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Abstract

This paper introduces a phase/gain condition for (marginally) stable sys-
tems for characterization of easily controllable systems, and investigates the
relationship between the condition and the optimal performance γopt in H∞
loop shaping design. More specifically it is shown that there is a close re-
lationship between the condition and a magic number

√

4+2
√

2, for both
continuous-time and discrete-time systems. Furthermore a simple design
procedure for robust control based on the obtained knowledge is proposed.

1 Introduction

Recently there has been an increased interest in the characterization of easily con-
trollable plants. One of current approaches is to formulate a certain optimal control
problem and to express the best achievable performance (or its bound) in terms of
plant properties. There are abundant results making use of the H2 tracking/regula-
tion formulation, e.g., [1]. Also several results are available which are based on H∞
loop shaping design [2, 9]. Such results relate intrinsic performance limitations to
unstable poles, non-minimum phase zeros, gain and time-delay of the plant to be
controlled, and it is now well understood that unstable poles etc. prevent good per-
formance from being achieved. Nevertheless little attention has been paid to the

∗CREST, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi-shi, Saitama, 332-
0012, Japan. E-mail: M.Kanno.99@cantab.net

†Department of Information Physics and Computing, Graduate School of Information Science
and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan. E-
mail: {Shinji Hara,Masahiko Ohnishi}@ipc.i.u-tokyo.ac.jp

1



case of (marginally) stable systems in spite of the fact that a plant is sometimes
difficult to control even if it is stable.

This paper focuses on single-input-single-output (SISO) (marginally) stable
systems and tries to show some relationship between a phase/gain property and the
optimal performance level γopt in H∞ loop shaping design [8] for both continuous-
time and discrete-time systems. More specifically a strong connection is revealed
between Conditions (πc) and (πd), which are formally defined in Subsection 3.1,
and a particular value

√

4+2
√

2 ' 2.6131. Condition (πc) is a reformulation of
the finite frequency positive realness (FFPR) property proposed in [6, 7] for char-
acterizing a class of easily controllable mechanical systems, and requires a small
gain in addition to the FFPR property. The purpose of this paper is threefold.

• For continuous-time systems, the relationship between Condition (πc) and
√

4+2
√

2 is proven for the class of all (marginally) stable 2nd order systems
and some classes of 3rd order systems.

• Investigations into a similar relationship are made for some classes of 1st
order and 2nd order discrete-time systems.

• A simple design procedure for robust control is proposed based on the ob-
tained knowledge about the relationship for possibly high order (marginally)
stable systems. In the procedure a designer would only have to decide the
control bandwidth based on the phase/gain condition and could rely on the
H∞ loop shaping design procedure for achieving stability and robustness.

Among few results dealing with (marginally) stable plants, work relevant to
this work is [2, Section 5]; it derives a lower bound for γopt implicitly based on
the rolloff rate of the gain at the gain crossover frequency. (Note that, around gain
crossover, the rolloff rate is closely related to the phase there if the plant is stable
and minimum phase.) While the work has some significance from the theoretical
point of view, it is too general to provide information useful in practice; a plant
which yields γopt = 20 is as difficult to control in practice as one with γopt = 30.
The focal point of this paper lies in the range of the optimal performance level γopt
most practical engineers would be interested in. In other words the target range
here is in γopt ≤ 2

√
2 ' 2.828, as suggested in [8].

The paper is organized as follows. Section 2 reviews the problem formulation
of H∞ loop shaping design and its analytic solution. Then Section 3 recalls the
concept of finite frequency positive realness, defines phase/gain property condi-
tions, called Conditions (πc) and (πd), and reviews some preliminary results. In
Section 4, some classes of 2nd order and 3rd order continuous-time systems are
dealt with, and the relationship between Condition (πc) and γopt ≤

√

4+2
√

2 is
shown. Section 5 then considers the discrete-time case, and some classes of 1st
order and 2nd order systems are examined. In Section 6, a simple robust design
procedure based on the obtained knowledge is proposed and also a numerical ex-
ample is provided. Some concluding remarks are made in Section 7.
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Figure 1: H∞ loop shaping design formulation.

Some of the results presented in this paper are in fact already reported, e.g., in
[5], but without proofs. Such results are included to make this paper self-contained,
and furthermore complete proofs are provided here.

Notation: For a matrix A ∈ C, its complex conjugate transpose is denoted by A∗.
The H∞-norm of a system is denoted by ‖·‖∞. The largest eigenvalue of a matrix
is denoted by λmax(·) (when all the eigenvalues are real).

2 H∞ Loop Shaping Design

2.1 Problem Formulation and Solution

This paper utilizes, as the index of how easy the plant is to control, the optimal
performance level given by the so called H∞ loop shaping design [8]. This design
methodology blends the classical loop shaping technique and H∞ control of mod-
ern control well. The problem formulation is stated as follows. In the feedback
configuration in Figure 1, let P be a given plant or a weighted plant to be con-
trolled. The aim is to find a stabilizing controller K that minimizes the H∞-norm
of the transfer function matrix from (d1 d2)

T to (y1 y2)
T. Namely the design pro-

cedure finds K that internally stabilizes the closed-loop system and also achieves

γopt := inf
K stabilizing

∥
∥
∥
∥

[
I
K

]
(
I +PK

)−1 [
I P

]
∥
∥
∥
∥

∞
. (1)

This is an H∞ optimal control problem, but it is well-known that computation
of the optimal performance level γopt does not require iteration, unlike ordinary H∞
control problems. More specifically, if P is strictly proper and is given in minimal
state-space realization form

P =

[
A B
C 0

]

,

then γopt can be written by using the solutions to an algebraic Riccati equation and
a Lyapunov equation:

γopt =
1

√

1−λmax(Y Q)
,

3



where Y , Q are the solutions to

AY +YA∗−YC∗CY +BB∗ = 0 , (2)

Q(A−YC∗C)+(A−YC∗C)∗Q+C∗C = 0 , (3)

in the continuous-time case [8], and

AYA∗−Y −AYC∗(I +CYC∗)−1CYA∗ +BB∗ = 0 ,

A∗QA− (I +C∗CY )Q(I +YC∗C)+(I +C∗CY )C∗C = 0 ,

in the discrete-time case [4]. This feature is extremely useful when investigating
the best achievable performance level in terms of plant properties.

2.2 γopt as the Easy Controllability Index

This subsection discusses the suitability of γopt as the index of easy controllability.
The performance index γopt in (1) in fact indicates the robustness of the resulting
closed-loop system against coprime factor uncertainty of the plant (the smaller, the
better) [8]. However, since the transfer function matrix of the closed-loop system
contains both the sensitivity and complementary sensitivity functions, it is also
considered that the design attempts to balance the sizes of both functions. In ad-
dition, in the case of SISO systems, there is a strong relationship between γopt and
the achieved gain/phase margins. These facts justify H∞ loop shaping design from
the point of view of classical control.

Proposition 1 ([9]) When P is SISO, the gain margin (GM[dB]) and phase margin
(PM) attained by the optimal controller Kopt(s) that achieves γopt are bounded as
follows:

GM ≥ 20log10

(
γopt +1
γopt −1

)

, PM ≥ 2arcsin
(

1
γopt

)

.

This proposition is stated and proven in [9] for the continuous-time case. How-
ever the proof in [9] can be readily modified for the discrete-time case, and the
proposition holds for both continuous-time and discrete-time cases.

Furthermore, in the case of continuous-time systems, some knowledge has
been established based on experience. A positive real system is known to be very
easy to control, and this fact is theoretically assured by the fact that γopt for such a
system is guaranteed to be less than or equal to

√
2 [8]. However the result is of

little practical significance since few realistic systems possess such a property. As
a practical indication it is known from experience that γopt . 2

√
2 implies a good

closed-loop performance and thus that the plant is easily controllable. Note that,
when γopt ≤ 2

√
2, it is guaranteed by Proposition 1 that

GM & 2.09 ( ' 3.21[dB]) , PM & 41.41[degree] .
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Moreover the optimal controller synthesized by the H∞ loop shaping design pro-
cedure shapes the open loop transfer function (to achieve stability and also to im-
prove robustness) without drastically changing the gain crossover frequency of P,
if γopt is approximately less than 2

√
2 [8]. In other words large γopt means either

a small or large gain of the controller at the gain crossover frequency of the plant,
which means that the original gain crossover frequency of the plant is not suited
for achieving a robust closed-loop system.

The facts stated above are deemed sufficient to conclude that γopt can be used as
an indicator of how ‘good’ the closed-loop system can be if the crossover frequency
of P is chosen to be the control bandwidth.

Remark 1 A small difference between the gain crossover frequencies of P and
PKopt indicates that the lower bound for phase margin in Proposition 1 is a tight
bound. The following proposition can immediately be deduced from the proof of
Proposition 1 given in [9].

Proposition 2 Suppose that the optimal controller Kopt is obtained for a given
(marginally) stable system P. If the gain crossover frequency of P is identical to
that of PKopt, then the lower bound for the phase margin in Proposition 1 is tight,
i.e., is identical to the phase margin achieved by Kopt.

Proof: The continuous-time case is proven. Let the gain crossover frequency of P
be ωgc. The assumption implies that

|P( jωgc)| = |Kopt( jωgc)| = |P( jωgc)Kopt( jωgc)| = 1 . (4)

Also let the phase margin achieved by Kopt be φPM(> 0). Then,

P( jωgc)Kopt( jωgc) = e j(φPM−π) = −e jφPM . (5)

When P is SISO, the following relationship holds [9]:

γopt =

√

1+ |P( jω)|2
√

1+ |Kopt( jω)|2
|1+P( jω)Kopt( jω)| (6)

for all ω ∈ R. By noting that

∣
∣1+P( jωgc)Kopt( jωgc)

∣
∣ =

∣
∣
∣1− e jφPM

∣
∣
∣ = 2sin

(
φPM

2

)

,

and also using (4), (5), and (6), it can be deduced that

φPM = 2arcsin
(

1
γopt

)

,

which is the desired result.
The discrete-time case can be proven exactly in the same manner by replacing

jω etc. with e jθ etc. �
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3 Characterization of Easily Controllable Plants

3.1 Finite Frequency Positive Realness and Condition (πc)/(πd)

It is recognized that some of (marginally) stable oscillatory systems are easy to
control while others are difficult. In order to characterize easily controllable plants,
the concept of ‘finite frequency positive realness (FFPR)’ was introduced [6, 7],
and the following knowledge has been obtained for the class of plants

Pc := {P(s) |P(s) is a strictly proper transfer function

with all the poles in the closed complex left half plane} .

FFPR [7]: Let P(s) ∈ Pc be the transfer function of the plant to be
controlled. Then the maximum control bandwidth ω ?

b achievable by a
dynamic feedback controller is approximately the same as the maximum
frequency ϖ that satisfies

G( jω)+G∗( jω) ≥ 0 (∀ |ω| ≤ ϖ) , G(s) := sP(s) .

The knowledge quoted above implies that there is some connection between a
phase property (phase delay of 180[degree]) and the achievable control bandwidth.
This paper clarifies that there is a strong relationship between a finite frequency
phase/gain property and the achievable performance level γopt. To this end the
following condition defining a phase/gain property is introduced where a small
gain requirement is added to the FFPR property [5].

Condition (πc): Either one of the following conditions holds:
(i) ∀ω ∈ R, ∠P( jω) > −π
(ii) ∃ωπ > 0 such that

0 ≤ ω < ωπ : ∠P( jω) ≥−π ,

ω = ωπ : ∠P( jω) = −π , |P( jω)| ≤ 1 ,

ω > ωπ : |P( jω)| < 1 .

That is, ωπ is the frequency at which the phase of the plant reaches −180[degree]
and from which the gain of the plant is always less than 0[dB]. Here a class of
plants satisfying this condition is defined:

P
g
c := {P(s) ∈ Pc |P(s) satisfies Condition (πc)} .

This paper also addresses discrete-time systems, and the corresponding condi-
tion for the discrete-time case is defined.
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Condition (πd): The following condition holds:
• ∃θπ ∈ [0, π] such that

0 ≤ θ < θπ : ∠P(e jθ ) ≥−π ,

θ = θπ : ∠P(e jθ ) = −π , |P(e jθ )| ≤ 1 ,

θ > θπ : |P(e jθ )| < 1 .

Similar to the continuous-time case, for a class of (marginally) stable systems

Pd := {P(z) |P(z) is a strictly proper transfer function

with all the poles in the closed unit disk} ,

a class of systems satisfying Condition (πd) is defined:

P
g
d := {P(z) ∈ Pd |P(z) satisfies Condition (πd)} .

Remark 2 Even though the appearances are different, Conditions (πc) and (πd)
are equivalent in that (i) of Condition (πc) covers the case where ωπ does not exist.
Note that, for any P(z) ∈ Pd, the phase always delays at least 180[degree] and
that (i) of Condition (πc) is not needed in the discrete-time case.

3.2 Multiple Integrators

Before stating main results in the subsequent sections, this subsection investi-
gates some plants with distinct characteristics and observes the validity of Con-
dition (πc)/(πd). Firstly some continuous-time plants with constant phase are ex-
amined. Systems under investigation are multiple integrators:

Pn(s) =
(k

s

)n
(k > 0) .

It is noted that the systems have phase delay of 90n[degree] for all frequencies.
The achievable control performance levels and the controllers that achieve them
for n = 1, . . . , 4 are given in Table 1. It should be noted that the values of γopt
are independent of the system gain k. Also the poles and zeros of the optimal
controllers (for k = 1) are depicted in Figure 2.

Since P1(s) is positive real, it is known that γopt ≤
√

2; the equality holds in
this case. When n = 2, the system is a double integrator and the phase is always
−180[degree]; in fact the system lies just on the boundary of Condition (πc). Ob-
serve that the optimal controller is a phase-lead compensator which achieves at
the crossover frequency of the system P2(s) the maximum phase-lead, which is
45[degree] (Figure 3). Consequently the design is considered sensible when in-
terpreted in the context of classical control. This is another justification of using
γopt of H∞ loop shaping design as the index of easy controllability. The achieved
performance γopt for this system is [3]

γopt ≤ γDI :=
√

4+2
√

2 ' 2.6131 ,
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Table 1: Achievable Control Performance Levels and Optimal Controllers for Mul-
tiple Integrators (ξ :=

√
2+1) [5].

Pn(s) γopt Optimal Controller
k
s

√
2=
√

1+ξ 0'1.4142 1
( k

s

)2 √
4+2

√
2=
√

1+ξ 2'2.6131
ξ s/k+1
s/k+ξ

( k
s

)3
2
√

3+
√

6=
√

1+ξ 4'5.9135
ξ 2(s/k)2+

√
2ξ s/k+1

(s/k)2+
√

2ξ s/k+ξ 2
( k

s

)4
'15.2898 (too lengthy to include)
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Figure 2: Locations of poles and zeros of Kopt(s) of Pn(s) = 1
sn for n = 2,3,4 [5].

which is smaller than 2
√

2 ' 2.8284. It is therefore judged that the system is easily
controllable. It is also noted that γopt ≤ γDI guarantees the phase margin of at least
45[degree]. This can be seen from Proposition 1 and

2arcsin
(

1
γDI

)

= 45[degree] .

As for n = 3, the system is a triple integrator and the phase is −270[degree] for
all frequencies. The optimal controller is again a phase-lead compensator which
achieves at the crossover frequency of the system P3(s) the maximum phase-lead,
which is

2arctan
√

2 ' 109.471[degree]

(Figure 4). This yields phase margin

180−2arcsin

√
2+1√

6
' 19.471[degree] .
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Figure 4: Nyquist plots of P(s) = 1
s3 and P(s)Kopt(s) [5].

For this system, γopt is much larger than γDI (Table 1), which implies that the system
is not easy to control.

Judging from the values of γopt, it is desirable for a system to have some prop-
erty similar to P2(s), rather than P3(s). It is therefore considered meaningful to
identify characteristics leading to γopt ≤ γDI. Also, P2(s) is on the boundary of
Condition (πc) as is stated. Therefore, in the continuous-time case, it is desired to
establish a strong connection between Condition (πc) and the relationship γopt ≤ γDI.
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The situation is slightly different in the case of discrete-time systems. As an
example, consider a discrete-time integrator

P(z) =
k

z−1
(k > 0) .

Unlike an integrator in continuous-time, the phase of this integrator changes from
−90[degree] to −180[degree]; in fact no dynamical system in discrete-time has a
constant phase. Also this shows that a first order discrete-time systems can have
phase delay of 180[degree]. For this plant the achievable performance level can be
written as

γopt =

√

8+2k2 +2k
√

k2 +4
2

.

Note that γopt depends on the system gain k, unlike the continuous-time counterpart.
It is more important to observe that γopt is an increasing function in k and that,
when k = 2, the plant is on the boundary of Condition (πd) and also γopt = γDI.
Even a simple integrator exhibits different characteristics in the continuous-time
and discrete-time cases. However it is pointed out that γopt shows the identical
feature when seen through Conditions (πc) and (πd). This motivates to clarify how
strong the connection between Condition (πc)/(πd) and γopt ≤ γDI is.

4 Continuous-time Systems

In this section an investigation is made into the relationship between the achievable
performance level γopt and the phase/gain property of the system, namely, Condi-
tion (πc), for some classes of 2nd and 3rd order continuous-time systems.

4.1 2nd Order Systems

This subsection focuses on the 2nd order case. All the 2nd order continuous-time
systems belonging to Pc can be parametrized as follows:

Pc2 :=
{

P(s) = k
β s+1

s2 +α1s+α0

∣
∣
∣
∣
α0 ≥ 0, α1 ≥ 0, k > 0

}

⊂ Pc .

Depending on the sign of β , P(s) ∈ Pc2 exhibits a distinct property; P is min-
imum phase if β ≥ 0, while P is non-minimum phase if β < 0. For a detailed
investigation, Pc2 is divided into two classes:

Minimum Phase: Pc2+ :=
{

P(s) ∈ Pc2
∣
∣β ≥ 0

}
,

Non-Minimum Phase: Pc2− :=
{

P(s) ∈ Pc2
∣
∣β < 0

}
.

The phase delay of a system in Pc2+ is at most 180[degree], and thus all sys-
tems in Pc2+ belong to P

g
c . On the other hand the phase delay of any system P(s)

10



in Pc2− exceeds 180[degree]. The phase delay of P(s) reaches 180[degree] at
ω = ωπ :=

√

α0 +α1/(−β ) (which depends on all α0, α1 and β ), and the gain at
that frequency is |P( jωπ)| = k(−β )/α1 (which is independent of α0). Therefore,
P(s) belongs to P

g
c if and only if k ≤ α1/(−β ) (which is also independent of α0).

Namely the class of systems that belong to both Pc2− and P
g
c can be written as

P
g
c2− := Pc2−∩P

g
c =

{

P(s) ∈ Pc2−
∣
∣
∣0 < k ≤ α1

−β

}

.

The following theorem states that, for any P(s) in

P
g
c2 := Pc2 ∩P

g
c = Pc2+∩P

g
c2− ,

γopt is bounded by γDI from above.

Theorem 3 ([5]) For any system in P
g
c2, it holds that γopt ≤ γDI. The equality holds

when

• α0 = α1 = β = 0 (for P(s) ∈ Pc2+);

• α0 = 0, k = α1/(−β ) (for P(s) ∈ P
g
c2−).

The proof is given in Appendix A.1.
For P(s) ∈ Pc2−, as k increases, the control bandwidth gets wider, but the

phase delay exceeds 180[degree]. Under this situation the control performance
measured by γopt becomes worse without bound. In other words the bandwidth
that can be achievable in practice has some limitation, which also agrees with the
knowledge implied by FFPR. For example consider the following system:

P(s) =
k(− 1

10s+1)

s(s+1)
∈ Pc2− .

When 0 < k ≤ 10, P(s) satisfies Condition (πc). It can be confirmed that γopt = γDI

when k = 10, i.e., when P(s) is just on the boundary of Condition (πc). The Bode
and Nyquist plots of P(s), Kopt(s) and P(s)Kopt(s) are shown in Figures 5 and 6,
respectively. It can also be shown that, for large k,

γopt '
1
55

k +
40
11

.

Notice that γopt tends to +∞ as k → +∞ (Figure 7).
In this subsection it is shown that any 2nd order (marginally) stable system sat-

isfying Condition (πc) has γopt less than or equal to γDI and thus that it is easy to
control. The equality condition suggests that the bound is tight. Furthermore, in
the case of a system whose phase delay exceeds 180[degree] at the gain crossover
frequency, γopt can be arbitrarily large and the system is in general difficult to con-
trol.
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4.2 3rd Order Systems

It is no straightforward to derive a result for general higher order systems. Hence
this subsection only treats two particular classes of 3rd order systems.

4.2.1 Integrator + a particular 2nd order (marginally) stable, minimum phase
system

The first class to be investigated is a subclass of marginally stable, minimum phase
systems:

Pc3f2 :=
{

P(s) =
1
s

α1s+1
s+α1

α2s+1
s+α2

∣
∣
∣
∣
α1 ≥ 0, α2 ≥ 0

}

⊂ Pc .

Even though any system in Pc3f2 is neither unstable nor non-minimum phase, the
phase delay of some systems in Pc3f2 goes beyond 180[degree]. When 0 ≤ αi < 1,
the (αis + 1)/(s + αi) part retards the phase; the maximum phase delay occurs at
ω = 1 and the phase there is − arcsin

(
(1−α2

i )/(1+α2
i )

)
. It is expected and also

confirmed numerically that the smaller αi becomes, the larger γopt is, i.e., the worse
the achievable performance level is (Figure 8).

For this class of systems, there is again a relationship between Condition (πc)
and γopt ≤ γDI, which is stated in the following proposition. The proof is provided
in Appendix A.2.

Proposition 4 For P(s) ∈ Pc3f2, the phase delay at the gain crossover frequency
ω = 1 is 180[degree] if (α1 +1)(α2 +1) = 2 (α2 = (1−α1)/(1+α1)). Also, under
this condition, γopt ≤ γDI, and the equality holds when α1 = 0, α2 = 1 or α1 = 1,
α1 = 0.
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.

The result above together with the monotonicity property illustrated in Figure 8
leads to the following fact: γopt ≤ γDI holds for all P(s) in Pc3f2 with α1 and α2
satisfying (α1 +1)(α2 +1) ≥ 2.

4.2.2 Integrator + 1st order system with time-delay

This subsection considers a system consisting of a constant gain, an integrator, a
first order delay and a time-delay:

P(s) = k
e−Ls

s(1+T s)
(k > 0, L ≥ 0, T > 0).

Time/frequency scaling (s̃ = T s) and Padé approximation are applied to this plant:

P(s̃) = k
Te−

L
T s̃

s̃(1+ s̃)
' k

T
s̃(1+ s̃)

1− 1
2

L
T s̃

1+ 1
2

L
T s̃

=: Papprox(s̃) ,

and investigation is made on the class of approximated plants

Pc,approx :=
{

Papprox(s̃)
∣
∣ k > 0, L ≥ 0, T > 0

}
.

Let h ≡ L/T . Then the frequency ω̃π at which the phase delay reaches 180[degree]
and the gain at ω̃ = ω̃π can be written as

ω̃π =
2

√

h(4+h)
, |Papprox( jω̃π)| = k

L(4+h)

2(2+h)
, (7)
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respectively. In Figure 9, ω̃π is plotted against h. Equation (7) implies that

Papprox(s) ∈ P
g
c if (0 <) k ≤ k̃π :=

2(2+h)

L(4+h)
.

When L = 0 (i.e., when there is no time delay), Papprox(s) belongs to Pc2+ for
arbitrary k and T . This can be observed from k̃π , since k̃π → +∞ as L → 0. It is a
direct consequence of Theorem 3 that γopt ≤ γDI when L = 0.

Now it is numerically demonstrated that, if k is chosen so that Papprox(s) ∈P
g
c ,

the best achievable performance γopt does not exceed γDI. Figure 10 depicts the
values of γopt against h, when k is taken to be k̃π , and it can be observed that γopt is
smaller than γDI (γopt approaches γDI as h tends to 0 or ∞). It should be pointed out
that a good performance level can be achieved even when the delay is large (i.e.,
for large L), but that it is at the cost of smaller bandwidth (i.e., smaller ω̃π ).
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5 Discrete-time Systems

This section investigates the relationship between the phase/gain property and the
achievable performance level for some classes of discrete-time systems. Although
the situation of the discrete-time case is different from that of the continuous-time
case, it will be shown that Condition (πd) and γDI have a tight connection as well.

5.1 1st Order Systems

If a 1st order continuous-time system is strictly proper and (marginally) stable,
then the phase only delays up to 90[degree] (at ω = ∞). This means that the sys-
tem is positive real and that γopt is always less than or equal to

√
2 ' 1.4142 [8].

However the situation is different in the case of discrete-time systems. For a 1st
order strictly proper and (marginally) stable discrete-time system, the phase always
reaches −180[degree] at θ = π (z = −1). Judging from the results for continuous-
time systems, one may guess that γopt for such a discrete-time system becomes
larger than

√
2. In this section it is seen that this conjecture is in fact the case. The

class of discrete-time systems which are 1st order strictly proper and (marginally)
stable is defined:

Pd1 :=
{

P(z) =
k

z−α

∣
∣
∣
∣
|α| ≤ 1, k > 0

}

⊂ Pd .

For a system belonging to this class, the following proposition holds.

Proposition 5 For P(z) ∈ Pd1, a necessary and sufficient condition for γopt ≤ γDI

to hold is

k ≤ 1+
√

2−α2 . (8)

The proof is given in Appendix B.1.
As is pointed out in Subsection 3.2, there is no upper bound for γopt for this

class of systems. Take another example. In the case of α = 0,

γopt =
√

k2 +1 ,

which suggests that γopt tends to ∞ as k → ∞.
It is already mentioned that the phase delay of any system belonging to Pd1

reaches 180[degree] at θ = π (z = −1). The gain there is |P(−1)| = k/(1 + α).
Thus the class of 1st order stable systems belonging to P

g
d can be written as

P
g
d1 := Pd1 ∩P

g
d =

{

P(z) =
k

z−α

∣
∣
∣
∣
|α| ≤ 1, 0 < k ≤ α +1

}

.

Since systems in this class satisfy the condition stated in Proposition 5, the follow-
ing theorem is immediately obtained.
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Theorem 6 For any P(z) ∈ P
g
d1, it holds that γopt ≤ γDI. The equality holds when

α = 1, k = 2.

As a special case of first order systems, discretized 1st order continuous-time
(marginally) stable systems are considered and the effects of the pole location and
the sampling time on the achievable performance level is investigated. Write the
1st order continuous-time system as

P(s) =
b

s+a
(a ≥ 0) .

Its zero-order hold discrete-time equivalent system (with sampling time T ) is

P(z) =







bT
z−1

if a = 0 ,

b
a

1− e−aT

z− e−aT if a > 0 .
(9)

It is noted that the expression for a = 0 is not a singular case in that the expression
for a > 0 converges to that for a = 0 when a tends to 0 since e−aT → 1 and b

a

(
1−

e−aT
)
→ bT as a → 0.

The following is immediate from Proposition 5.

Proposition 7 When a > 0, γopt ≤ γDI holds if

b ≤ a
1− e−aT

(

1+
√

2− e−2aT
)

' 2
T

+2a− 6
5

a2T +
3
2

a3T 2 −·· · . (10)

In the case of a = 0, the condition is simply

b ≤ 2
T

,

which implies that the approximation in (10) also holds for a = 0.

The result can be interpreted as follows. When the sampling time T is small, good
performance may be achieved even when the gain of the original continuous-time
plant, b, is large. Also, if the original system is more stable (i.e., larger a), then b
can be made larger without losing good performance.
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Figure 11: γopt of P(z) = 1
z(z−α) .

5.2 2nd Order Systems

An investigation is further made on some classes of 2nd order discrete-time sys-
tems and it is shown that, when a system belongs to P

g
d , γopt is bounded by γDI

from above.

5.2.1 One-step delay + first order system

Here the following class of systems is considered:

Pd2d :=
{

P(z) =
k

z(z−α)

∣
∣
∣
∣
|α| ≤ 1, k > 0

}

⊂ Pd .

A system in this class has the form of a first order system plus one-step delay. At
θ = θπ := arccos(α/2), the phase is −180[degree] and the gain is

∣
∣P(e jθπ )

∣
∣ = k.

Therefore,

P
g
d2d := Pd2d ∩P

g
d =

{

P(z) =
k

z(z−α)

∣
∣
∣
∣
|α| ≤ 1, 0 < k ≤ 1

}

.

For this class of systems, γDI is again an upper bound for γopt.

Theorem 8 For any P(z) ∈ P
g
d2d, it holds that γopt � γDI.

The proof is given in Appendix B.2.
Figure 11 depicts γopt against α when k is fixed to be 1. Also it can be de-

duced that γopt increases monotonically as k increases, when α is fixed. This figure
therefore shows that the upper bound γDI is not a tight bound in this case.
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5.2.2 Integrator + first order system

Another class of 2nd order systems is dealt with:

Pd2i :=
{

P(z) =
k

(z−1)(z−α)

∣
∣
∣
∣
|α| ≤ 1, k > 0

}

⊂ Pd .

That is, systems under consideration are in the form of a first order system plus an
integrator. It is shown that systems in Pd2i that satisfy Condition (πd) have γopt
smaller than or equal to γDI, but that the upper bound γDI is tight in this case, unlike
the class considered just above. For P(z) ∈ Pd2i, the phase reaches −180[degree]
at θ = θπ := arccos

(
(α +1)/2

)
. The gain there is

∣
∣P(e jθπ )

∣
∣ = k/(1−α). Hence,

P
g
d2i := Pd2i ∩P

g
d =

{

P(z) =
k

(z−1)(z−α)

∣
∣
∣
∣
|α| ≤ 1, 0 < k ≤ 1−α

}

.

The following propositions are proven for two classes of extreme cases in Pd2i,
namely, the cases of α = ±1:

Pd2ip :=
{

P(z) =
k

(z−1)2

∣
∣
∣
∣
k > 0

}

,

Pd2im :=
{

P(z) =
k

(z−1)(z+1)

∣
∣
∣
∣
k > 0

}

.

The proofs are given in Appendices B.3 and B.4, respectively.

Proposition 9 None of P(z) ∈ Pd2ip satisfies Condition (πd). Also, for any P(z)
belonging to Pd2ip, γopt is strictly greater than γDI (i.e., γopt  γDI). Furthermore,
γopt → γDI as k → 0.

Unlike the class Pd2ip, the class Pd2im contains some systems satisfying Con-
dition (πd). More specifically,

P
g
d2im := Pd2im ∩P

g
d =

{

P(z) =
k

(z−1)(z+1)

∣
∣
∣
∣
0 < k ≤ 2

}

.

Systems in P
g
d2im show a nice property, just like other systems that satisfy Condi-

tion (πd).

Proposition 10 For any P(z) ∈ P
g
d2im, it holds that γopt ≤ γDI. The equality holds

when k = 2.

Propositions 9 and 10 state that γDI is a tight upper bound for γopt when α =±1
and the system is in P

g
d2i, unlike the case of P

g
d2d. For general α ∈ (−1, 1),

this is not the case, but it can be shown numerically that the relationship between
Condition (πd) and γopt ≤ γDI holds. Systems P(z) = (1−α)/

(
(z− 1)(z−α)

)
,

|α| ≤ 1 are on the boundary of the class P
g
d2i, and the values of γopt for these

systems are plotted in Figure 12. It is observed that γopt is smaller than γDI, but that
these values are fairly close.
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Figure 12: γopt of P(z) = 1−α
(z−1)(z−α) .

6 H∞ Loop Shaping Design Based on Condition (πc)/(πd)
with Design Example

The results presented so far are for low order systems. Nevertheless the relationship
between Condition (πc)/(πd) and the value of γopt is expected to hold approximately
for higher order systems. This is because the ν-gap between two systems having
a similar phase/gain property around the gain crossover frequency is small, and
moreover, if the ν-gap between two systems is small, then the two systems have
similar performance limitations in terms of γopt [9]. This section proposes a robust
design approach based on this observation that Condition (πc)/(πd) has a strong
relationship to the achievable performance level even for higher order systems.

In the classical loop shaping design approach, a designer would shape the open-
loop transfer function so that design requirements may be achieved as well as the
closed-loop stability and some degree of robustness. In order to attain robustness,
a controller would be designed so that the Nyquist plot of the open-loop may stay
away from the point −1 + j0. When the H∞ loop shaping design procedure is
employed, a designer can rely on the procedure for accomplishing stability and
robustness and the success level is indicated by the value of γopt.

Consequently, based on the results in the preceding sections and the above
observation, a designer can concentrate on achieving a wider bandwidth by shaping
the open-loop transfer function by means of a weight; the key point is to identify
the frequency where the phase delay reaches 180[degree] and to adjust the gain
etc. so that the gain at that frequency may be (close to) 1 and the plant may satisfy
Condition (πc)/(πd).

Thus the following two-step procedure for robust control design for a given
plant P0 can be suggested.

Step 1: Choose a weight W so that the weighted plant P := WP0 may satisfy Con-
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dition (πc)/(πd).

Step 2: Apply the H∞ loop shaping design procedure to P and get the (sub)optimal
controller Kw. The controller to be implemented is K = WKw.

It should be re-emphasized that the designer can concentrate on the first step
which determines the control bandwidth, since H∞ loop shaping design then auto-
matically guarantees a good closed-loop robustness property.

The procedure is demonstrated on a torsion disk system whose transfer function
is written as

P0(s) =
6.27×105s2 +4.69×105s+8.72×108

s6 +5.56s5 +5386s4 +2.20×104s3 +5.26×106s2 +1.05×107s
.

The Bode and Nyquist plots of this system are plotted in Figures 13 and 14, re-
spectively. The system is composed of an integrator, a first-order system, and two
oscillatory modes: a reversed-phase mode (35.7[rad/sec]) and an in-phase mode
(64.0[rad/sec]). Since there is a reversed-phase oscillatory mode, the plant is in
general considered difficult to control.

The plant is shaped as follows so that the weighted plant may meet Condi-
tion (πc) and the bandwidth may be expanded, and the H∞ loop shaping design
procedure is then applied to the shaped plant. The approach taken here is to reduce
the peak of the gain caused by the in-phase oscillatory mode in order for the result-
ing controller not to excite the mode and also for Condition (πc) to be easily met.
Note that the same idea is not applicable to a reversed-phase mode; such a mode
has to be controlled so that a good performance can be accomplished.

• Use the following notch filter to suppress the in-phase oscillatory mode:

F(s) =
s2 +2ζ ωNs+ω2

N

s2 +2ηωNs+ω2
N

(ζ > 0, η > 0, ωN = 64.0) .

• Adjust the constant gain k so that the gain of P(s) := kF(s)P0(s) at the phase
crossover frequency may be 0[dB].

There are therefore three parameters in W (s) := kF(s) that can be adjusted, namely,
k, η , and ζ . The following values are used here:

• k = 1.33, ζ = 0.1, η = 0.3.

See Figures 13 and 14, respectively, for the Bode and Nyquist plots of the weighted
plant W (s)P0(s). It can be observed that W (s)P0(s) satisfies Condition (πc).

The optimal controller Kopt(s) is designed for W (s)P0(s), and the Bode and
Nyquist plots of W (s)P0(s) and W (s)P0(s)Kopt(s) are depicted in Figures 15 and
16, respectively. The achieved performance level is γopt = 2.6797, and the gain
crossover frequency is ωc = 13.84[rad/s]. Also, GM = 7.72[dB] and PM = 44.6[degree],
and the resulting closed-loop system is deemed a good design.

This clearly shows the effectiveness of Condition (πc)/(πd) to characterize a set
of good plants even for higher order systems and thus the efficacy of the proposed
approach.
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Figure 13: Bode plots of the torsion disk and the weighted plant.
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Figure 14: Nyquist plots of the torsion disk and the weighted plant.
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Figure 15: Bode plots of the weighted plant + controller.
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Figure 16: Nyquist plots of the weighted plant + controller.
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7 Conclusion

In this paper a phase/gain condition, Condition (πc)/(πd), has been introduced to
characterize easily controllable (marginally) stable plants, both in the continuous-
time and discrete-time cases. It has been shown that there is a strong connection
between Condition (πc)/(πd) and the value of the best achievable performance level
γopt in H∞ loop shaping design. Furthermore a simple design procedure for robust
control is proposed which makes use of the relationship and then relies on H∞ loop
shaping design in order to achieve stability and robustness.

More specifically,

• A phase/gain condition, Condition (πc)/(πd), are proposed for (marginally)
stable continuous-time/discrete-time systems for characterization of easily
controllable plants, which reformulates the notion of ‘finite frequency posi-
tive realness’.

• Continuous-time systems: It is proven that all the 2nd order (marginally)
stable plants satisfying Condition (πc) has γopt less than or equal to

√

4+2
√

2.
Two classes of 3rd order systems are further investigated and a close relation-
ship is also observed.

• Discrete-time systems: All the 1st order (marginally) stable systems that
satisfy Condition (πd) are shown to have γopt ≤

√

4+2
√

2. The same rela-
tionship is seen for some classes of 2nd order systems.

• A simple design procedure for robust control is proposed, where the plant is
shaped with a weight so that the weighted plant may satisfy Condition (πc)/(πd)
and then H∞ loop shaping design is applied. The crucial point is

– to shape the plant so that the condition may easily be satisfied;

– to find the frequency where the phase delay of the weighted plant
reaches 180[degree];

– to adjust the gain so that the gain at that frequency may be 0[dB].

If Condition (πc)/(πd) is met, the achievable performance level γopt will be
approximately less than

√

4+2
√

2 even for high order systems, and thus a
good performance will result.
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A Proofs for the Continuous-time Case

A.1 Proof of Theorem 3

The proof is carried out for three cases: β = 0, β > 0, and β < 0. In any case, by
solving the Riccati equation (2) and the Lyapunov equation (3), it is derived that

γopt =

√

1+
(

A+
√

A2 +B
)2

,

where expressions for A and B are different in each case. It is noted that γopt ≤ γDI

is equivalent to
∣
∣A+

√
A2 +B

∣
∣ ≤ 1+

√
2. To show the latter condition, it is proven

that

0 < A ≤ 1 , (11)

0 < B ≤ 1 . (12)

The equality holds when A = B = 1. Since γopt is always real, the condition A2 +
B ≥ 0 is automatically satisfied.

• Case 1: β = 0: In this case,

A =
Z(Z−α1)

2k
,

B =
k2 +α0α2

1 +α2
1

√

k2 +α2
0 −Z

(

α0α1 +α1

√

k2 +α2
0

)

k2 ,

Z =

√

α2
1 −2α0 +2

√

k2 +α2
0 .

Firstly, since
√

k2 +α2
0 > α0, it is straightforward to derive that

Z > α1 (≥ 0) , (13)

which then implies that A > 0. Next write A as

A =

√

k2 +α2
0 −α0

k
︸ ︷︷ ︸

=: A1

+
α1(α1 −Z)

2k(α0 +α1 +1)
︸ ︷︷ ︸

=: A2

It is easy to see that A1 ≤ 1 and that the equality holds if α0 = 0. Also, (13)
implies that A2 ≤ 0 where the equality holds when α1 = 0. As a result, (11)
is proven. Moreover,

1−B =
α1

(
√

k2 +α2
0 +α0

)
(Z −α1)

k2 ≥ 0

leads to (12), and the equality holds when α1 = 0. This concludes the proof
for the case β = 0.
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• Case 2: β > 0: It is firstly noted that, by frequency conversion, β can be set
to 1 without loss of generality. So it is assumed here that β = 1.

Before the main proof, a singular case is considered. When α0−α1 +1 = 0,
both the numerator and the denominator of the transfer function have factor
(s + 1), that is, a pole/zero cancellation occurs at s = −1. The cancellation
happens in the stable region and, after eliminating the factor, the plant can
be written as

P(s) =
k

s+α0
.

This plant is obviously a positive real one and thus γopt ≤
√

2 < γDI [8].
Therefore the theorem holds for this singular case.

Now consider the generic case α0 −α1 +1 6= 0. In this case,

A =
Z
(

Z −α1 +α0 −
√

k2 +α2
0

)

2k(α0 −α1 +1)
,

B =
k2(α1 +1)+α0α2

1 +(k2 +α2
1 )

√

k2 +α2
0 −Z

(

k2 +α0α1 +α1

√

k2 +α2
0

)

k2(α0 −α1 +1)
,

Z =

√

k2 +α2
1 −2α0 +2

√

k2 +α2
0 .

Similar to Case 1 (β = 0), it can be shown that Z > α1 (≥ 0) and that α1 −
α0 +

√

k2 +α2
0 > 0. Moreover, since

Z2 −
(

α1 +
√

k2 +α2
0 −α0

)2
= 2(α0 −α1 +1)

(√

k2 +α2
0 −α0

)

,

the sign of the numerator of A is the same as that of the denominator, which
leads to A > 0. Also, A can be written as

A =

√

k2 +α2
0 −α0

k
︸ ︷︷ ︸

=: A1

+
−

(√

k2 +α2
0 −α0 +α1

)(

Z −α1 +α0 −
√

k2 +α2
0

)

2k(α0 −α1 +1)
︸ ︷︷ ︸

=: A2

.

Notice that A1 here is identical to A1 for Case 1 and thus that A1 ≤ 1. Also,
A2 < 0 can be proven by the same method used to show that A > 0. (It is
noted here that the equality (A2 = 0) does not hold in the case of β > 0.)
These together prove A < 1 and, as a result, (11) is shown.

Next, in order to show (12), the following is proven:

1−B =
Bn

k2(α0 −α1 +1)
> 0 , (14)
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where

Bn = Z
(
α0α1 +α1

√

k2 +α2
0 + k2)

︸ ︷︷ ︸

=: Bn1

+
(

−2k2α1 − k2(
√

k2 +α2
0 −α0

)
−α2

1
(
√

k2 +α2
0 +α0

))

︸ ︷︷ ︸

=: Bn2

.

It is immediate that Bn1 > 0 and that Bn2 < 0. Also,

B2
n1 −B2

n2

= 2k2(α0 −α1 +1)

(

2k2α1 +α2
1

(√

k2 +α2
0 +α0

)

+ k2
(√

k2 +α2
0 −α0

))

.

This means that the sign of B2
n1−B2

n2 is the same as that of α0−α1 +1. This
further implies that the signs of Bn and α0 −α1 + 1 are identical, and thus
(14) or, equivalently, (12) is proven. Now the proof for β > 0 is complete.
Note that the equality does not hold in this case.

• Case 3: β < 0: The proof is similar to those for Cases 1 and 2, but is slightly
more complicated. Again, by frequency conversion, β can be set to −1
without loss of generality. So it is assumed here that β = −1. Note the
assumption k ≤ α1.

Firstly,

A =
Z
(

Z +
√

k2 +α2
0 −α0 −α1

)

2k(α0 +α1 +1)
,

B =
k2(1−α1)+α0α2

1 +(k2 +α2
1 )

√

k2 +α2
0 −Z

(

α0α1 +α1

√

k2 +α2
0 − k2

)

k2(α0 +α1 +1)
,

Z =

√

k2 −2α0 +α2
1 +2

√

k2 +α2
0 ,

in this case. It can easily be seen that

Z ≥ max(k, α1) (> 0) ,

and thus that A > 0. Next, A can also be written as

A =

√

k2 +α2
0 −α0

k
︸ ︷︷ ︸

=: A1

+

(√

k2 +α2
0 −α0 −α1

)(

Z +
√

k2 +α2
0 −α0 −α1

)

2k(α0 +α1 +1)
︸ ︷︷ ︸

=: A2

.

It is straightforward to see that A1 ≤ 1 (the equality holds when α0 = 0).

Since α0 +α1 ≥
√

k2 +α2
0 , it is found that A2 ≤ 0 (the equality holds when
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α0 = 0 and k = α1). It is thus concluded that (11) holds and that the equality
holds when α0 = 0 and k = α1.

Next, in order to show (12), the following relationship is proven:

1−B =
Bn

k2(α0 +α1 +1)
≥ 0 ,

where

Bn = Z
(

α0α1 +α1

√

k2 +α2
0 − k2

)

︸ ︷︷ ︸

=: Bn1

+ 2k2α1 − (k2 +α2
1 )

(√

k2 +α2
0 −α0

)

︸ ︷︷ ︸

=: Bn2

.

Since k2(α0 +α1 +1) > 0, it is sufficient to prove that Bn ≥ 0. When k ≤ α1,
it holds that Bn1 ≥ 0. Therefore, B2

n1 −B2
n2 ≥ 0 implies Bn ≥ 0. A straight-

forward calculation shows that

B2
n1 −B2

n2

= 2k2(α0 +α1 +1)
(

(k2 +α2
1 )

√

k2 +α2
0

︸ ︷︷ ︸

=: Bn3

−
(
k2(α0 +2α1)−α0α2

1
)

︸ ︷︷ ︸

=: Bn4

)

.

It is easy to show that Bn3 > 0 and that

B2
n3 −B2

n4 = k2(k2 −2α0α1 −α2
1
)2

,

which concludes Bn3 ≥ Bn4. This implies that B2
n1 −B2

n2 > 0, which further
leads to Bn ≥ 0. They altogether conclude (12). Also, B becomes 1 when
α0 = 0 and k = α1/(−β ).

Finally it is noted that, in the original frequency, the equality condition is
α0 = 0, k = α1/(−β ), and this concludes the proof for β < 0.

A.2 Proof of Proposition 4

Exact computation shows that

γopt :=
√

1+(X1 +X2)2 ,

where

X1 :=
α2

1 +
√

2α1 +1+
√

2
2(α1 +1)

,

X2 :=

√

α4
1 +

(
6
√

2−4
)
α3

1 +
(
4+2

√
2
)
α2

1 +
(
8−2

√
2
)
α1 +3+2

√
2

2(α1 +1)
.
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Since X1 > 0 and X2 > 0 for α1 ∈ [0,1), it is sufficient to prove that X1 ≤ 1+
√

2
2 and

X2 ≤ 1+
√

2
2 . To show the former, observe that

1+
√

2
2

−X1 =
α1(1−α1)

2(α1 +1)
≥ 0

and that the equality holds when α1 = 0,1. Furthermore,

(
1+

√
2

2

)2

−X2
2 =

α1(1−α1)
(

α2
1 +

(
6
√

2−3
)
α1 −2+6

√
2
)

4(α1 +1)2 ≥ 0 ,

where the equality holds again when α1 = 0,1. To complete the proof, it is noted
that X1 = X2 = 1+

√
2

2 when α1 = 0,1, which leads to γopt = γDI.

B Proofs for the Discrete-time Case

B.1 Proof of Proposition 5

Exact computation yields

λmax(Y Q) =
(α2 + k2)y+ k2

(α2 + k2 +1)y−α2 + k2 +1
,

where

y =
1
2

(

α2 + k2 −1+
√

(α2 + k2 −1)2 +4k2
)

(> 0) . (15)

The condition γopt ≤ γDI is equivalent to λmax(Y Q) ≤ 2+
√

2
4 , which leads to another

equivalent condition:
{
(1+

√
2)2 −α2 − k2}y− k2 +(1+

√
2)2(1−α2) ≥ 0 . (16)

If (1 +
√

2)2 −α2 − k2 ≤ 0, then (16) does not hold since y > 0. Therefore, (1 +√
2)2 −α2 − k2 ≥ 0 is a necessary condition for (16) to hold. By replacing y in

(16) with (15) and taking squares to eliminate the square root in y, a condition
equivalent to γopt ≤ γDI is shown to be (k− 1)2 + α2 ≤ 2. Under the assumptions
on k and α , this condition is the same as (8).

B.2 Proof of Theorem 8

After a lengthy calculation it can be deduced that γopt ≤ γDI is equivalent to






(
6
√

2−8
)
k3 +

(
7−4

√
2
)
αk2 +2

((√
2−1

)
α2 −

√
2
)

k

+α
(
α2 −1

)
≤ 0 (for 0 ≤ α ≤ 1, k > 0) ,

(
6
√

2−8
)
k3 −

(
7−4

√
2
)
αk2 +2

((√
2−1

)
α2 −

√
2
)

k

−α
(
α2 −1

)
≤ 0 (for −1 ≤ α ≤ 0, k > 0) .
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Figure 17: Region (α, k) for γopt ≤ γDI (below the curve).

The sets (α, k) satisfying this condition are depicted in Figure 17. It is clear from
the figure that

{
(α, k)

∣
∣ |α| ≤ 1, 0 < k ≤ 1

}
is strictly included in that region.

Alternatively it can be formally proven algebraically. Consider the left hand side
of the condition for 0 ≤ α ≤ 1, k > 0. It can be deduced that, for any α ∈ [0, 1], it
has only one strictly positive zero if seen as a polynomial in k. Therefore it has to
be only shown that this zero of the polynomial is strictly greater than 1. For α = 0,
the positive zero is k = 1+

√
2 > 1. Also, substitute k = 1 in the polynomial, then

α3 +2
(√

2−1
)
α2 +2

(
3−2

√
2
)
α +4

(√
2−2

)

is obtained. It can be confirmed that this polynomial has no zero between 0 and
1. Consequently there is no zero between k = 0 and k = 1 for any α ∈ [0, 1].
By repeating the same computation for the condition for −1 ≤ α ≤ 0, k > 0, the
theorem is proven.

B.3 Proof of Proposition 9

Firstly the phase of any system belonging to Pd2ip is already −180[degrees] at
θ = 0, and the phase further delays as θ increases. Also the gain at θ = 0 is +∞.
As a consequence none of systems in Pd2ip satisfies Condition (πd).

Also a direct calculation shows that

γopt =

√

4+2
√

2+
(
3+2

√
2
)
y ,

where y is the (real) positive root of

y4 − k2y3 −5k2y2 −8k2y−4k2 = 0 .
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Since this is a quartic polynomial, the solution can be obtained in a closed-form
expression (which is too lengthy to include here). From the expression it can be
deduced that the (real) positive root y increases monotonically as k increases and
also that y → 0 as k → 0, which concludes the proof.

B.4 Proof of Proposition 10

A straightforward calculation yields

γopt =

√

2+
k
2
(
k +

√

k2 +4
)

.

It is obvious that γopt is a monotonically increasing function with respect to k, and
that γopt = γDI when k = 2.
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