
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

An Extension of the Disjoint Paths Problem

Yusuke KOBAYASHI

(Communicated by Kazuo MUROTA)

METR 2007–14 March 2007

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.i.u-tokyo.ac.jp/edu/course/mi/index e.shtml



The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.



An Extension of the Disjoint Paths Problem

Yusuke KOBAYASHI

Department of Mathematical Informatics
Graduate School of Information Science and Technology

University of Tokyo
Yusuke Kobayashi@mist.i.u-tokyo.ac.jp

March, 2007

Abstract

For a graph G and a collection of vertex pairs {(s1, t1), . . . , (sk, tk)}, the disjoint paths
problem is to find k vertex-disjoint paths P1, . . . , Pk, where Pi is a path from si to ti for each
i = 1, . . . , k. This problem is one of the classic problems in algorithmic graph theory and has
many applications, for example in VLSI-design.

As an extension of the disjoint paths problem, we introduce a new problem which we call the
stable paths problem. In this problem we are given a graph G and a collection of vertex pairs
{(s1, t1), . . . , (sk, tk)}. The objective is to find k paths P1, . . . , Pk such that Pi is a path from si

to ti and Pi and Pj have neither common vertices nor adjacent vertices for any distinct i, j.
The stable paths problem has several variants depending on whether k is a fixed constant

or a part of the input, whether the graph is directed or undirected, and whether the graph is
planar or not. We investigate the computational complexity of several variants of the stable
paths problem. We show that the stable paths problem is (i) solvable in polynomial time when
k is fixed and G is a directed (or undirected) planar graph, (ii) NP-hard when k = 2 and G is
an acyclic directed graph, (iii) NP-hard when k = 2 and G is an undirected general graph.

1 Introduction

1.1 Disjoint paths problem and basic definitions

Suppose that we are given a graph G and a collection of vertex pairs {(s1, t1), . . . , (sk, tk)}. The

disjoint paths problem is to find k vertex-disjoint paths P1, . . . , Pk, where Pi is a path from si to ti

for each i = 1, . . . , k. This problem is one of the classic problems in algorithmic graph theory and

has many applications, for example in VLSI-design.

The disjoint paths problem has several variants depending on whether k is a fixed constant or

a part of the input, whether the graph is directed or undirected, etc. The disjoint paths problem

was shown to be NP-hard by Knuth (described in [5]) when k is a part of the input. Fortune–

Hopcroft–Wyllie [4] proved that the directed version of the problem (DDPP) is NP-hard even if

k = 2, whereas the problem can be solved in polynomial time when the given digraph is acyclic and

k is fixed. However, it was shown that the disjoint paths problem in undirected graphs (DPP) is
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solvable in polynomial time when k = 2 [10], [11], [12]. Then, in 1995, Robertson–Seymour [7] gave

a polynomial time algorithm based on the graph minor theory for the DPP when k is fixed. On

the other hand, Schrijver [8] gave a polynomial time algorithm for the DDPP when G is a directed

planar graph and k is fixed. We summarize the known results on the problem in Table 1 (see [9]

for more results).

Table 1: Complexity of DDPP and DPP.

DDPP DPP
k: constant NP-hard P [7]

(Planar digraph : P [8])
(Acyclic digraph : P [4])

k: variable NP-hard (see [5]) NP-hard (see [5])
(Planar digraph : NP-hard [6]) (Planar graph: NP-hard [6])
(Acyclic digraph : NP-hard [3])

For an undirected graph (or simply a graph) G = (V,E), let uv denote an edge connecting u

and v. For V ′ ⊆ V , the subgraph induced by V ′ is a subgraph G′ = (V ′, E′), where E′ consists of all

edges of G spanned by V ′. Contracting an edge e = uv means deleting e and identifying u and v.

A vertex set V ′ is called a stable set if no two vertices in V ′ share an edge. For a path P traveling

vertices v0, v1, . . . , vl in this order, vivj ∈ E is called a shortcut of P if 0 ≤ i < j ≤ l and i + 2 ≤ j.

For a directed graph (or a digraph) D = (V,A), let (u, v) denote an arc which starts in u

and ends in v, and for an arc a = (u, v) we define a−1 = (v, u). For vertices v0, v1, . . . , vl and

arcs a1, . . . , al, a sequence P = (v0, a1, v1, a2, . . . , al, vl) is called a directed path (or a dipath) if

ai = (vi−1, vi) for i = 1, . . . , k. If no confusion may arise, we sometimes denote P = (a1, . . . , al) or

identify P with its arc set {a1, . . . , al}.
Suppose that D = (V,A) is an embedded planar digraph and F is the set of faces of D. For

a ∈ A, let left(a) and right(a) be the faces of D at the left-hand side and the right-hand side of a,

respectively. The dual digraph D∗ of D is a digraph D∗ = (F , A∗) whose arc set A∗ is defined by

A∗ = {a∗ | a ∈ A}, where a∗ is an arc from left(a) to right(a).

Let (Gk, ·) be the free group generated by g1, g2, . . . , gk, and let 1 denote its unit element. More

precisely, Gk consists of all words b1 · · · bt, where t ≥ 0 and b1, . . . , bt ∈ {g1, g
−1
1 , . . . , gk, g

−1
k } such

that bibi+1 6= gjg
−1
j and bibi+1 6= g−1

j gj for i = 1, . . . , t − 1 and j = 1, . . . , k. The product x · y

of two words is obtained from the concatenation xy by deleting iteratively all gjg
−1
j and g−1

j gj . A

word y is called a segment of a word w if w = xyz for certain words x, z. A subset Γ ⊆ Gk is called

hereditary if for each word y ∈ Γ each segment of y belongs to Γ.
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1.2 Stable paths problem

As a generalization of the disjoint paths problem, we introduce a new problem called stable paths

problem. Suppose we are given a graph G and P1, . . . , Pk are paths in G. We say that P1, . . . , Pk

are stable if Pi and Pj have neither common vertices nor adjacent vertices for any distinct i, j. In

other words, P1, . . . , Pk are stable paths if the following two conditions hold:

• Any pair of paths have no common vertices.

• Let H be the graph obtained by contracting all edges in P1, . . . , Pk. For each i = 1, . . . , k, let

pi be the vertex of H that corresponds to all vertices on Pi. Then {p1, p2, . . . , pk} is a stable

set in H.

The stable paths problem is the following problem.¶ ³
Stable paths problem (SPP)

Input: A graph G = (V,E) and a collection of vertex pairs {(s1, t1), . . . , (sk, tk)}.

Output: Stable paths P1, . . . , Pk in G, where Pi is a path whose end vertices are si and ti for
each i = 1, . . . , k.µ ´

For a digraph D = (V,A), we also introduce a new problem called directed stable paths problem.

Let P1, . . . , Pk be dipaths in D. As with undirected graphs, we say that P1, . . . , Pk are stable if Pi

and Pj have neither common vertices nor adjacent vertices for any distinct i, j. The directed stable

paths problem is defined as follows.¶ ³
Directed stable paths problem (DSPP)

Input: A directed graph D = (V,A) and a collection of vertex pairs {(s1, t1), . . . , (sk, tk)}.

Output: Stable dipaths P1, . . . , Pk in D, where Pi is a dipath from si to ti for each i = 1, . . . , k.µ ´
The stable paths problem is an extension of the disjoint paths problem, because any instance

of the disjoint paths problem can be reduced to an instance of the stable paths problem as follows.

Consider an instance of the disjoint paths problem in a graph G = (V,E) with respect to a collection

of vertex pairs {(s1, t1), . . . , (sk, tk)}. Let G′ be the graph obtained from G by subdividing each edge

into two edges, that is, we replace each edge e = uv ∈ E by a new vertex ve and two edges uve, vev.

Then solving the stable paths problem in G′ with respect to {(s1, t1), . . . , (sk, tk)} corresponds to

solving the original disjoint paths problem. Similarly, the directed stable paths problem is an

extension of the directed version of the disjoint paths problem.

By the above reduction, we see that the variants of the (directed) stable paths problem which

correspond to NP-hard variants of the (directed) disjoint paths problem are NP-hard, that is, we

3



Table 2: Complexity of SPP and DSPP.

DSPP SPP
k: constant NP-hard NP-hard

(Planar digraph : P) (Planar graph : P)
(Acyclic digraph : NP-hard)

k: variable NP-hard NP-hard
(Planar digraph : NP-hard) (Planar graph: NP-hard)
(Acyclic digraph : NP-hard)

obtain the following results:

• When k is a part of the input, the SPP is NP-hard even if the given graph is planar.

• When k is a part of the input, the DSPP is NP-hard even if the given digraph is acyclic or

planar.

• The DSPP is NP-hard even if k = 2.

In this paper, we reveal the time complexity of several variants of the SPP and the DSPP as

shown in Table 2. The rest of the paper is organized as follows. In Section 2, which is the main

part of this paper, we show that the DSPP is solvable in polynomial time when the given digraph

is planar and k is fixed. This result implies that the SPP is also solvable in polynomial time when

the given graph is planar and k is fixed. In Section 3, we give some applications of our algorithm to

finding certain structures, called a “hole” and a “theta”, in a planar graph. In Section 4, we present

NP-hardness results saying that the SPP is NP-hard even if k = 2, and the DSPP is NP-hard even

if the given digraph is acyclic and k = 2.

2 Stable paths problem in planar graphs

When the given digraph D is planar and k is fixed, Schrijver gave a polynomial time algorithm for

the directed disjoint paths problem [8]. As a generalization of this result, when the given digraph D

is planar and k is fixed we give a polynomial time algorithm for the directed stable paths problem,

which is based on Schrijver’s algorithm.

Theorem 1. The directed stable paths problem is solvable in polynomial time, if the given digraph

D = (V,A) is planar and k is a fixed constant.

Before giving the proof of Theorem 1, we show that a polynomial time algorithm for the undi-

rected version is obtained from Theorem 1.
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Corollary 2. The stable paths problem is solvable in polynomial time, if the given graph is planar

and k is a fixed constant.

Proof. Consider an instance of the stable paths problem in a planar undirected graph G = (V,E).

Let G′ = (V,A) be the directed graph obtained from G by replacing every edge uv ∈ E with

two arcs (u, v) and (v, u). Then solving the stable paths problem in G corresponds to solving the

directed stable paths problem in G′, and hence the original stable paths problem is solvable in

polynomial time by Theorem 1.

The rest of this section is devoted to the proof of Theorem 1, which is based on Schrijver’s

algorithm.

2.1 Preliminaries for the proof

Let D = (V,A) be a directed planar graph, and {(s1, t1), . . . , (sk, tk)} be a collection of vertex pairs.

The vertices s1, . . . , sk, t1 . . . , tk are called terminals. Without loss of generality, we assume that D

is weakly connected and each terminal is incident to exactly one arc. We fix a planar embedding

of D. Let F be the set of all faces of D, and R ∈ F be the unbounded face of D.

We say that a function φ : A → Gk is a flow if the following three conditions hold.

• For i = 1, . . . , k, the arc a leaving si satisfies that φ(a) = gi.

• For i = 1, . . . , k, the arc a entering ti satisfies that φ(a) = gi.

• For each vertex v ∈ V \ {s1, . . . , sk, t1, . . . , tk},

φ(a1)ε1 · φ(a2)ε2 · · · · · φ(al)εl = 1,

where a1, . . . , al are the arcs incident with v, in clockwise order, and εi = +1 if ai leaves v

and εi = −1 if ai enters v.

Note that φ(a) represents the dipaths which go through the arc a. For example, if φ(a) = g1g2

then dipaths P1 and P2 go through the arc a and P1 is to the left of P2, and if φ(a) = g−1
3 then a

dipath P3 goes through the arc a in the reverse direction of a. The definition of flows means that

no pair of dipaths cross at any vertices. We note here the relation between directed stable paths (or

directed disjoint paths) and flows. Given a solution Π = (P1, . . . , Pk) of the DSPP (or the DDPP),

we define a function ψΠ : A → Gk by

ψΠ(a) =

{
gi (if a is an arc on Pi),
1 (otherwise).

Then ψΠ is obviously a flow.

We say that two functions φ, ψ : A → Gk are R-homologous if there exists a function f : F → Gk

such that
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• f(R) = 1,

• f(left(a))−1 · φ(a) · f(right(a)) = ψ(a) for each arc a ∈ A.

It can be easily seen that if φ is a flow and ψ is R-homologous to φ, then ψ is also a flow.

2.2 Proof of Theorem 1

Schrijver’s algorithm is obtained from the following two propositions for the DDPP in an embedded

planar digraph.

Proposition 3 (Schrijver [8]). For each fixed k, we can find in polynomial time a collection of

flows φ1, . . . , φN with the property that for each solution Π of the DDPP, ψΠ is R-homologous to

at least one of φ1, . . . , φN .

Proposition 4 (Schrijver [8]). There exists a polynomial time algorithm that, for any flow φ, either

finds a solution Π of the DDPP such that ψΠ is R-homologous to φ or concludes that such a solution

does not exist.

Proposition 3 implies the following as a corollary, because stable paths are a special case of

disjoint paths.

Proposition 5. For each fixed k, we can find in polynomial time a collection of flows φ1, . . . , φN

with the property that for each solution Π of the DSPP, ψΠ is R-homologous to at least one of

φ1, . . . , φN .

For the proof of Theorem 1, we need the following proposition, which is the DSPP version of

Proposition 4. The proof is given in Section 2.3.

Proposition 6. There exists a polynomial time algorithm that, for any flow φ, either finds a

solution Π of the DSPP such that ψΠ is R-homologous to φ or concludes that such a solution does

not exist.

Our algorithm for the DSPP is obtained from Proposition 5 and Proposition 6 as follows.

Proof of Theorem 1. By Proposition 5, we can find a collection of flows φ1, . . . , φN such that for

each solution Π of the DSPP, ψΠ is R-homologous to at least one of φ1, . . . , φN . By Proposition 6,

we can either find a solution Π of the DSPP such that ψΠ is R-homologous to φi or conclude that

such a solution does not exist, for each i = 1, . . . , N . Thus we can solve the DSPP in polynomial

time when the given digraph is planar and k is a fixed constant.
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2.3 Proof of Proposition 6

In order to show Proposition 4, Schrijver introduced a new problem called cohomology feasibility

problem (CFP), and gave a polynomial time algorithm for it. He showed that Proposition 4 can be

derived from the polynomial time algorithm for the CFP. In this section, we describe the CFP and

show that Proposition 6 can also be obtained from the polynomial time algorithm for the CFP.

Let D = (V,A) be a weakly connected digraph, which may have parallel arcs, and let r ∈ V .

Two functions φ, ψ : A → Gk are called r-cohomologous if there exists a function f : V → Gk such

that

• f(r) = 1,

• ψ(a) = f(u)−1 · φ(a) · f(v) for each arc a = (u, v) ∈ A.

Schrijver introduced the following problem called cohomology feasibility problem (CFP), and

showed that it can be solved in polynomial time.¶ ³
Cohomology feasibility problem (CFP)

Input: A weakly connected digraph D = (V,A), a vertex r ∈ V , a function φ : A → Gk, a
hereditary subset Γ(a) ⊆ Gk for each arc a ∈ A.

Output: A function ψ : A → Gk such that ψ is r-cohomologous to φ and ψ(a) ∈ Γ(a) for each
arc a ∈ A.µ ´

Theorem 7 (Schrijver [8]). The CFP is solvable in polynomial time of |A|, σ, and k, where σ =

max{|Γ(a)| | a ∈ A}.

We are now ready to show Proposition 6.

Proof of Proposition 6. Let D∗ = (F , A∗) be the dual digraph of D with respect to the planar

embedding of D. Let A1 be the set of all chords in all faces of D∗. More precisely, we consider all

vertex pairs F, F ′ ∈ F which are on the boundary of a face of D∗, and define A1 as the set of all

arcs aF,F ′ from F to F ′. For each arc a ∈ A, let a∗ denote the arc in A∗ from left(a) to right(a),

and D∗−a∗ be the digraph obtained by removing a∗ from D∗. Then, two faces left(a) and right(a)

of D∗ make up a new face va of D∗ − a∗. Let Aa be the set of all chords in va which are not chords

in left(a) or right(a), and let A2 =
∪

a∈A∗ Aa. We construct a new graph D+ = (F , A+), where

A+ = A∗ ∪ A1 ∪ A2.

We define φ+ : A+ → Gk as follows:

• φ+(a∗) = φ(a) for each arc a ∈ A.
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• Let π = ((a∗1)
ε1 , (a∗2)

ε2 , . . . , (a∗l )
εl) be the dipath traveling clockwise from F to F ′ on the

boundary of the face of D∗ or D∗ − a∗, where εi ∈ {+1,−1}. Then φ+(aF,F ′) = φ(a1)ε1 ·
φ(a2)ε2 · · · · · φ(al)εl for each aF,F ′ ∈ A1 ∪ A2.

We say that φ+ is the extended function of φ. Note that φ+ can also be defined along a dipath

traveling counterclockwise, since φ is a flow.

For each arc a ∈ A+, we define Γ+(a) ⊆ Gk as follows:

• Γ+(a) = {1, g1, . . . , gk} for each arc a ∈ A∗,

• Γ+(aF,F ′) = {1, g1, g
−1
1 , . . . , gk, g

−1
k } for each chord aF,F ′ ∈ A1, and

• Γ+(aF,F ′) = {1, g1, g
−1
1 , . . . , gk, g

−1
k , g2

1, g
−2
1 , . . . , g2

k, g
−2
k } for each chord aF,F ′ ∈ A2.

Then finding a solution Π of the DSPP in D such that ψΠ is R-homologous to φ corresponds to

solving the CFP in D+ with respect to φ+ and Γ+. We now show this fact.

Suppose that ψΠ : A → Gk corresponds to a solution Π of the DSPP which is R-homologous to

φ. Then its extended function ψ+
Π : A+ → Gk is R-cohomologous to φ+ by Lemma 8 below. Since no

pair of dipaths in Π have common arcs or common vertices, we have ψ+
Π(a) ∈ Γ+(a) (∀a ∈ A∗∪A1).

Furthermore, since no pair of dipaths in Π have adjacent vertices, we have ψ+
Π(a) ∈ Γ+(a) (∀a ∈ A2).

Hence ψ+
Π is a solution of the CFP.

Conversely, suppose that ψ+ : A+ → Gk is a solution of the CFP. Define ψ : A → Gk by

ψ(a) = ψ+(a∗) for each a ∈ A. Then ψ is R-homologous to φ and ψ+ is the extended function of

ψ by Lemma 9 below. For each i = 1, . . . , k, define Pi = {a ∈ A | ψ(a) = gi}. Since ψ is a flow and

ψ+(a) ∈ Γ+(a) (∀a ∈ A∗), Pi consists of a dipath from si to ti and some dicycles. Hence we may

assume that Pi is a dipath from si to ti, and P1, . . . , Pk are arc-disjoint by the definition of Pi. We

now show that Π = (P1, . . . , Pk) is stable.

Suppose that two dipaths Pi and Pj have a common vertex v for some distinct i, j. Then there

exist arcs a1 and a2 of D such that both a1 and a2 are incident to v, ψ(a1) = g±1
i , and ψ(a2) = g±1

j .

Let π be the dipath in D∗ whose first and last arcs are a∗1 and a∗2, respectively, along the boundary

of the face of D∗ corresponding to v. We may assume that we have chosen a1 and a2 such that π

is as short as possible. Then g±1
i and g±1

j are segments of ψ+(aF,F ′) for an arc aF,F ′ ∈ A1, where

π is the dipath from F to F ′, which contradicts the assumption that ψ+ is a solution of the CFP.

Hence no pair of Π have common vertices.

Suppose that Pi has a vertex v1, Pj has a vertex v2, and a = (v1, v2) ∈ A for some distinct i, j.

Then there exist arcs a1 and a2 of D such that a1 is incident to v1, a2 is incident to v2, ψ(a1) = g±1
i ,

and ψ(a2) = g±1
j . Let π be the dipath in D∗ whose first and last arcs are a∗1 and a∗2, respectively,

along the boundary of the face of D∗ − a∗. We may assume that we have chosen a1 and a2 such

that π is as short as possible. Then g±1
i and g±1

j are segments of ψ+(aF,F ′) for an arc aF,F ′ ∈ A2,
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where π is the dipath from F to F ′, which contradicts the assumption that ψ+ is a solution of the

CFP.

By the above arguments and Theorem 7, we can find a solution Π of the DSPP such that ψΠ

is R-homologous to φ in polynomial time by solving the CFP.

To complete the proof of Proposition 6, we show the following two lemmas.

Lemma 8. If φ, ψ : A → Gk are R-homologous in D, then their extended functions φ+, ψ+ : A+ →
Gk are R-cohomologous in D+.

Proof. Since φ, ψ : A → Gk are R-homologous, there exists a function f : F → Gk such that

• f(R) = 1,

• f(left(a))−1 · φ(a) · f(right(a)) = ψ(a) for each arc a ∈ A.

It is enough to show that f satisfies that

ψ+(a) = f(u)−1 · φ+(a) · f(v) (F)

for each arc a = (u, v) ∈ A+. If a ∈ A∗ then (F) is obvious. Suppose that aF,F ′ ∈ A1 ∪ A2 is a

chord and π = ((a∗1)
ε1 , (a∗2)

ε2 , . . . , (a∗l )
εl), where εi ∈ {+1,−1}, is the dipath from F to F ′ which

appeared in the definition of the extended function. Then φ+(aF,F ′) = φ(a1)ε1 ·φ(a2)ε2 · · · · ·φ(al)εl

and ψ+(aF,F ′) = ψ(a1)ε1 · ψ(a2)ε2 · · · · · ψ(al)εl . Let F0(= F ), F1, . . . , Fl(= F ′) ∈ F be the vertices

lying on π in this order. Then we have

ψ+(aF,F ′) = ψ(a1)ε1 · ψ(a2)ε2 · · · · · ψ(al)εl

= (f(F0)−1 · φ(a1)ε1 · f(F1)) · (f(F1)−1 · φ(a2)ε2 · f(F2)) · · · · · (f(Fl−1)−1φ(al)εlf(Fl))

= f(F0)−1 · φ(a1)ε1 · φ(a2)ε2 · · · · · φ(al)εl · f(Fl)

= f(F )−1 · φ+(aF,F ′) · f(F ′),

which means that (F) holds for aF,F ′ .

Lemma 9. Let φ+ be the extended function of φ : A → Gk. Suppose that ψ+ : A+ → Gk is

R-cohomologous to φ+ and ψ : A → Gk is the function defined by ψ(a) = ψ+(a∗) for each a ∈ A.

Then ψ is R-homologous to φ and ψ+ is the extended function of ψ.

Proof. Suppose that ψ+ is R-cohomologous to φ+ with respect to f : F → Gk. Then it is obvious

that ψ is R-homologous to φ with respect to f .

Suppose that aF,F ′ ∈ A1∪A2 is a chord and π = ((a∗1)
ε1 , (a∗2)

ε2 , . . . , (a∗l )
εl), where εi ∈ {+1,−1},

is the dipath from F to F ′ which appeared in the definition of the extended function. Let F0(=
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si

ti : other arcs

: arcs on Pi

Figure 1: Remark on Γ+.

F ), F1, . . . , Fl(= F ′) ∈ F be the vertices lying on π in this order. Then we have

ψ+(aF,F ′) = f(F )−1 · φ+(aF,F ′) · f(F ′)

= f(F0)−1 · φ(a1)ε1 · φ(a2)ε2 · · · · · φ(al)εl · f(Fl)

= (f(F0)−1 · φ(a1)ε1 · f(F1)) · (f(F1)−1 · φ(a2)ε2 · f(F2)) · · · · · (f(Fl−1)−1φ(al)εlf(Fl))

= ψ(a1)ε1 · ψ(a2)ε2 · · · · · ψ(al)εl ,

which means that ψ+ is the extended function of ψ.

Here, we explain the reason why we define Γ+(aF,F ′) = {1, g1, g
−1
1 , . . . , gk, g

−1
k , g2

1, g
−2
1 , . . . , g2

k, g
−2
k }

for each chord aF,F ′ ∈ A2 in the proof of Proposition 6. Our definition of directed stable paths

forbids pairs of dipaths to have adjacent vertices, but allows each dipath to have adjacent vertices

as in Fig. 1. In this case, ψ+(aF,F ′) may possibly be equal to g2
i or g−2

i .

3 Applications

In this section, we apply Corollary 2 for the SPP to finding certain structures, called a “hole” and

a “theta”, in planar graphs.

Given a graph G, we say that a cycle C is a hole (or an induced cycle) if C is a cycle of G

induced by some set of vertices. In other words, C is called a hole if C has no chords. We remark

here that holes with an odd number of edges play an important role in the strong perfect graph

theorem.

Given a graph G = (V,E) and two distinct vertices u, v ∈ V , we consider the problem of finding

a hole in G that passes through u and v. Although this problem is known to be NP-hard [1] in

general graphs, we can solve it in planar graphs in polynomial time by applying our algorithm for

the stable paths problem.

Corollary 10. Suppose that we are given a planar graph G = (V,E) and two distinct vertices

u, v ∈ V . Then we can find a hole that passes through u and v in polynomial time.

Proof. Let uu− and uu+ be edges incident to u, and let vv− and vv+ be edges incident to v. It is

enough to show that we can find a hole traveling u−, u, u+, v−, v, and v+ in this order, because the

number of choices of u−, u+, v−, and v+ is at most |V |4.
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v+ u−

u+ v−

v+

s1
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Figure 2: Construction of G′.

As in Fig. 2, construct G′ from G by replacing u, v and all edges incident to them with new

vertices s1, s2, t1, t2 and edges s1u
+, v−t1, s2v

+, u−t2. Note that G′ is planar since G is planar.

Then there exists a hole traveling u−, u, u+, v−, v, and v+ in this order in G if and only if there

exist stable paths in G′ with respect to terminals s1, s2, t1, and t2, because a pair of stable paths

with no shortcuts in G′ corresponds to a desired hole in G. Hence, by solving the stable paths

problem in G′, we can find a desired hole. Since G′ is planar, by Corollary 2, it can be done in

polynomial time.

In a similar way as Corollary 10, we can find in polynomial time a hole that passes through k

given vertices if the given graph is planar and k is fixed.

Corollary 11. Suppose that we are given a planar graph G = (V,E) and k distinct vertices

v1, v2, . . . , vk ∈ V , where k is a fixed constant. Then we can find a hole that passes through v1, . . . , vk

in polynomial time.

Proof. Let vhv−h and vhv+
h be edges incident to vh for h = 1, . . . , k. It is enough to show that we

can find a hole traveling v−1 , v1, v
+
1 , v−2 , v2, v

+
2 , v−3 , v3, . . . , v

−
k , vk, and v+

k in this order, because the

number of choices of v−1 , v+
1 , v−2 , v+

2 , . . . , v−k , and v+
k is at most |V |2k and that of permutations of

v1, . . . , vk is k!.

Construct G′ from G by replacing a vertex vh and all edges incident to vh with new vertices

sh, th−1 and edges shv+
h , th−1v

−
h for every h = 1, . . . , k. Note that G′ is planar since G is planar.

Then there exists a desired hole in G if and only if there exist stable paths in G′ with respect to

terminals s1, . . . , sk, t1, . . . , tk, where we define tk = t0, because a collection of k stable paths with

no shortcuts in G′ corresponds to a desired hole in G. Hence, by solving the stable paths problem

in G′, we can find a hole that passes through v−1 , v1, v
+
1 , v−2 , v2, v

+
2 , v−3 , v3, . . . , v

−
k , vk, and v+

k in this

order. Since G′ is planar, by Corollary 2, it can be done in polynomial time.

A theta is a graph consisting of two nonadjacent vertices u, v and three paths P1, P2, P3 con-

necting u and v, such that P1, P2, P3 are pairwise vertex-disjoint except for u, v, and the union of

every pair of P1, P2, P3 is a hole. We call u and v end vertices of the theta.

Chudnovsky–Seymour [2] gave a polynomial time algorithm for the problem of finding a theta in

a given graph. However, the problem of finding a theta that has specified end vertices is NP-hard,
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because finding a hole which passes through two specified vertices is NP-hard [1]. We show that

this problem is solvable in polynomial time in planar graphs.

Corollary 12. Suppose that we are given a planar graph G = (V,E) and nonadjacent vertices

u, v ∈ V . Then we can find a theta with u, v as its end vertices in polynomial time.

Proof. Let uu1, uu2, and uu3 be edges incident to u, and let vv1, vv2, and vv3 be edges incident

to v. It is enough to show that we can find a theta such that uui and vvi are the edges on Pi for

i = 1, 2, 3, because the number of choices of u1, u2, u3, v1, v2, and v3 is at most |V |6.
Construct G′ from G by replacing u, v and all edges incident to them with new vertices

s1, s2, s3, t1, t2, t3 and new six edges siui, viti for i = 1, 2, 3. Note that since G is planar, G′ is

also planar.

Then there exists a desired theta in G if and only if there exist stable paths in G′ with respect

to terminals s1, s2, s3, t1, t2, and t3, because a collection of three stable paths with no shortcuts in

G′ corresponds to a desired theta in G. Hence, by solving the stable paths problem in G′, we can

find a desired theta. Since G′ is planar, by Corollary 2, it can be done in polynomial time.

4 Hardness Results

In this section, we give two NP-hardness results. These results indicate that the (directed) stable

paths problem is essentially different from the (directed) disjoint paths problem.

First, we show that the SPP is NP-hard even if k = 2, whereas the DPP is solvable in polynomial

time if k is fixed.

Theorem 13. The stable paths problem (SPP) is NP-hard, even if k = 2.

Proof. The problem of finding a hole that passes through two given vertices is NP-hard [1]. As in

the proof of Corollary 10, this problem can be reduced to the SPP with k = 2, and hence the SPP

is NP-hard, even if k = 2.

We next show that the DSPP is NP-hard even if the given digraph is acyclic and k = 2, whereas

the DDPP is solvable in polynomial time when the given digraph is acyclic and k is fixed.

Theorem 14. The directed stable paths problem (DSPP) is NP-hard, even if the given digraph

D = (V,A) is acyclic and k = 2.

Proof. It is enough to show that 3-SAT can be reduced to the DSPP in acyclic digraphs with k = 2.

Let C1 ∧ C2 ∧ · · · ∧ Cm be an instance of 3-SAT with n variables x1, . . . , xn.

We construct an acyclic digraph D = (V,A) as follows (see Fig. 3). Let W = {w1, w̄1, . . . , wn, w̄n}
be a set of vertices, where wi and w̄i correspond to the variable xi for each i = 1, . . . , n. For
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x1 x2 xn

w̄nw̄2w̄1

t1 = pn

C1

s2 = q0 t2 = qm

C2 Cm

= x1 ∨ x̄2 ∨ x5

w1 w2 wn

s1 = p0
p1 p2 pn−1

q1 q2 qm−1

v1,1

v1,3

Figure 3: Construction of D.

each j = 1, . . . ,m, let vj,1, vj,2, vj,3 be vertices, which correspond to the literal Cj , and define

Vj = {vj,1, vj,2, vj,3}. Let P = {p0, p1, . . . , pn} and Q = {q0, q1, . . . , qm} be sets of vertices, and

define the vertex set V by V = W ∪ (
∪m

j=1 Vj) ∪ P ∪ Q.

Define arc sets Ap and Aq by

Ap = {(pi−1, wi), (pi−1, w̄i), (wi, pi), (w̄i, pi) | i = 1, . . . , n},

Aq = {(qj−1, vj,i), (vj,i, qj) | j = 1, . . . ,m, i = 1, 2, 3},

and let Ax be the arc set defined as follows: (w̄i, vj,l) ∈ Ax if the l-th element of Cj is xi and

(wi, vj,l) ∈ Ax if the l-th element of Cj is x̄i. The arc set A is defined by A = Ap ∪ Aq ∪ Ax.

We now show that solving the DSPP in D = (V,A) with respect to s1 = p0, t1 = pn, s2 = q0,

and t2 = qm is equivalent to solving the original 3-SAT.

For each i = 1, . . . , n, every dipath from s1 to t1 goes through exactly one of wi and w̄i. Then, we

can see with the following observation that assigning “true” or “false” to xj in the 3-SAT problem

corresponds to deciding that P1 goes through wi or w̄i in the DSPP, respectively.

Suppose that the l-th element of Cj is xi (resp. x̄i). Then, if we assign “true” (resp. “false”) to

xi then Cj is satisfied in 3-SAT, which corresponds to the fact that if P1 goes through wi (resp. w̄i)

then P2 can go through vj,l from qj−1 to qj in the DSPP. Thus, Cj is satisfied for every j = 1, . . . ,m

in the 3-SAT problem if and only if P2 can go from q0 to qm in the DSPP.

By the above arguments, 3-SAT can be reduced to the DSPP in an acyclic digraph with k =

2.
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