as that
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of full-order controllers. Using the projection lemma for variable elimina-
tion, we separated the matrix variables determining the order of the H∞
controller from other matrix variables in Lemma 1. This yields more free-
dom in choosing the matrix variables determining the controller order to
obtain the refined bound given in (32) on the controller order, which is ex-
pressed in terms of the original parameter matrices of the system matrices
of G12(s) and G21(s). We showed that a prominent feature of this bound is
the invariance under the allowed transformations on a descriptor realization
of the generalized plant. When the H∞ control problem for descriptor sys-
tems is solvable, a reduced-order controller can be shown to exist if either
of these two system matrices has unstable finite zeros or infinite zeros. Two
numerical examples demonstrated the validity of the theoretical results ob-
tained in this paper. We not only extended in a satisfying way the results
on reduced-order H∞ controllers for state-space systems to descriptor sys-
tems, but also provided insight into the mechanism by which the order of
H∞ controllers for descriptor systems can be reduced.
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Appendix A RSE transformations and allowed trans-
formations

Let Γ(s) be the system matrix of system Σ in (1), that is,

Γ(s) =
[ −sE + A B

C D

]
. (A1)

The restricted system equivalence (RSE) transformations [13] on the sys-
tem matrix of (1) is[

T 0
0 I

]
Γ(s)

[
P 0
0 I

]
=

[ −sĒ + Ā B̄
C̄ D̄

]
, (A2)

where T and P are nonsingular.
Second, the following three operations are termed allowed transforma-

tions [18] (p. 187):
i). The operation of strong equivalence, which is defined as:⎧⎪⎨⎪⎩

[
T 0
S I

]
Γ(s)

[
P R
0 I

]
=

[ −sĒ + Ā B̄
C̄ D̄

]
,

SE = 0 and ER = 0,

(A3)

where T and P are nonsingular;
ii). The trivial augmentation of (A1) to⎡⎣ −sE + A 0 B

0 I 0
C 0 D

⎤⎦ ; (A4)

iii). The trivial deflation of (A4) to (A1).

Appendix B Reduced-order H∞ controllers for state-
space systems

From [3] and [7], the H∞ control problem for a generalized plant in the
state-space model is solvable if and only if L �= ∅, where

L :=
{

(X, Y ) ∈ R
n×n × R

n×n : X ∈ L1, Y ∈ L2,

[
X In

In Y

]
≥ 0

}
, (B1)
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where
L1 :=

{
X ∈ R

n×n : X > 0, HeH1XMT
1 + Q1 < 0

}
, (B2)

L2 :=
{
Y ∈ R

n×n : Y > 0, HeH2Y MT
2 + Q2 < 0

}
, (B3)

where Hi, Mi, and Qi (i = 1, 2) are constant matrices. Based on the result
in Section 2.2 of [22], we obtain the following:

Lemma B1 [22] Suppose L �= ∅, and let (Xp, Yp) ∈ L. Then,
1) there exists Xr such that (Xr, Yp) ∈ L and

rank (Xr − Y −1
p ) ≤ min

{
min

Re [λ]≥0
rank (−λH1 + M1), rank M1

}
; (B4)

2) there exists Yr such that (Xp, Yr) ∈ L and

rank (Xp − Y −1
r ) ≤ min

{
min

Re [λ]≥0
rank (−λH2 + M2), rank M2

}
; (B5)

♦
It is worth mentioning that Lemma B1 holds for any L defined in (B1)–

(B3) as long as Hi, Mi, and Qi are constant matrices, because the special
structure of Hi, Mi, and Qi (i = 1, 2), which is inherited from the H∞
control problem, is not used in the proof of Lemma B1.

Next, we recall the projection lemma as follow:

Lemma B2 [3, 7] Given a symmetric matrix Ψ ∈ R
n×n and two matrices

Γ ∈ R
n×k and Ξ ∈ R

n×k, there exists Θ ∈ R
k×k satisfying

ΓΘΞT + ΞΘTΓT + Ψ < 0 (B6)

if and only if
Γ⊥ΨΓ⊥T < 0, Ξ⊥ΨΞ⊥T

< 0. (B7)

♦

Appendix C Proof of Proposition 1

First, let a singular-value decomposition of E be E = Udiag{Σ, 0q×q}V T,
where U , V ∈ R

n×n are unitary matrices, and Σ > 0. Letting M =
Udiag{Σ, Iq}, we obtain

diag{Ir, 0q×q} = M−1EV. (C1)
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Letting x̄ := V −1x and using M and V , we decompose compatibly the
matrices in (3) into⎡⎢⎢⎣

˙̄x1

0
z
y

⎤⎥⎥⎦ =

⎡⎣ M−1AV M−1B1 M−1B2

C1V D11 D12

C2V D21 0

⎤⎦⎡⎣ x̄
w
u

⎤⎦

=

⎡⎢⎢⎣
A11 A12 B11 B21

A21 A22 B12 B22

C11 C12 D11 D12

C21 C22 D21 0

⎤⎥⎥⎦
⎡⎢⎢⎣

x̄1

x̄2

w
u

⎤⎥⎥⎦ . (C2)

With a little abuse of notations, we still use the same notations X, Y ,
W , and Z in this new coordinate system; for (C2), we can see from [11, 12]
that X, Y , W , and Z satisfying (5) and (6) have the following structures:⎧⎪⎪⎨⎪⎪⎩

X =
[

X11 0r×q

X21 X22

]
, Y =

[
Y11 Y21

0q×r Y22

]
,

W =
[

0r×m1

W2

]
, Z =

[
0m1×r Z2

]
,

(C3)

where X11 = XT
11 ∈ R

r×r, Y11 = Y T
11 ∈ R

r×r, and q = n − r. Moreover, (5)
is equivalent to [

X11 Ir

Ir Y11

]
≥ 0, (C4)

and (11) is equivalent to

rc ≤ rank (X11 − Y −1
11 ) ≤ r. (C5)

Now, from E+ = V diag{Σ−1, 0}UT and E+E = V diag{Ir, 0}V T, it
follows that (13) and (14) are equal, respectively, to

ρ0(λ) = rank

⎡⎣ −λIr + A11 B21

A21 B22

C11 D12

⎤⎦ − rank

⎡⎣ B21

B22

D12

⎤⎦ , (C6)

ρ0∞ = r + rank
[

B22

D12

]
− rank

⎡⎣ B21

B22

D12

⎤⎦ . (C7)

Thus, below we only need to show that, for the generalized plant (C2), (12)
holds, with (13) and (14) being given by (C6) and (C7), respectively.

Second, for (C2), by using the structure of Y and Z in (C3), we rewrite
(7) as

HeN1Y11J
T
1 +

{
He (N1Y12 + N2Y22 + FZ2)JT

2

}
+ Q < 0, (C8)
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where

[
N1 N2

]
:=

⎡⎢⎢⎣
B21

B22

D12

0m1×m2

⎤⎥⎥⎦
⊥ ⎡⎢⎢⎣

Ir 0
0 Iq

0 0
0 0

⎤⎥⎥⎦ ,

[
J1 J2 F

]
:=

⎡⎢⎢⎣
B21

B22

D12

0m1×m2

⎤⎥⎥⎦
⊥ ⎡⎢⎢⎣

A11 A12 0
A21 A22 0
C11 C12 0
0 0 Im1

⎤⎥⎥⎦ ,

Q :=

⎡⎢⎢⎣
B21

B22

D12

0

⎤⎥⎥⎦
⊥ ⎡⎢⎢⎣

0 0 0 B11

0 0 0 B12

0 0 −γI D11

BT
11 BT

12 DT
11 −γI

⎤⎥⎥⎦
⎡⎢⎢⎣

B21

B22

D12

0

⎤⎥⎥⎦
⊥T

.

Dually, (8) can be rewritten in an equivalent form as

He Ñ1X11J̃
T
1 +

{
He (Ñ1X

T
21 + Ñ2X

T
22 + F̃WT

2 )J̃ T
2

}
+ Q̃ < 0, (C9)

where the expressions Ñ1, J̃1, Ñ2, J̃2, F̃ , and Q̃ are omitted due to space
limitations.

Third, since LMIs (C4), (C8), and (C9) are feasible, and since the second
and third terms of the left-hand side of (C8) do not contain Y11, based on
Lemma B1, we know that there exists a solution satisfying

rank (X11 − Y −1
11 ) ≤ min

{
min

Re [λ]≥0
rank (−λN1 + J1), rank N1

}
. (C10)

Indeed, let (Yp11, Yp12, Yp22, Zp2), and (Xp, Wp) with the decomposition
(C3) be a solution of LMIs (C4), (C8), and (C9). Consider the following
LMI instead of LMI (C8):

N1Y11J
T
1 + J1Y11N

T
1 + Qp1 < 0, (C11)

where Qp1 :=
{
He (N1Yp12 + N2Yp22 + FZp2)JT

2

}
+ Q is a constant matrix.

Since LMIs (C4), (C9), and (C11) are feasible, (C10) follows from Statement
2) in Lemma B1.

Using the following equality which can be shown via direct manipulation,

rank B⊥H = rank
[

H B
] − rankB, (C12)

where the matrices H and B have the same number of rows, we can show
that rank (−λN1 + J1) and rankN1, which are less than r, are equal to the
right-hand terms of (C6) and (C7), respectively. This proves (12).
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Appendix D Proof of Theorem 1

First, from (C1) and (C2), we obtain

ρ(λ) = rank

⎡⎣ −λIr + A11 A12 B21

A21 A22 B22

C11 C12 D12

⎤⎦ − rank

⎡⎣ A12 B21

A22 B22

C12 D12

⎤⎦ , (D1)

ρ∞ = r + rank
[

A22 B22

C12 D12

]
− rank

⎡⎣ A12 B21

A22 B22

C12 D12

⎤⎦ . (D2)

Thus, below we only need to show that, for the generalized plant (C2), (20)
holds, with ρ(λ) and ρ∞ being given by (D1) and (D2), respectively.

Second, for the generalized plant (C2), we consider LMI (C8). Note that
Y11 and Y12 have the same coefficient matrix, N1, and that Y12, Y22, and Z2

have the same coefficient matrix, J2 in LMI (C8). Thus, using the projection
lemma (Lemma B2) enables us to eliminate Y12 from (C8) and show that
LMI (C8) is feasible if and only if the following LMI is solvable for Y11:

LB1(Y11) := HeJ⊥
2 N1Y11(J⊥

2 J1)T + J⊥
2 QJ⊥T

2 < 0, (D3)

and the following LMI is solvable for Y22 and Z2:

LB2(Y22, Z2) :=
{
He (N⊥

1 N2Y22 + N⊥
1 FZ2)(N⊥

1 J2)T
}

+N⊥
1 QN⊥T

1 < 0. (D4)

Since Y11 and (Y22, Z2) are in two different LMIs, we have more freedom
in choosing Y11 so as to further reduce the rank of X11 − Y −1

11 . Since LMIs
(C4), (C9), and (D3) are feasible, based on Lemma B1, from the left-hand
coefficient matrices of Y11 in (D3) (i.e. J⊥

2 N1 and J⊥
2 J1), we know that there

exists a solution satisfying

rank (X11 − Y −1
11 ) ≤

{
min

Re [λ]≥0
rank J⊥

2 (−λN1 + J1) , rank J⊥
2 N1

}
. (D5)

Using (C12) repeatedly shows that rankJ⊥
2 (−λN1 + J1) and rankJ⊥

2 N1

are equal to the right-hand terms of (D1) and (D2), respectively. This proves
(20). Finally, from

rank J⊥
2 (−λN1 + J1) ≤ rank (−λN1 + J1),

rank J⊥
2 N1 ≤ rank N1,

it follows that (23) holds. This completes the proof of Theorem 1.
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Appendix E Proof of Theorem 2

Using (A1), (A3), and (A4), we can show via a straightforward verification
that nb in (20) is invariant under the allowed transformations.

From (A3), it follows that a standard assumption of D22 = 0 in (3),
which is used in Lemma 1, can not be preserved under some allowed trans-
formations. However, this does not disappoint us. Indeed, through a loop
shifting transformation, we can show that the existence of one proper H∞
controller with order rc for (3) with D22 �= 0, is equivalent to, that of another
proper H∞ controller with the same order rc for (3) with y being replaced
by y−D22u = C2x+D21w. A detailed proof given below for this statement
is similar to the case of the H∞ control problem for state-space systems (see
for example [7] (p.1308)).

Suppose there exists a proper H∞ controller for (3) with y being replaced
by ŷ, which is expressed as:[

Ecẋc

u

]
=

[
Âc B̂c

Ĉc D̂c

] [
xc

ŷ

]
, (E1)

where −sEc + Âc is impulsive-free and rc = rankEc. We can assume that
D0 := I + D̂cD22 is nonsingular (if not, we can make this assumption hold
by using a small perturbation to Dc). From (E1), it follows that[

Ecẋc

u

]
=

[
Ac Bc

Cc Dc

] [
xc

y

]
, (E2)

is an H∞ controller for (3), where Cc := D−1
0 Ĉc, Dc := D−1

0 D̂c, Ac :=
Âc − B̂cD22Cc, and Bc := B̂c(I −D22Dc). Since −sEc +Ac is impulsive-free
(if not, we can make −sEc +Ac impulsive-free by using a small perturbation
to Ac), the controller in (E2) is proper.

The reverse process, namely going from (E2) to (E1), can be performed
similarly.

Therefore, the inequality (20) holds with nb being invariant under the
allowed transformations.
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