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Abstract

We introduce a generalization of the zig-zag product of regular digraphs (directed
graphs), which allows us to construct regular digraphs with more flexible choices of
the degrees. In our generalization, we can control the connectivity of the resulting
graph measured by its spectral expansion. We derive an upper bound on the spectral
expansion of the generalized zig-zag product. Our upper bound improves on known
bounds when applied to the zig-zag product. We also consider a special case of the
generalized zig-zag product, where one of the components is a trivial graph whose
edges are all self-loops. We call it a reduced zig-zag product and derive a bound on
the spectral expansion of its powers.

1 Introduction

A sparse graph which has high connectivity properties is called an expander graph. Ex-
pander graphs have many applications, such as complexity theory ([16]), derandomization
([1], [2]) and error correcting codes ([10], [20]). Connectivity properties of an expander
graph are measured by several expansion parameters, which are related to each other.
In this paper we consider the spectral expansion as a measure of connectivity. It can be
interpreted as the rate at which a random walk on the graph converges to its stationary
distribution.

Many articles show that almost every regular graph has good expansion properties
theoretically ([4], [6]) or practically ([9], [15]), based on randomization arguments. Also
many authors proposed explicit construction of expander graphs using number theory or
group theory ([7], [11], [12], [13]). On the other hand, Reingold et al. [19] introduced a new
graph operation called a zig-zag product and succeeded in constructing larger expander
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graphs by iteratively applying the product. The zig-zag product requires two graphs
and generates a graph which preserves the spectral expansions of the component graphs
to some degree. Originally the zig-zag product was defined only for regular undirected
graphs, but later Reingold et al. ([17], [18]) extended the definition to directed graphs
with an application to complexity theory.

In this paper, we introduce a generalization of the zig-zag product of regular directed
graphs. It requires three graphs and also controls the resulting spectral expansion in terms
of the spectral expansions of the three components. We derive an upper bound on the
spectral expansion of the generalized zig-zag product. Our upper bound improves on the
bounds in Reingold et al. ([17],[18]) when applied to the zig-zag product. Additionally we
consider a special case of the generalized zig-zag product, where one of the components is
a trivial graph whose edges are all self-loops. We call it a reduced zig-zag product. The
spectral expansion of the reduced product itself is 1, which is the worst case. However we
derive a bound for the powers of the reduced product, which is similar to the bound in
the generalized zig-zag product.

The organization of this paper is as follows. In Section 2 we give notations and
preliminary definitions. In Section 3 we define the generalized zig-zag product and related
graph operations. In Section 4 we derive an upper bound for the spectral expansion of the
zig-zag product and the powers of the reduced zig-zag product. In Section 5 we present
some results of numerical experiments to compare the spectral expansion of the zig-zag
product and its bound given in Section 4.

2 Notation and Preliminaries

In this paper, we consider digraphs which may have multiple edges and self-loops. In
a digraph, the outdegree of a vertex is the number of edges leaving the vertex, and the
indegree of a vertex is the number of edges entering the vertex. A digraph is M -outregular
if every vertex has the outdegree M , and M -inregular if every vertex has the indegree M .
A graph is M -regular if it is both M -outregular and M -inregular.

Given an M -regular graph G on the set of vertices [N ]
def.
= {1, . . . , N}, consider a

random walk on G described by the transition matrix A whose (v, u)’th entry is the
number of edges from u to v, divided by M1. Let 1N = (1, . . . , 1)T ∈ RN denote the
N -dimensional vector consisting of 1’s. By the regularity of G, π = 1N/N is a stationary
distribution of the random walk, i.e. Aπ = π. Also note that 1T

NA = 1T
N by the regularity

of A.
We are interested in the rate at which random walks on G converge to a stationary

distribution π. The convergence rate can be studied in terms of the Euclidean norm on
RN . Let 〈x,y〉 =

∑
v∈[N ] xvyv and ‖x‖ =

√
〈x,x〉 denote the standard inner product

and the standard Euclidean norm in RN . We characterize the rate of convergence by the

1Often the transition matrix is defined to be the transpose of our definition. Following the recent
literature on the zigzag product we adopt the the present definition of A. In our definition the transition
of probability vector x by one step of the random work is expressed by left-multiplication Ax of x by A.
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following parameter called the spectral expansion.

Definition 2.1 (spectral expansion). Let G be a regular digraph on the set of vertices
[N ] and let A be the transition matrix of the random walk on G. The spectral expansion
of G is defined as

λ(G) = max
x⊥1N

‖Ax‖
‖x‖

.

In the case that G is undirected, λ(G) is the second largest eigenvalue (in absolute
value) of the symmetric matrix A ([3], [8]). In general, following Fill [5] and Mihail [14],
λ(G) is the square root of the second largest eigenvalue of AT A, which also means the
second largest singular value of A. If µ is our initial distribution, then µ−π and A(µ−π)
are orthogonal to 1N . Therefore

‖Atµ − π‖ = ‖At(µ − π)‖ ≤ λ(G)t · ‖µ − π‖,

and the distance to π decreases exponentially at least with the rate of λ(G). In particular,
if λ(G) < 1, then π is the unique stationary distribution.

In our analysis, we make use of the singular value decomposition of the transition
matrix. The singular value decomposition of A is

A = PΣQT

where P,Q are orthogonal matrices and Σ is a diagonal matrix. We denote P = (p1, . . . , pN),
Q = (q1, . . . , qN) and Σ = diag(σ1, . . . , σN). Then, for v ∈ [N ], pv and qv are the left-
singular and the right-singular vectors for σv, respectively (i.e. Aqv = σvpv and AT pv =
σvqv). By the regularity of G, A1N = AT1N = 1, and we set σ1 = 1,p1 = q1 = 1N/

√
N .

Then, since q2, . . . , qN ⊥ 1N , λ(G) is the second largest singular value.
For vectors x ∈ RN and y ∈ RM , we define their tensor product x ⊗ y to be the

vector in RMN whose (u, k)’th entry is xuyk. Similarly, for an N × N matrix A and an
M × M matrix B, we define their tensor product A ⊗ B to be the MN × MN matrix
whose ((v, l), (u, k))’th entry is AvuBlk. Then (A ⊗ B)(x ⊗ y) = (Ax) ⊗ (By).

3 Operations on Directed Graphs

In this section, we define some graph operations. To define them, we give distinct labels
to the edges leaving and entering each vertex by numbers from 1 to M , which is called the
two-way labelling. Let G be an M -regular digraph on the set of vertices [N ]. A two way
labelling of G is a family of bijections from [M ] to the set of edges leaving each vertex and
the set of edges entering each vertex. Such a graph together with its two-way labelling can
be specified by a rotation map RotG : [N ] × [M ] → [N ] × [M ], where RotG(u, k) = (v, l)
if the k-th edge leaving u is the l-th edge entering v.

First, we define a generalization of the zig-zag product introduced in [19]. Let G be
an M -regular digraph on the set of vertices [N ], H1 be a D1-regular digraph on the set
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of vertices [M ] and H2 be a D2-regular digraph on the set of vertices [M ]. Their zig-
zag product, denoted by G z©(H1, H2), is defined to be the graph on the set of vertices
[N ]× [M ] whose edges are defined as follows: we connect two vertices from (u, k) to (v, l)
if it is possible to get from (u, k) to (v, l) by a sequence of the following three steps:

Step 1. Move from (u, k) to (u, k′) where (k, k′) is an edge in H1.

Step 2. Move from (u, k′) to (v, l′) where, in G, the k′-th edge leaving u is the l′-th edge
entering v.

Step 3. Move from (v, l′) to (v, l) where (l′, l) is an edge in H2.

Step 1 and 3 change the second component of the current vertex as a transition of the
random walk on H1 and H2, respectively. Step 2 is a deterministic transition using the
two-way labelling of G. Therefore their zig-zag product G z©(H1, H2) is D1D2-regular. The
two-way labellings of H1 and H2 are used to define the two-way labelling of G z©(H1, H2)
through their rotation maps. The formal definition of the generalized zig-zag product is
as follows.

Definition 3.1 (A generalized zig-zag product). Let G be a two-way labelled M-regular
graph on the set of vertices [N ] with a rotation map RotG, H1 be a two-way labelled
D1-regular graph on the set of vertices [M ] with a rotation map RotH1 and H2 be a
two-way labelled D2-regular graph on the set of vertices [M ] with a rotation map RotH2.
Their zig-zag product G z©(H1, H2) is defined to be the D1D2-regular graph on the set of
vertices [N ] × [M ] whose rotation map RotG z©(H1,H2) : ([N ] × [M ]) × ([D1] × [D2]) →
([N ] × [M ]) × ([D1] × [D2]) is as follows: RotG z©(H1,H2)((u, k), (i, j)) = ((v, l), (i′, j′)) if
there exist k′, l′ ∈ [M ] such that

(k′, i′) = RotH1(k, i), (v, l′) = RotG(u, k′), (l, j′) = RotH2(l
′, j).

Next, we consider a special case of the generalized zig-zag product where H2 is a trivial
1-regular graph with a single self-loop for each vertex. We denote this trivial graph by ∅.
Then we define the reduced zig-zag product of G and H by

G z©′H = G z©(H, ∅).

Here G is an M -regular digraph on the set of vertices [N ] , H is a D-regular digraph on
the set of vertices [M ] and the reduced zig-zag product G z©′H is a D-regular digraph on
the set of vertices [N ] × [M ]. The motivation to consider the reduced zig-zag product is
that the degree of G z©′H is only D and it still has good connectivity properties as an
expander graph as shown below in Theorem 4.2.

In the reduced zig-zag product, the third step of connecting edges in the zig-zag
product is omitted and the edges are defined as follows: we connect two vertices from
(u, k) to (v, l) if it is possible to get from (u, k) to (v, l) by a sequence of the following two
steps:
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Step 1. Move from (u, k) to (u, k′) where (k, k′) is an edge in H.

Step 2. Move from (u, k′) to (v, l) where, in G, the k′-th edge leaving u is the l′-th edge
entering v.

The formal definition is as follows.

Definition 3.2 (Reduced zig-zag product). Let G be a two-way labelled M-regular graph
on the set of vertices [N ] with a rotation map RotG and H be a two-way labelled D-
regular graph on the set of vertices [M ] with a rotation map RotH . Their reduced zig-zag
product G z©′H is defined to be the D-regular graph on the set of vertices [N ] × [M ]
whose rotation map RotG z©′H : ([N ] × [M ]) × [D] → ([N ] × [M ]) × [D] is as follows:
RotG z©′H((u, k), i) = ((v, l), j) if there exist k′ ∈ [M ] such that

(k′, j) = RotH1(k, i), (v, l) = RotG(u, k′).

In addition, we define the t-th power of a graph, which only replaces the edge set with
the set of all walks of length t in the graph.

Definition 3.3 (Powering). Let G be a two-way labelled M-regular graph on the set of
vertices [N ] with a rotation map RotG. The t-th power of G is the M t-regular graph
Gt on the set of vertices [N ] whose rotation map RotGt : [N ] × [M ]t → [N ] × [M ]t is
defined by RotGt(v0, (k1, k2, . . . , kt)) = (vt, (lt, lt−1, . . . , l1)) where (vi, li) = RotG(vi−1, ki)
for i = 1, 2, . . . , t.

If we denote the transition matrix of G by A, then the transition matrix of Gt is At.

4 Upper Bounds for Spectral Expansion

In this section, we derive upper bounds for the spectral expansions of the generalized
zig-zag product and the reduced zig-zag product.

4.1 The Generalized Zig-zag Product

First, as the main result of this paper, we derive an upper bound for the spectral expansion
of the generalized zig-zag product.

Theorem 4.1. If λ(G) ≤ α, λ(H1) ≤ β1 and λ(H2) ≤ β2, then λ(G z©(H1, H2)) ≤
f(α, β1, β2), where

f(α, β1, β2) =
1

2

{√
α2(1 − β2

1)(1 − β2
2) + (β1 + β2)2

+
√

α2(1 − β2
1)(1 − β2

2) + (β1 − β2)2

}
. (1)
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Remark 4.1. By definition 0 ≤ α, β1, β2 ≤ 1 and

α2(1 − β2
1)(1 − β2

2) + (β1 + β2)
2 = (1 + β1β2)

2 − (1 − α2)(1 − β2
1)(1 − β2

2)

≤ (1 + β1β2)
2.

Similarly
α2(1 − β2

1)(1 − β2
2) + (β1 − β2)

2 ≤ (1 − β1β2)
2.

Therefore

f(α, β1, β2) ≤
1

2

{√
(1 + β1β2)2 +

√
(1 − β1β2)2

}
= 1

with equality holding if and only if

0 = (1 − α)(1 − β1)(1 − β2). (2)

The rest of this section is devoted to the proof of (1).

proof. Let A,B1 and B2 be the transition matrix of the random walk on G,H1 and
H2, respectively. To analyze λ(G z©(H1, H2)), we express Z, the transition matrix of
G z©(H1, H2), in terms of G,H1 and H2. We can decompose Z into the product of three
matrices, corresponding to the three steps in the definition of the edges of G z©(H1, H2).
Let B̃1 denote the transition matrix corresponding to the first step. The first step is only
concerned with the the second component of [N ] × [M ]. Hence it is easy to see that
B̃1 = IN ⊗ B1, where IN is the N × N identity matrix. Similarly, we have B̃2 = IN ⊗ B2

where B̃2 is the transition matrix corresponding to the third step. Let Ã be the transition
matrix corresponding to the second step. Then Ã is the permutation matrix corresponding
to RotG, i.e. Ã(v,j),(u,i) = I{RotG(u, i) = (v, j)} where I{·} denotes an indicator function
which takes 1 if the condition in the braces is true and 0 otherwise. Thus Z is written as

Z = B̃2ÃB̃1 = (IN ⊗ B2) Ã (IN ⊗ B1).

Our aim is to show that ‖Zx‖ ≤ f(α, β1, β2)‖x‖ for every x ⊥ 1MN . In view of the
decomposition Z = B̃2ÃB̃1, we define

y = B̃1x, z = Ãy, w = B̃2z.

For every u ∈ [N ], we define xu ∈ RM by (xu)s = x(u,s). Then, x =
∑

u eu ⊗ xu, where
eu = (0, . . . , 0, 1, 0, . . . , 0)T denotes the u-th standard basis vector in RN . Every xu can be
decomposed (uniquely) into xu = x‖

u+x⊥
u where x‖

u is parallel to 1M and x⊥
u is orthogonal

to 1M . Thus, we obtain a decomposition x = x‖ + x⊥ where

x‖ =
∑

u

eu ⊗ x‖
u, x⊥ =

∑
u

eu ⊗ x⊥
u .

Since x‖
u ⊥ x⊥

u for all u, we have x‖ ⊥ x⊥ and hence

‖x‖2 = ‖x‖‖2 + ‖x⊥‖2.
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x‖ can also be written as x‖ = x̄⊗1M , where x̄ ∈ RN is defined by x̄u = (1/M)
∑

s∈[M ] x(u,s).

Since x and x⊥ are both orthogonal to 1MN , so is x‖ and hence also x̄ is orthogonal to
1N . We decompose y, z and w in the same way as x.

We now show several relations among x,y, z and w. First we consider the relation
between x and y. Since

y = B̃1x

= B̃1x
‖ + B̃1x

⊥

=
∑

u∈[N ]

eu ⊗ B1x
‖
u +

∑
u∈[N ]

eu ⊗ B1x
⊥
u

and B1x
‖
u = x‖

u ‖ 1M , B1x
⊥
u ⊥ 1M for every u, we have y‖ = x‖ and y⊥ = B̃1x

⊥. Note
that ‖y⊥

u ‖ = ‖B1x
⊥
u ‖ ≤ β1‖x⊥

u ‖ for every u ∈ [M ]. Thus, we have

‖y‖‖ = ‖x‖‖, ‖y⊥‖ ≤ β1‖x⊥‖. (3)

The relation between z and w is similar and we have

‖w‖‖ = ‖z‖‖, ‖w⊥‖ ≤ β2‖z⊥‖. (4)

Now consider the relation between y and z. Since Ã is a permutation matrix, we have

‖z‖ = ‖Ãy‖ = ‖y‖. (5)

Furthermore for v ∈ [N ]

(Ãy‖)v =
1

M

∑
j∈[M ]

(Ãy‖)(v,j)

=
1

M

∑
j∈[M ]

∑
(u,i)∈[N ]×[M ]

Ã(v,j),(u,i)y
‖
(u,i)

=
1

M

∑
u∈[N ]

∑
i,j∈[M ]

I{RotG(u, i) = (v, j)}ȳu

=
∑

u∈[N ]

|the number of edges from u to v|
M

· ȳu

=
∑

u∈[N ]

Avuȳu

= (Aȳ)v,

and ‖Aȳ‖ ≤ α‖ȳ‖. Therefore we have

‖(Ãy‖)‖‖ = ‖(Ãy‖) ⊗ 1M‖ = ‖Aȳ ⊗ 1M‖ ≤ α‖ȳ ⊗ 1M‖ = α‖y‖‖. (6)
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We will now prove ‖w‖ ≤ f(α, β1, β2)‖x‖ considering two cases, depending on the
size of the norm ‖x‖‖.
Case 1: ‖x‖‖ ≥ α‖x‖

Since ‖y‖‖ = ‖x‖‖ ≥ α‖x‖ ≥ α‖y‖ and hence ‖y⊥‖ ≤
√

1 − α2‖y‖, we have

1 − α√
1 − α2

‖y⊥‖
‖y‖‖

≥ 0.

Using this, the triangle inequality yields

‖z‖‖ = ‖(Ãy)‖‖
= ‖{Ã(y‖ + y⊥)}‖‖

=

∥∥∥∥∥
{

Ã ·
(

1 − α√
1 − α2

‖y⊥‖
‖y‖‖

)
y‖

}‖

+

{
Ã

(
α√

1 − α2

‖y⊥‖
‖y‖‖

y‖ + y⊥
)}‖

∥∥∥∥∥
≤

(
1 − α√

1 − α2

‖y⊥‖
‖y‖‖

)
‖(Ãy‖)‖‖ +

∥∥∥∥∥
{

Ã

(
α√

1 − α2

‖y⊥‖
‖y‖‖

y‖ + y⊥
)}‖

∥∥∥∥∥ . (7)

From (6) the first term of the right hand of (7) is bounded by(
1 − α√

1 − α2

‖y⊥‖
‖y‖‖

)
‖(Ãy‖)‖‖ ≤

(
1 − α√

1 − α2

‖y⊥‖
‖y‖‖

)
· α‖y‖

and from (5) the second term is bounded by∥∥∥∥∥
{

Ã

(
α√

1 − α2

‖y⊥‖
‖y‖‖

y‖ + y⊥
)}‖

∥∥∥∥∥ ≤
∥∥∥∥Ã

(
α√

1 − α2

‖y⊥‖
‖y‖‖

y‖ + y⊥
)∥∥∥∥

=

∥∥∥∥ α√
1 − α2

‖y⊥‖
‖y‖‖

y‖ + y⊥
∥∥∥∥ .

Therefore we obtain

‖z‖‖ ≤
(

1 − α√
1 − α2

‖y⊥‖
‖y‖‖

)
· α‖y‖‖ +

∥∥∥∥ α√
1 − α2

‖y⊥‖
‖y‖‖

y‖ + y⊥
∥∥∥∥

= α‖y‖‖ − α2

√
1 − α2

‖y⊥‖ +

√(
α√

1 − α2

‖y⊥‖
‖y‖‖

‖y‖‖
)2

+ ‖y⊥‖2

= α‖y‖‖ − α2

√
1 − α2

‖y⊥‖ +
1√

1 − α2
‖y⊥‖

= α‖y‖‖ +
√

1 − α2‖y⊥‖. (8)
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Thus, from (3), (4), (5) and (8), ‖w‖ is bounded as follows:

‖w‖2 = ‖w‖‖2 + ‖w⊥‖2

≤ ‖z‖‖2 + β2
2‖z⊥‖2

= (1 − β2
2)‖z‖‖2 + β2

2‖z‖2

≤ (1 − β2
2)(α‖y‖‖ +

√
1 − α2‖y⊥‖)2 + β2

2‖y‖2

≤ (1 − β2
2)(α‖x‖‖ +

√
1 − α2 · β1‖x⊥‖)2 + β2

2(‖x‖‖2 + β2
1‖x⊥‖2)

= (α2 + β2
2 − α2β2

2)‖x‖‖2 + (β2
1 − α2β2

1 + α2β2
1β

2
2)‖x⊥‖2

+2αβ1

√
1 − α2(1 − β2

2)‖x‖‖ · ‖x⊥‖. (9)

Now, it is straightforward to maximize the right hand side of (9) subject to ‖x‖‖2 +
‖x⊥‖2 = ‖x‖2 by the Lagrange multiplier method and we obtain

‖w‖2 ≤ 1

2

[
α2(1 − β2

1)(1 − β2
2) + (β2

1 + β2
2)

+
√

{α2(1 − β2
1)(1 − β2

2) + (β1 + β2)2} · {α2(1 − β2
1)(1 − β2

2) + (β1 − β2)2}
]
· ‖x‖2

=
1

4

{√
α2(1 − β2

1)(1 − β2
2) + (β1 + β2)2

+
√

α2(1 − β2
1)(1 − β2

2) + (β1 − β2)2

}2

· ‖x‖2

= f(α, β1, β2)
2‖x‖2.

Case 2: ‖x‖‖ < α‖x‖
From (4) and (5), we have

‖w‖2 ≤ ‖z‖2 = ‖y‖2

= ‖y‖‖2 + ‖y⊥‖2

≤ ‖x‖‖2 + β2
1‖x⊥‖2

= (1 − β2
1)‖x‖‖2 + β2

1‖x‖2

< {(1 − β2
1)α

2 + β2
1}‖x‖2

and this is smaller than f(α, β1, β2)
2‖x‖2.

From the above two cases we conclude that ‖w‖ = ‖Zx‖ ≤ f(α, β1, β2)‖x‖ and

λ(G z©(H1, H2)) = max
x⊥1MN

‖Zx‖
‖x‖

≤ f(α, β1, β2).

¤
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4.2 The Reduced Zig-zag Product

Here we derive an upper bound for the spectral expansion of the powers of the reduced zig-
zag product. Note that (1) in Theorem 4.1 is not useful for the reduced zig-zag product
because λ(∅) = 1 and f(α, β1, 1) = 1. In fact λ(G z©′H) = 1. However the spectral
expansion of higher powers of the reduced zig-zag product behaves as in the generalized
zig-zag product as shown in the following theorem.

Theorem 4.2. λ(G z©′H) = 1. If λ(G) ≤ α and λ(H) ≤ β, then

λ((G z©′H)k) ≤ f ′(α, β)k−1, k = 2, 3, . . . (10)

where

f ′(α, β) = f(α,
√

β,
√

β) =
1

2
α(1 − β) +

1

2

√
α2(1 − β)2 + 4β.

proof. Let Z ′ be the transition matrix of the random walk on G z©′H. In the same way
as the proof of Theorem 4.1, Z ′ is decomposed into Z ′ = ÃB̃. When x = x‖, B̃x = x and
hence ‖Z ′x‖ = ‖ÃB̃x‖ = ‖Ãx‖ = ‖x‖. This implies that λ(G z©′H) = 1.

To prove (10), we consider a singular value decomposition: B = PΣQT where P and Q
are orthogonal matrices and Σ is a diagonal matrix of the singular values of B. We denote
P = (p1, . . . , pM), Q = (q1, . . . , qM), Σ = diag(σ1, . . . , σM) and set σ1 = 1, p1 = q1 = 1M .
Then, since P T P = IM , we have

B = PΣQT

= P
√

ΣP T P
√

ΣQT

=: B1B2

where B1 = P
√

ΣP T , B2 = P
√

ΣQT . Then, B̃ = B̃1B̃2 where B̃1 = IN⊗B1, B̃2 = IN⊗B2,
and for k = 2, 3, . . . , we can decompose Z ′k, the transition matrix of (G z©′H)k, into

Z ′k = (ÃB̃)k

= (ÃB̃1B̃2)
k

= ÃB̃1(B̃2ÃB̃1)
k−1B̃2.

Since the singular values of both B1 and B2 are the square roots of those of B, the second
largest singular values of B1 and B2 are both smaller than or equal to

√
β. Also, since

the left-singular and right-singular vectors of B1, B2 corresponding to the singular value√
σ1 = 1 are all p1 = q1 = 1M , we have B11M = B21M = 1M . It follows that B̃1 and

B̃2 have the same properties as in the proof of Theorem 4.1 when
√

β is substituted for
β1 and β2. Therefore we have ‖B̃2ÃB̃1x‖ ≤ f(α,

√
β,

√
β)‖x‖ = f ′(α, β)‖x‖ for every

x ⊥ 1MN . Now

‖Z ′kx‖ = ‖ÃB̃1(B̃2ÃB̃1)
k−1(B̃2x)‖

≤ ‖(B̃2ÃB̃1)
k−1(B̃2x)‖

≤ f ′(α, β)k−1‖B̃2x‖
≤ f ′(α, β)k−1‖x‖

10



and hence

λ((G z©′H)k) = max
x⊥1MN

‖Z ′kx‖
‖x‖

≤ f ′(α, β)k−1.

¤

5 Numerical experiments

In this section, we compare spectral expansions for zig-zag products with their bounds
given in Theorem 4.1 and Theorem 4.2. We use a random M -regular digraph G on the
set of vertices [N ] and D-regular digraph H on the set of vertices [M ] in three cases:

(i) N = 50,M = 40, D = 30.

(ii) N = 30, M = 20, D = 10.

(iii) N = 10,M = 5, D = 3.

The random graphs are generated by the following algorithm based on the configuration
model ([15], [21]).

Algorithm 5.1 (configulation model). In generating a random M-regular digraph G =
(V,E) on the set of vertices [N ], we take the following steps (generating H is similar):

Step 1. Create two vectors x and y, each a random permutation of the integers from 1
to MN .

Step 2. Reassign all the entries in the vectors with their values mod N (integers from 1
to N).

Step 3. Construct the graph G by defining vertex set V (G) = [N ] and edge set E(G) =
{(xi, yi) : i = 1, . . . ,MN}.

Also we generate 100 random two-way labellings for each G in order to define the
zig-zag products of G and H. We do not need a two-way labelling for H here, since it is
used to define only the two-way labelling for the zig-zag products, which is irrelevant to
the spectral expansion of the products. Thus, we obtain 100 zig-zag products G z©H =
G z©(H,H) and reduced zig-zag products G z©′H in each case.

First, we compare the spectral expansion for the zig-zag product λ = λ(G z©H) with
their bound f = f(λ(G), λ(H), λ(H)) given in Theorem 4.1. The spectral expansion is
computed as the second largest singular value of the transition matrix of the graph. In
each case, we computed the average and the maximum of λ. The results are shown in
Table 1. The gap between f and the maximum of λ is about 0.1 in each case and hence
the bound f is tight to some degree. Nevertheless, the gap is much larger than the range
of λ in the case (i) and (ii). We infer that the singular values of the transition matrices
of G and H smaller than λ(G) and λ(H), respectively, reduce λ(G z©H) from our bound
f(λ(G), λ(H), λ(H)).
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λ(G) λ(H) ave λ max λ f
(i) 0.2931153 0.3334984 0.3692421 0.3708440 0.4882911
(ii) 0.4184724 0.5226591 0.5522197 0.5606170 0.6964135
(iii) 0.5909580 0.8047379 0.8294209 0.8610790 0.9155723

Table 1: Comparison of λ = λ(G z©H) and its upper bound f = f(λ(G), λ(H), λ(H))

Next, for k = 1, . . . , 10 we compare the spectral expansion for the k-th power of the
reduced zig-zag product λ′

k = λ((G z©′H)k) with their bounds f ′k−1 = f ′(λ(G), λ(H))k−1

given in Theorem 4.2. We show the results in Table 2-4 and the graphs of the results in
Figure 1-3. The vertical axis is the logarithm of each variables and the horizontal axis is
the degree of power k. We can see that the rate at which λ′

k decreases as k increases is
much smaller than f ′. It is because λ′

k decreases asymptotically at the rate of the second
largest eigenvalue (in absolute value) of Z ′, which is smaller than the second largest
singular value of B̃2ÃB̃1 bounded by f ′ in the proof of Theorem 4.2.
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k ave λ′
k max λ′

k f ′k−1

1 1 1 1
2 0.3692421 0.3708440 0.6833770
3 0.1022944 0.1053438 0.4670042
4 0.0268145 0.0284278 0.3191399
5 0.0068423 0.0069972 0.2180929
6 0.0017359 0.0017915 0.1490397
7 0.0004315 0.0004564 0.1018503
8 0.0001064 0.0001137 0.0696022
9 0.0000263 0.0000284 0.0475645
10 0.0000064 0.0000070 0.0325045

Table 2: Comparison of λ′
k = λ((G z©′H)k) and its upper bound f ′k−1 (N = 50,M =

40, D = 30)
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Figure 1: Comparison of λ′
k = λ((G z©′H)k) and its upper bound f ′k−1 (N = 50,M =

40, D = 30)
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k ave λ′
k max λ′

k f ′k−1

1 1 1 1
2 0.5522197 0.5606170 0.8296951
3 0.2304273 0.2419442 0.6883940
4 0.0942567 0.1013095 0.5711572
5 0.0377101 0.0399611 0.4738863
6 0.0149260 0.0166791 0.3931812
7 0.0058516 0.0070592 0.3262205
8 0.0022697 0.0030180 0.2706636
9 0.0008743 0.0012554 0.2245682
10 0.0003360 0.0005136 0.1863232

Table 3: Comparison of λ′
k = λ((G z©′H)k) and its upper bound f ′k−1 (N = 30,M =

20, D = 10)
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Figure 2: Comparison of λ′
k = λ((G z©′H)k) and its upper bound f ′k−1 (N = 30,M =

20, D = 10)
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k ave λ′
k max λ′

k f ′k−1

1 1 1 1
2 0.8294209 0.8610790 0.9566212
3 0.6072055 0.6531134 0.9151240
4 0.4327482 0.4799104 0.8754270
5 0.2983260 0.3643133 0.8374520
6 0.1998155 0.2659929 0.8011243
7 0.1357641 0.1866002 0.7663725
8 0.0902645 0.1317873 0.7331281
9 0.0604630 0.0923539 0.7013259
10 0.0402301 0.0642308 0.6709032

Table 4: Comparison of λ′
k = λ((G z©′H)k) and its upper bound f ′k−1 (N = 10,M =

5, D = 3)

0.01

0.1

1

1 2 3 4 5 6 7 8 9 10
k

f’k-1

max 
�

’k
ave. 

�

’k

Figure 3: Comparison of λ′
k = λ((G z©′H)k) and its upper bound f ′k−1 (N = 10,M =

5, D = 3)
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