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Abstract

It is observed by Fernando and Parlett that the dqds algorithm
for singular values can be made extremely efficient with Rutishauser’s
choice of shift; in particular it enjoys “local” (or one-step) cubic con-
vergence at the final stage of iteration, where a certain condition is to
be satisfied. Their analysis is, however, rather heuristic and what has
been shown is not sufficient to ensure asymptotic cubic convergence in
the strict sense of the word. The objective of this paper is to specify a
concrete procedure for the shift strategy and to prove with mathemat-
ical rigor that the algorithm with this shift strategy always reaches the
“final stage” and enjoys asymptotic cubic convergence.

1 Introduction

Every n × m real matrix A of rank r can be decomposed into

A = UΣV T

with suitable orthogonal matrices U ∈ Rn×n and V ∈ Rm×m, where

Σ =
(

D Or,m−r

On−r,r On−r,m−r

)
, D = diag(σ1, . . . , σr),

and σ1 ≥ · · · ≥ σr > 0. The notation Ok,l means a k × l zero matrix. The
nonzero diagonal elements σ1, . . . , σr are the singular values of A, which
play important roles in application areas. Accordingly, numerical methods
for computing singular values are of great importance in practice.
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The singular values of A are equal to the square roots of the eigenvalues
of ATA and hence an iterative computation is inevitable for singular values.
Usually, the given matrix A is first transformed to a bidiagonal matrix to
reduce the overall computational cost. In the case of n ≥ m, for example,
the matrix A can be transformed, with appropriate orthogonal matrices
Ũ ∈ Rn×n and Ṽ ∈ Rm×m, as

ŨTAṼ =
(

B
On−m,m

)
,

where B ∈ Rm×m is an upper bidiagonal matrix. The singular values of B
coincide with those of A.

Most of the current methods for computing singular values of bidiagonal
matrices are based on the QR algorithm [4]. Demmel and Kahan’s improve-
ment [5] upon the QR algorithm, awarded the second SIAM prize in numer-
ical linear algebra, is open to the public as DBDSQR in LAPACK [3, 11].

In relation to the study of this algorithm, the differential quotient differ-
ence (dqd) algorithm was proposed by Fernando–Parlett [9], with subsequent
introduction of shifts to accelerate the convergence. This algorithm is now
called the differential quotient difference with shift (dqds) algorithm. The
dqds algorithm has received majority support due to its accuracy, speed and
numerical stability, and is implemented as DLASQ in LAPACK [3, 11, 14].
The dqds is integrated into Multiple Relatively Robust Representations
(MR3) algorithm [6, 7, 8]. It may also be said that the dqds algorithm
is a numerically stabler version of the pqds algorithm, which in turn is the
pqd algorithm [10] with shifts incorporated to accelerate the convergence.

As for theoretical analysis about the dqds algorithm, locally quadratic
or cubic convergence has been discussed in [9] under certain assumptions. In
[9, 15] global convergence of the dqds has also been discussed under several
restrictions. A recent paper of the present authors [1] has then shown a
general theorem for global convergence and revealed the asymptotic rate of
1.5 for the Johnson bound shift. It is pointed out in [2] that superquadratic
convergence can be realized with a simple shift strategy.

The objective of this paper is to give a mathematically rigorous proof for
the asymptotic cubic convergence of the dqds algorithm that employs the
shift strategy proposed by Fernando–Parlett based on Rutishauser’s idea.
More specifically, this paper is organized as follows. In Section 2 the target
problem is defined. Section 3 is devoted to summarizing the dqds algorithm.
In Section 4 the basic facts on convergence of the dqds are summarized
based on [1]. The existing results for local cubic convergence are reviewed
in Section 5.1 with emphasis on what additional argument is required in
order to conclude asymptotic cubic convergence in the strict sense of the
word. Then in Section 5.2 a concrete procedure for the shift is proposed,
and in Section 6 it is shown that with the shift procedure the dqds always
realizes asymptotic cubic convergence.
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2 Problem setting

We assume that the given real matrix A has already been transformed to a
bidiagonal matrix

B =


b1 b2

b3
. . .
. . . b2m−2

b2m−1

 , (1)

to which the dqds algorithm is applied.
Following [9], we assume

Assumption (A) The bidiagonal elements of B are positive,
i.e., bk > 0 for k = 1, 2, . . . , 2m − 1．

This assumption guarantees (see [13]) that the singular values of B are all
distinct: σ1 > · · · > σm > 0.

Assumption (A) is not restrictive, in theory or in practice. In fact, if
a subdiagonal element is zero, i.e., b2k = 0 for some k, then the problem
reduces to two independent problems on matrices of smaller sizes, k × k
and (m − k) × (m − k). If there is a zero element on the diagonal, several
iterations of the dqd algorithm (i.e., the dqds algorithm without shifts)
suffice to remove the diagonal zero, and the problem is again separated into
a set of smaller problems (see [9] for details). Finally it is easy to see that
the singular values are invariant if bk is replaced by |bk|.

In our problem setting we have assumed real matrices, whereas the sin-
gular value decomposition is also defined for complex matrices. Our restric-
tion to real matrices is justified by the fact that any complex matrix can
be transformed to a real bidiagonal matrix by, say, (complex) Householder
transformations, while keeping its singular values [9].

3 The dqds algorithm

The dqds algorithm can be described in computer program form as follows.
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Algorithm 3.1 The dqds algorithm

Initialization: q
(0)
k = (b2k−1)2 (k = 1, 2, . . . ,m); e

(0)
k = (b2k)2 (k =

1, 2, . . . ,m − 1)
1: for n := 0, 1, · · · do
2: choose shift s(n)(≥ 0)
3: d

(n+1)
1 := q

(n)
1 − s(n)

4: for k := 1, · · · ,m − 1 do
5: q

(n+1)
k := d

(n+1)
k + e

(n)
k

6: e
(n+1)
k := e

(n)
k q

(n)
k+1/q

(n+1)
k

7: d
(n+1)
k+1 := d

(n+1)
k q

(n)
k+1/q

(n+1)
k − s(n)

8: end for
9: q

(n+1)
m := d

(n+1)
m

10: end for

The outermost loop is terminated when some suitable convergence cri-
terion, say, ∥e(n)

m−1∥ ≤ ϵ for some prescribed constant ϵ > 0, is satisfied. At
the termination we have

σm
2 ≈ q(n)

m +
n−1∑
l=0

s(l) (2)

and hence σm can be approximated by
√

q
(n)
m +

∑n−1
l=0 s(l). Then by the

deflation process the problem is shrunk to an (m − 1) × (m − 1) problem,
and the same procedure is repeated until σm−1, . . . , σ1 are obtained in turn.

It turns out to be convenient to introduce additional notations e
(n)
0 and

e
(n)
m with “boundary conditions”:

e
(n)
0 = 0, e(n)

m = 0 (n = 0, 1, . . .)

to simplify the expression of the algorithm. Put

B(n) =


b
(n)
1 b

(n)
2

b
(n)
3

. . .

. . . b
(n)
2m−2

b
(n)
2m−1

 , (3)

b
(0)
k = bk (k = 1, 2, . . . , 2m − 1), and

q
(n)
k = (b(n)

2k−1)
2 (k = 1, 2, . . . ,m; n = 0, 1, . . .), (4)

e
(n)
k = (b(n)

2k )2 (k = 1, 2, . . . ,m − 1; n = 0, 1, . . .). (5)
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Then Algorithm 3.1 can be rewritten in terms of the Cholesky decomposition
(with shifts):

(B(n+1))TB(n+1) = B(n)(B(n))T − s(n)I, (6)

where B(0) = B. In other words, a single step of the dqds algorithm
({q(n)

k }, {e(n)
k }) 7→ ({q(n+1)

k }, {e(n+1)
k }) is equivalent to a single step of the

shifted Cholesky LR method B(n)(B(n))T 7→ B(n+1)(B(n+1))T, where

B(n)(B(n))T =

q
(n)
1 + e

(n)
1

√
e
(n)
1 q

(n)
2√

e
(n)
1 q

(n)
2 q

(n)
2 + e

(n)
2

√
e
(n)
2 q

(n)
3

. . . . . . . . .√
e
(n)
m−2q

(n)
m−1 q

(n)
m−1 + e

(n)
m−1

√
e
(n)
m−1q

(n)
m√

e
(n)
m−1q

(n)
m q

(n)
m


(7)

can be easily seen from (3), (4), and (5). From (6) it follows that

(B(n))TB(n) = W (n)

(
(B(0))TB(0) −

n−1∑
l=0

s(l)I

)
(W (n))−1, (8)

where W (n) = (B(n−1) · · ·B(0))−T is a nonsingular matrix. Therefore the
eigenvalues of (B(n))TB(n) are the same as those of (B(0))TB(0)−

∑n−1
l=0 s(l)I.

If s(n) < (σ(n)
min)

2 in each iteration n, where σ
(n)
min is the smallest singular

value of B(n), B(n) converges to a diagonal matrix as n → ∞, and then, by
(8), the singular values of B can be obtained from the diagonal elements of
B(n) with sufficiently large n (see Theorem 4.1). Moreover, if s(n) < (σ(n)

min)
2,

the variables in the dqds algorithm are always positive so that the algorithm
does not break down (see Lemma 4.1).

4 Fundamental facts about convergence

Some relevant facts about the dqds algorithm are reviewed in this section.
We begin with the fundamental convergence theorem. Recall that σ1 >

σ2 > · · · > σm are singular values of B and σ
(n)
min denotes the smallest

singular value of B(n).

Theorem 4.1 (Convergence of the dqds algorithm [1]). Suppose the matrix
B satisfies Assumption (A), and the shift in the dqds algorithm satisfies

0 ≤ s(n) < (σ(n)
min)

2 (9)

5



for all n = 0, 1, 2, . . .. Then
∞∑

n=0

s(n) ≤ σm
2. (10)

Moreover,

lim
n→∞

e
(n)
k = 0 (k = 1, 2, . . . ,m − 1), (11)

lim
n→∞

q
(n)
k = σk

2 −
∞∑

n=0

s(n) (k = 1, 2, . . . ,m). (12)

In matrix form, we have

lim
n→∞

(B(n))TB(n) = diag

(
σ1

2 −
∞∑

n=0

s(n), . . . , σm
2 −

∞∑
n=0

s(n)

)
.

The variables are guaranteed to remain positive, as follows. This fact
is crucial to the proof of the convergence theorems as well as to numerical
stability of the algorithm.

Lemma 4.1. Suppose the dqds algorithm is applied to the matrix B satisfy-
ing Assumption (A). If s(l) < (σ(l)

min)
2 for l = 0, 1, . . . , n, then (B(l+1))TB(l+1)

are positive definite for l = 0, 1, . . . , n, and hence q
(l+1)
k > 0 (k = 1, . . . ,m),

e
(l+1)
k > 0 (k = 1, . . . ,m−1), and d

(l+1)
k > 0 (k = 1, . . . ,m) for l = 0, 1, . . . , n.

Proof. For completeness we give a proof based on [1]. The proof is by
induction on n. Under Assumption (A), we have q

(0)
k > 0, e

(0)
k > 0 and that

(B(0))TB(0) is positive definite. Suppose that (B(n))TB(n) is positive definite
and q

(n)
k > 0, e

(n)
k > 0. By (6), if s(n) < (σ(n)

min)
2, then (B(n+1))TB(n+1) is

positive definite because B(n)(B(n))T − s(n)I is positive definite. Therefore
all the diagonal elements of B(n+1) are nonzero (b(n+1)

2k−1 ̸= 0) and hence

q
(n+1)
k > 0 because of (4). By the 6th line of Algorithm 3.1, we have e

(n+1)
k >

0. The inequality d
(n+1)
k > 0 is proved by contradiction as follows. If we had

d
(n+1)
k ≤ 0 for some k, we would have d

(n+1)
k+1 ≤ 0 by the 7th line of Algorithm

3.1 and then q
(n+1)
m = d

(n+1)
m ≤ 0. This contradicts q

(n+1)
m > 0.

The asymptotic rate of convergence of the dqds algorithm is given by
the following lemma.

Lemma 4.2 ([1]). Under the same assumption as in Theorem 4.1, we have

lim
n→∞

e
(n+1)
k

e
(n)
k

=
σk+1

2 −
∑∞

n=0 s(n)

σk
2 −

∑∞
n=0 s(n)

< 1 (k = 1, . . . ,m − 1). (13)
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Therefore, e
(n)
k (k = 1, . . . ,m− 2) are of linear convergence as n → ∞. The

bottommost element e
(n)
m−1 is of superlinear convergence if σ2

m−
∑∞

n=0 s(n) =
0.

The following lemma will be used in the proof of Lemma 6.1 that shows
the validity of our shift strategy to be described in Section 5.2.

Lemma 4.3. For a fixed n, assume e
(n)
k > 0 (k = 1, . . . ,m − 1) and

q
(n)
k > 0 (k = 1, . . . ,m), and apply Algorithm 3.1 with shift s(n) to compute

d
(n+1)
k (k = 1, . . . ,m). Then s(n) < (σ(n)

min)
2 if and only if d

(n+1)
k > 0 (k =

1, . . . ,m).

Proof. First suppose that d
(n+1)
k > 0 (k = 1, . . . ,m). From the 5th line

of Algorithm 3.1 we have q
(n+1)
k > 0 (k = 1, . . . ,m). Then the diagonal

elements of B(n+1) are positive by (4). Furthermore, by the 6th line of
Algorithm 3.1 we see e

(n+1)
k > 0 (k = 1, . . . ,m − 1), and hence B(n+1) is

a real matrix by (5). Therefore (B(n+1))TB(n+1) is positive definite, and
hence we have s(n) < (σ(n)

min)
2 from (6).

Conversely suppose that s(n) < (σ(n)
min)

2 is true. Then by (6) we have
b
(n+1)
2k−1 ̸= 0 (k = 1, . . . ,m), which are diagonal elements of B(n+1). Therefore

we have q
(n+1)
k > 0 (k = 1, . . . ,m) from (4). By the 6th line of Algorithm 3.1,

we see e
(n+1)
k > 0 (k = 1, . . . ,m − 1). The inequality d

(n+1)
k > 0 is proved

by contradiction as follows. If we had d
(n+1)
k ≤ 0 for some k, we would have

d
(n+1)
k+1 ≤ 0 by the 7th line of Algorithm 3.1 and then q

(n+1)
m = d

(n+1)
m ≤ 0

from the 9th line of Algorithm 3.1. This is a contradiction.

Note that the assumption of Lemma 4.3 is satisfied for n = 0 by Assump-
tion (A). By Lemma 4.1 the assumption of Lemma 4.3 will be met for all n
if the condition (9) is satisfied. Theorem 4.1, on the other hand, guarantees
the convergence, whereas Lemma 4.2 shows that the convergence rate is at
least linear.

5 Shift for cubic convergence

In this section, we first briefly review the existing results for cubic conver-
gence and discuss what is still missing in those results (Section 5.1). Then
in Section 5.2 we propose a concrete procedure for the shift.

5.1 Review of the existing results

The history of search for a shift yielding cubic convergence dates back to
Rutishauser [15], showing that the Cholesky LR method with a certain shift
strategy is expected to converge cubically when applied to positive definite
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symmetric matrices. The idea has been generalized later in several different
ways [16] (see also the discussion in [9, §8.3]). In this subsection, we review
the idea in the context of our problem setting, and clarify what additional
argument should be made before we can obtain a rigorous mathematical
proof of asymptotic cubic convergence.

Let us introduce some notations. We split B(n)(B(n))T in (7) into blocks
as

B(n)(B(n))T =

(
U (n) v(n)

(v(n))T q
(n)
m

)
,

where U (n) is an (m−1)×(m−1) matrix and v(n) = (0, . . . , 0,

√
e
(n)
m−1q

(n)
m )T.

The eigenvalues of U (n) are denoted by λ
(n)
i (i = 1, . . . ,m − 1). Recall that

a single step of the dqds algorithm is equivalent to a single step of the
shifted Cholesky LR applied to the matrix B(n)(B(n))T．Also note that
under Assumption (A), the eigenvalues of B(n)(B(n))T are all distinct, and
the subdiagonal elements of B(n)(B(n))T are all positive.

Now suppose that n is sufficiently large and the matrix B(n)(B(n))T is
at the final stage of convergence. More specifically, we assume that the
following condition is satisfied:

λ
(n)
i − q(n)

m > g (i = 1, . . . ,m − 1), (14)

where g is a constant independent of n satisfying 0 < g < σm−1
2 − σm

2.
Rutishauser suggested the following shift strategy to modify B(n) to

B(n+1). Under the condition (14), the matrix U (n) − q
(n)
m I is positive defi-

nite, whereas the smallest eigenvalue of B(n)(B(n))T − q
(n)
m I is negative by

Assumption (A). This implies that if we apply the algorithm of Cholesky
factorization to B(n)(B(n))T − q

(n)
m I, it must fail at the very last stage with

a negative number, say q̂
(n+1)
m < 0, remaining at the lower right diagonal

position. Note that q̂
(n+1)
m is nothing but the q

(n+1)
m obtained by a single

step of the dqds algorithm with the shift q
(n)
m . This q̂

(n+1)
m can be utilized to

modify the “tentative” shift q
(n)
m to an eligible shift as follows.

[Rutishauser’s shift strategy]

1. Try the Cholesky factorization of B(n)(B(n))T−q
(n)
m I to find the value

q̂
(n+1)
m < 0.

2. Do a shifted Cholesky LR step (or equivalently, a dqds step) with the
shift q

(n)
m + q̂

(n+1)
m to obtain B(n+1)(B(n+1))T.

The trick in this strategy is that the shift q
(n)
m + q̂

(n+1)
m is always valid so

that the shifted Cholesky LR in the step 2 is feasible.
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Lemma 5.1 ([15, Th. 1], [16, §56]). If the condition (14) is satisfied at step
n, then q

(n)
m + q̂

(n+1)
m < (σ(n)

min)
2.

The next theorem shows the “local” cubic convergence. By saying “local”
we intend to emphasize that the inequality (15) is claimed to be true for a
particular n, and not for all sufficiently large n.

Theorem 5.1 (Local cubic convergence [15, Th. 4], [16, §57]). If Rutishauser’s
strategy is used to obtain B(n+1)(B(n+1))T at step n at which the condition
(14) is satisfied, then we have

e
(n+1)
m−1 q

(n+1)
m

g2
≤

(
e
(n)
m−1q

(n)
m

g2

)3

. (15)

That is, the lowermost subdiagonal element of B(n)(B(n))T decays cubically
in this single step.

Our aim in this paper is to provide a rigorous proof of asymptotic cubic
convergence of the dqds. Theorem 5.1 is not eligible for this purpose in
the following senses. First, for “asymptotic” cubic convergence, the condi-
tion (14) must be satisfied continuously (or consecutively) for all sufficiently
large n. This is, however, not guaranteed but assumed in Theorem 5.1. Sec-
ond, Theorem 5.1 does not say anything about how the dqds iteration can be
led to its “final stage of convergence” for an arbitrary matrix B. This issue
is closely related to the problem of global convergence. A proof of global
convergence has been given in [9] in the absence of shifts. With this result,
we see that if the dqds is run without shifts, the condition (14) is eventually
satisfied. The rate of convergence with this strategy, however, stays only
linear in the early phase; even worse, once the shift for cubic convergence
becomes active, the global convergence is no longer guaranteed by the global
convergence theorem given in [9]. Another proof of global convergence has
been given in [15], which covers more general shifts. The theorem, however,
applies to nondegenerate cases only, and in this respect it is not sufficient for
our purpose. The global convergence theorem (Theorem 4.1), which is valid
for any shifts satisfying 0 ≤ s(n) < (σ(n)

min)
2 and for an arbitrary matrix B,

allows us to employ more aggressive shift strategies from the early phase of
iteration, while keeping the theoretical guarantee of global convergence.

In the subsequent sections, we propose a concrete shift strategy based
on Rutishauser’s, and show that with the strategy the condition (14) is
continuously satisfied (Lemma 6.2), and the cubic convergence is in fact
realized (Theorem 6.1).

Remark 5.1. In the dqds algorithm, the computation in the first step of
Rutishauser’s shift strategy can be simplified as follows [9, §8.3]. If we
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substitute the 5th line of Algorithm 3.1 into the 7th line, we obtain

d
(n+1)
k+1 =

d
(n+1)
k q

(n)
k+1

d
(n+1)
k + e

(n)
k

− s(n). (16)

As a special case, with the tentative shift s(n) = q
(n)
m we have

d̂
(n+1)
k+1 =

d̂
(n+1)
k q

(n)
k+1

d̂
(n+1)
k + e

(n)
k

− q(n)
m . (17)

(The hat “ˆ” indicates that the quantity is obtained with the tentative shift
s(n) = q

(n)
m ). Thus we can concentrate on the computation of d̂

(n+1)
k (k =

1, . . . ,m) to obtain q̂
(n+1)
m = d̂

(n+1)
m , while q̂

(n+1)
k and ê

(n+1)
k (accordingly the

5th and the 6th line of Algorithm 3.1) can be skipped. In this way the cost
to determine q̂

(n+1)
m is “about 2/3 of a dqds step”[9].

5.2 Concrete procedure for the shift

In this section we embody the idea of Rutishauser to a concrete procedure
to choose a shift.

The procedure goes as follows. At each iteration step n we first compute
d̂

(n+1)
k as in Section 5.1. If d̂

(n+1)
k > 0 for k = 1, . . . .m − 1, we set the shift

s(n) as

s(n) =
d̂

(n+1)
m−1 q

(n)
m

d̂
(n+1)
m−1 + e

(n)
m−1

; (18)

otherwise we put s(n) = 0. It is easy to verify that the shift given by
(18) coincides with s(n) = q

(n)
m + q̂

(n+1)
m in Rutishauser’s shift strategy (see

Remark 5.1 and the equation (17) therein) for which the “local” cubic con-
vergence is already discussed in Section 5.1.

A formal description of this procedure is given below under the name of
“shift strategy (C).”

Shift strategy (C)

1: e
(n)
0 := 0, d̂

(n)
0 := 1

2: for k := 1, . . . ,m − 1 do
3: d̂

(n+1)
k := d̂

(n+1)
k−1 q

(n)
k /(d̂(n+1)

k−1 + e
(n)
k−1) − q

(n)
m

4: if d̂
(n+1)
k ≤ 0 then

5: set s(n) := 0
6: return
7: end if
8: end for
9: set s(n) := d̂

(n+1)
m−1 q

(n)
m /(d̂(n+1)

m−1 + e
(n)
m−1)

10



10: return

In the next section, we show that the shift determined by the above
procedure is a valid choice, satisfying the condition (9) in Theorem 4.1. By
Lemma 4.1 this guarantees positivity of the variables, which in turn implies
that the algorithm is free from breakdown. Furthermore we shall establish
a theorem of asymptotic cubic convergence with mathematical rigor.

6 Theorem of cubic convergence

In this section, we prove that the asymptotic cubic convergence is realized
by the shift strategy (C) described in Section 5.2. The proof consists of
showing the following facts.

1. The condition 0 ≤ s(n) < (σ(n)
min)

2 of (9) is always satisfied (Lemma 6.1).

2. The shift is given by s(n) = d̂
(n+1)
m−1 q

(n)
m /(d̂(n+1)

m−1 + e
(n)
m−1) for all suffi-

ciently large n (Lemma 6.2).

3. Asymptotic cubic convergence is realized (Theorem 6.1).

The following fundamental fact is known in the literature [9]; we give
here an alternative proof in a way consistent with our approach.

Lemma 6.1. In the dqds algorithm with shift strategy (C) we have the
condition 0 ≤ s(n) < (σ(n)

min)
2 of (9) for all n = 0, 1, 2, . . ..

Proof. To prove the claim by induction on n, assume that

0 ≤ s(l) < (σ(l)
min)

2 (l = 0, 1, . . . , n − 1).

If d̂
(n+1)
k ≤ 0 for some k with 1 ≤ k ≤ m− 1, then s(n) = 0, which obviously

satisfies (9). Therefore we may assume that d̂
(n+1)
k > 0 (k = 1, . . . ,m−1) and

the shift s(n) is given by (18). By Lemma 4.1 we have q
(n)
k > 0 (k = 1, . . . ,m)

and e
(n)
k > 0 (k = 1, . . . ,m−1). Then, by Lemma 4.3, the desired inequality

s(n) < (σ(n)
min)

2 holds if we have d
(n+1)
k > 0 (k = 1, . . . ,m) for d

(n+1)
k computed

by Algorithm 3.1 with the shift of (18). The latter is in fact true, as shown
below.

From the 3rd line (with k = 1) of the shift strategy (C) and the 3rd line
of Algorithm 3.1 we have

d
(n+1)
1 − d̂

(n+1)
1 = q(n)

m − s(n). (19)

By the 9th line of the shift strategy (C) we see

q(n)
m − s(n) =

e
(n)
m−1q

(n)
m

d̂
(n+1)
m−1 + e

(n)
m−1

> 0. (20)

11



Hence, d
(n+1)
1 > d̂

(n+1)
1 is obtained. We can prove d

(n+1)
k > d̂

(n+1)
k (k =

1, . . . ,m − 1) by induction on k as follows. By the 3rd line of the shift
strategy (C) and (16) we have

d
(n+1)
k − d̂

(n+1)
k =

d
(n+1)
k−1 q

(n)
k

d
(n+1)
k−1 + e

(n)
k−1

− s(n) −

(
d̂

(n+1)
k−1 q

(n)
k

d̂
(n+1)
k−1 + e

(n)
k−1

− q(n)
m

)

=
e
(n)
k−1q

(n)
k (d(n+1)

k−1 − d̂
(n+1)
k−1 )

(d(n+1)
k−1 + e

(n)
k−1)(d̂

(n+1)
k−1 + e

(n)
k−1)

+ q(n)
m − s(n). (21)

The induction hypothesis d
(n+1)
k−1 > d̂

(n+1)
k−1 together with (20) implies d

(n+1)
k >

d̂
(n+1)
k . Therefore d

(n+1)
k > d̂

(n+1)
k > 0 (k = 1, . . . ,m − 1) is proved. The

remaining case with k = m can be treated as follows. By (16) and (18) we
have

d(n+1)
m =

d
(n+1)
m−1 q

(n)
m

d
(n+1)
m−1 + e

(n)
m−1

−
d̂

(n+1)
m−1 q

(n)
m

d̂
(n+1)
m−1 + e

(n)
m−1

=
e
(n)
m−1q

(n)
m (d(n+1)

m−1 − d̂
(n+1)
m−1 )

(d(n+1)
m−1 + e

(n)
m−1)(d̂

(n+1)
m−1 + e

(n)
m−1)

> 0. (22)

Thus we have proven d
(n+1)
k > 0 (k = 1, . . . ,m).

Lemma 6.2. In the dqds algorithm with the shift strategy (C) we have

lim
n→∞

d̂
(n)
k = σk

2 − σm
2 > 0 (k = 1, . . . ,m − 1), (23)

and hence s(n) = d̂
(n+1)
m−1 q

(n)
m /(d̂(n+1)

m−1 + e
(n)
m−1) for all sufficiently large n.

Proof. By Lemma 6.1 Theorem 4.1 applies to our algorithm. In particular,
q
(n)
k and e

(n)
k converge. We prove (23) by induction on k. From the 3rd line

of the shift strategy (C) with k = 1 we have

lim
n→∞

d̂
(n+1)
1 = lim

n→∞
(q(n)

1 − q(n)
m ) = σ1

2 − σm
2 > 0,

which shows the case of k = 1. From the 3rd line of the shift strategy (C)
with general k and the induction hypothesis we see

lim
n→∞

d̂
(n+1)
k+1 = lim

n→∞

(
d̂

(n+1)
k q

(n)
k+1

d̂
(n+1)
k + e

(n)
k

− q(n)
m

)
= lim

n→∞
(q(n)

k+1 − q(n)
m )

= σk+1
2 − σm

2.

12



Thus (23) holds true and therefore d̂
(n+1)
k > 0 (k = 1, . . . ,m − 1) for all

sufficiently large n. As a result, the shift is determined as the 9th line of the
shift strategy (C).

The limits of q
(n)
k (k = 1, . . . ,m) as n → ∞ are given as follows.

Lemma 6.3. In the dqds algorithm with the shift strategy (C) we have
∞∑

n=0

s(n) = σm
2, (24)

lim
n→∞

q
(n)
k = σk

2 − σm
2 (k = 1, . . . ,m − 1); lim

n→∞
q(n)
m = 0. (25)

Proof. By Lemma 6.2 we see

lim
n→∞

s(n) = lim
n→∞

d̂
(n+1)
m−1 q

(n)
m

d̂
(n+1)
m−1 + e

(n)
m−1

= lim
n→∞

q(n)
m , (26)

whereas limn→∞ s(n) = 0 by (10) in Theorem 4.1. Hence limn→∞ q
(n)
m = 0．

This, together with (12), proves (24) and (25).

We can also identify the limits of d
(n)
k (k = 1, . . . ,m) as n → ∞.

Lemma 6.4. In the dqds algorithm with the shift strategy (C) we have

lim
n→∞

d
(n)
k = σk

2 − σm
2 (k = 1, . . . ,m − 1); lim

n→∞
d(n)

m = 0. (27)

Proof. This follows from Lemma 6.3 and the 5th line of Algorithm 3.1.

We now state the main theorem of this paper, which shows the cubic
convergence of the dqds algorithm with the shift strategy (C). In view of (2)
we introduce the notation

r(n)
m = q(n)

m +
n−1∑
l=0

s(l) − σm
2 (28)

to represent the error in the approximated smallest eigenvalue of BTB.

Theorem 6.1 (Cubic convergence). In the dqds algorithm with the shift
strategy (C) we have

lim
n→∞

e
(n+1)
m−1

(e(n)
m−1)3

=
1

(σm−1
2 − σm

2)2
, (29)

lim
n→∞

q
(n+1)
m

(q(n)
m )3

=
1

(σm−1
2 − σm

2)2
, (30)

lim
n→∞

r
(n+1)
m

(r(n)
m )3

=
1

(σm−1
2 − σm

2)2
. (31)

13



Therefore e
(n)
m−1, q

(n)
m and r

(n)
m are of cubic convergence. Moreover, we have

lim
n→∞

r
(n)
m

e
(n)
m−1

= 0. (32)

Proof. By Lemma 6.2 we may assume s(n) = d̂
(n+1)
m−1 q

(n)
m /(d̂(n+1)

m−1 + e
(n)
m−1).

From Algorithm 3.1 we see

e
(n+2)
m−1

(e(n+1)
m−1 )3

=
q
(n+1)
m

(e(n+1)
m−1 )2q(n+2)

m−1

=
d

(n+1)
m

(e(n+1)
m−1 )2q(n+2)

m−1

=
(q(n+1)

m−1 )2

q
(n+2)
m−1

· d
(n+1)
m

(e(n)
m−1q

(n)
m )2

=
(q(n+1)

m−1 )2

q
(n+2)
m−1 (d(n+1)

m−1 + e
(n)
m−1)(d̂

(n+1)
m−1 + e

(n)
m−1)

·
d

(n+1)
m−1 − d̂

(n+1)
m−1

e
(n)
m−1q

(n)
m

=
q
(n+1)
m−1

q
(n+2)
m−1 (d̂(n+1)

m−1 + e
(n)
m−1)

·
d

(n+1)
m−1 − d̂

(n+1)
m−1

e
(n)
m−1q

(n)
m

, (33)

where the first equality is due to the 6th line (with k = m − 1 and n
replaced by n+1), the second is to the 9th line, the third is to 6th line (with
k = m − 1), the fourth is to the second equality in (22), and the last is to
the 5th line (with k = m − 1) of Algorithm 3.1.

In (33) we have

lim
n→∞

q
(n+1)
m−1

q
(n+2)
m−1 (d̂(n+1)

m−1 + e
(n)
m−1)

=
1

σm−1
2 − σm

2

by Lemmas 6.2 and 6.3. As for the other factor, we have, by (19) and (20),

d
(n+1)
m−1 − d̂

(n+1)
m−1

e
(n)
m−1q

(n)
m

=
d

(n+1)
1 − d̂

(n+1)
1

e
(n)
m−1q

(n)
m

·
d

(n+1)
m−1 − d̂

(n+1)
m−1

d
(n+1)
1 − d̂

(n+1)
1

=
1

d̂
(n+1)
m−1 + e

(n)
m−1

·
d

(n+1)
m−1 − d̂

(n+1)
m−1

d
(n+1)
1 − d̂

(n+1)
1

.

Here we have
lim

n→∞
(d̂(n+1)

m−1 + e
(n)
m−1) = σm−1

2 − σm
2

from (23) and also

lim
n→∞

d
(n+1)
m−1 − d̂

(n+1)
m−1

d
(n+1)
1 − d̂

(n+1)
1

= 1, (34)

14



as is shown below. Then we obtain (29).
To prove (34) we show

lim
n→∞

d
(n+1)
k − d̂

(n+1)
k

d
(n+1)
1 − d̂

(n+1)
1

= 1 (k = 1, . . . ,m − 1) (35)

by induction on k. The case of k = 1 is obviously true. To treat the general
case with k we observe

d
(n+1)
k − d̂

(n+1)
k

d
(n+1)
1 − d̂

(n+1)
1

=
e
(n)
k−1q

(n)
k

(d(n+1)
k−1 + e

(n)
k−1)(d̂

(n+1)
k−1 + e

(n)
k−1)

·
d

(n+1)
k−1 − d̂

(n+1)
k−1

d
(n+1)
1 − d̂

(n+1)
1

+ 1

from (19) and (21). Here we have lim
n→∞

e
(n)
k−1 = 0 by Lemma 6.1 and Theo-

rem 4.1, lim
n→∞

q
(n)
k = σk

2 − σm
2 by Lemma 6.3, lim

n→∞
d

(n+1)
k−1 = lim

n→∞
d̂

(n+1)
k−1 =

σk−1
2 − σm

2 by Lemmas 6.2 and 6.4, and lim
n→∞

d
(n+1)
k−1 − d̂

(n+1)
k−1

d
(n+1)
1 − d̂

(n+1)
1

= 1 by the

induction hypothesis. Thus we have proven (35).
Next we prove (30). From the 6th line (with k = m−1) of Algorithm 3.1,

(29) and Lemma 6.3 we have

lim
n→∞

q
(n)
m

(e(n)
m−1)2

= lim
n→∞

q
(n+1)
m−1 e

(n+1)
m−1

(e(n)
m−1)3

=
1

σm−1
2 − σm

2

and hence we obtain

lim
n→∞

q
(n+1)
m

(q(n)
m )3

= lim
n→∞

(
e
(n+1)
m−1

(e(n)
m−1)3

)2
q
(n+1)
m /(e(n+1)

m−1 )2

(q(n)
m /(e(n)

m−1)2)3
=

1
σm−1

2 − σm
2
.

Finally, we prove (31) and (32). From Algorithm 3.1 we have

q(n+1)
m =

d
(n+1)
m−1 q

(n)
m

q
(n+1)
m−1

− s(n)

=
(q(n+1)

m−1 − e
(n)
m−1)q

(n)
m

q
(n+1)
m−1

− s(n)

= q(n)
m − e

(n+1)
m−1 − s(n),

where the first equality is due to the 9th line and the 7th line (with k =
m− 1), the second is to the 5th line, and the last is to the 6th line. Adding
both sides of the equation above over n with k = m, we have

q(n)
m = q(0)

m −
n−1∑
l=0

e
(l+1)
m−1 −

n−1∑
l=0

s(l).
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Letting n → ∞ and noting
∑∞

l=0 e
(l+1)
m−1 is convergent (see [1] for the detail),

we have also

q(∞)
m = q(0)

m −
∞∑
l=0

e
(l+1)
m−1 −

∞∑
l=0

s(l),

and hence, from (12) in Theorem 4.1,

σm
2 = q(∞)

m +
∞∑
l=0

s(l) = q(0)
m −

∞∑
l=0

e
(l+1)
m−1 .

Therefore we see

r(n)
m = q(n)

m +
n−1∑
l=0

s(l) − σm
2 =

∞∑
l=n+1

e
(l)
m−1.

It then follows from (29) that

lim
n→∞

r
(n)
m

e
(n+1)
m−1

= lim
n→∞

1

e
(n+1)
m−1

∞∑
l=1

e
(n+l)
m−1 = 1.

Hence we obtain

lim
n→∞

r
(n+1)
m

(r(n)
m )3

= lim
n→∞

e
(n+2)
m−1

(e(n+1)
m−1 )3

= 0,

lim
n→∞

r
(n)
m

e
(n)
m−1

= lim
n→∞

e
(n+1)
m−1

e
(n)
m−1

= 0

from (29).

Note that the critical variables for convergence are e
(n)
m−1 and r

(n)
m ; the

former is used for the convergence criterion and the latter represents the er-
ror in the approximation of σm

2. Furthermore, when the iteration is stopped
at the nth loop, the equation (32) indicates that r

(n)
m is small enough com-

pared to e
(n)
m−1. This property is useful in practice. Theorem 6.1 does not

say anything about other variables, but this is already sufficient from the
algorithmic point of view, since whenever the lower right elements, e

(n)
m−1

and q
(n)
m , converge to zero, the deflation is applied to reduce the matrix size.

Remark 6.1. In the above we intended to provide a streamlined rigorous
proof of Theorem 6.1 by working directly with the recurrence relations in
the dqds algorithm. Instead, we could have used a known identity for a
shorter proof. In [15] is shown the identity

q(n+1)
m = (e(n)

m−1q
(n)
m )2(v(n))T(U (n) − q(n)

m I)−1v(n)

× (v(n))T(U (n) − q(n)
m I)−1(U (n) − (q(n)

m + d̂(n+1)
m )I)−1v(n).
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By the 6th line of Algorithm 3.1 with k = m − 1, we then see

e
(n+1)
m−1 q

(n+1)
m

(e(n)
m−1q

(n)
m )3

=
1

q
(n+1)
m−1

(v(n))T(U (n) − q(n)
m I)−1v(n)

× (v(n))T(U (n) − q(n)
m I)−1(U (n) − (q(n)

m + d̂(n+1)
m )I)−1v(n).

With this expression at hand it is indeed immediate from Lemma 6.1 and
Lemma 6.2 that

lim
n→∞

e
(n+1)
m−1 q

(n+1)
m

(e(n)
m−1q

(n)
m )3

=
1

(σm−1
2 − σm

2)4
,

which shows the cubic convergence.

Remark 6.2. The asymptotic cubic convergence claimed in this paper is
surely the best rate ever known if the rate is defined against “steps”(n).
From the practical point of view, however, it is also natural to measure
the convergence rate based on computational costs, and from this per-
spective the situation can be viewed in a slightly different manner. The
shift strategy (C) requires the computation of d̂

(n+1)
k , generally for all of

k = 1, . . . ,m − 1, whose computational cost is roughly 2/3 of that of a
dqds step, as noted in Remark 5.1. Thus, a full single step of the dqds
with the shift strategy (C) requires costs 5/3 times as much as the standard
dqds, from which we may say that the actual rate of the “cubic” dqds is
33/5 ≃ 1.93. In this respect, the cubic dqds may fall behind, for example,
the superquadratic one [2].
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7 Conclusion

In this paper a concrete procedure for choosing the shifts in the dqds algo-
rithm was proposed based on the shift strategy suggested by Rutishauser [15]
and Fernando–Parlett [9]. Then it was proved with mathematical rigor that
if the shift choosing procedure is employed the dqds always attains asymp-
totic cubic convergence for any initial bidiagonal matrix B.
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