
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

Generation of Cutter Paths for Hard Material

Shinji IMAHORI, Motoki KUSHIYA,
Takeru NAKASHIMA, Kokichi SUGIHARA

METR 2007–20 April 2007

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.keisu.t.u-tokyo.ac.jp/research/techrep/index.html



The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.



Generation of Cutter Paths for Hard Material

Shinji Imahori (The University of Tokyo)

Motoki Kushiya (Sumitomo Wiring Systems, Ltd.)

Takeru Nakashima (Sumitomo Electric Hardmetal Co.)

Kokichi Sugihara (The University of Tokyo)

Abstract: A heuristic method for generating a cutter path for superhard material is presented.
The cutter path should satisfy various constraints that come from physical reality in industry; for
example, a constraint about undesired projections of the cut-off pieces, and that about vibration
and deformation generated by the cutter. A large portion of those constraints is represented
by a rooted tree called “force-support tree” in direct and concise manner, and the remaining
constraints are implemented in the manipulation of this tree. The resulting method can find a
good cutter path very quickly.

Keywords: cutter path, wire cutter, industrial constraints, hard material, force support tree,
nearly convex decomposition.

1 Introduction

In order to cut hard material such as rocks and stones, we need superhard material, i.e., diamond.
In industry, we usually use artificial diamond for the purpose; more precisely, the polycrystalline
diamond (PCD in short) is used. Even artificial diamond is very expensive; it is used only for
the most important part of a processing tool. Therefore, there arises a problem of how to cut
necessary pieces from a diamond plate.

The problem consists of two stages; packing and cutting. In the packing stage, we want to
place pieces in a given area as tightly as possible in order to minimize the unused portion of a
PCD plate. The packing problem of irregular shapes has been studied very actively in the last
decade [1, 2, 3, 4]. This problem is known to be NP-hard; hence, heuristic and metaheuristic
algorithms have been proposed for practical use. In the cutting stage, on the other hand, we
want to find an optimal cutter path in the sense that the total length of the path is the smallest;
actually the cutter cannot move very quickly and hence we cannot neglect the time for cutting.
In this paper, the cutting stage is treated; that is, we consider how to cut pieces when we are
given a set of small pieces placed in a PCD plate.

The cutter path generation is a variant of the arc routing problem. Some of the arc routing
problems (e.g., the Eulerian path problem, the Chinese postman problem) are solvable in poly-
nomial time; however, many arc routing problems are known to be NP-complete or NP-hard.
See a book edited by Dror [5] for many variants of arc routing problems and algorithms for those
problems. Our cutting problem has some complicated constraints that come from physical re-
ality in industry (which will be explained in the next section), and seems to be very difficult.

1



(b) (a) 

t

u s

Figure 1: Processing tool made by a superhard cutter piece and a moderately hard supporter:
(a) a cutter piece (shaded object) and a supporter; (b) a processing tool consisting of the two
parts braced together.

We note that Moreira et al. [6] treated a similar cutting problem to ours; they modelled the
problem as a dynamic rural postman problem.

Most of the previous methods tried to formulate the cutting problem as mathematical pro-
gramming problems [7]. That strategy might be powerful because the methods are general and
have a wide range of applications. Moreover, it is possible to use high-performance software
tools that have been developed in long history of mathematical programming. However, those
approaches have shortcoming because general purpose algorithms are not flexible in utilizing
specific characteristics in industrial problems.

In this paper, we take a geometric approach rather than a mathematical programming ap-
proach; the constraints are not converted into equalities or inequalities, but they are represented
and treated directly as diagrams and the associated adjacency graphs. An advantage of this
approach is that we can represent constraints in a straightforward manner, and consequently
the search space of the formulated problem is exactly the same as the original; not larger as hap-
pens in continuous relaxation, and not smaller as often happens in many heuristic approaches.
Furthermore, since the formulation is intuitive, it is easy to introduce heuristic criteria for char-
acterizing subareas of the search area that seems more promising.

The remainder of this paper is organized as follows: In Section 2, we list up constraints
that should be satisfied by the cutter path. Section 3 constructs a method for subdividing the
connected area of a PCD plate for later purpose, and Section 4 introduces a new concept named
“force-support tree” which can represent a large part of the constraints in a concise manner. The
entire algorithm is constructed in Section 5, and the performance of the algorithm is discussed
in Section 6. The concluding remarks will be given in Section 7.

2 Constraints for the Cutter Path

A processing tool for cutting is usually made by two different parts, a superhard cutter piece and
a moderately hard supporter called “carbide substrate,” braced together, as shown in Figure 1.
In this paper, we are interested in cutting these superhard pieces from a PCD plate.

Suppose that, as shown in Figure 2, we are given a PCD plate whose shape is a circular disk,
and a packed configuration of small pieces. We consider how to cut off these pieces from the
circular disk. We use a wire cutter (more precisely, a wire electric discharge machine) for the
purpose. Since the diamond is very hard, cutting speed of the wire cutter is slow, and hence it
is important to find the shortest path for the wire cutter. Note that the circular disk in Figure 2

2



Figure 2: Pieces placed in a circular disk.

contains only a small number of pieces and there is still a large empty region, which is not
common in industry. In industry, they usually try to pack as many pieces as possible in a PCD
disk. However, we use this simple example throughout the paper in order to avoid unnecessary
complication.

Here, we have several assumptions that come from actual situations in industry.

Assumption 1. Each piece forms a simply connected region surrounded by a sequence of edges.
The edges are either line segments or circular arcs. If an edge is a circular arc, it protrudes toward
outside; that is, the side containing the center of the arc is occupied by the piece and the other
side is empty. The number of vertices and edges of each piece is bounded by some constant.
Assumption 2. The pieces are cut by a wire cutter, and the wire has nonzero volume. Hence,
the actual cutter path is not an ideal line; instead it has a nonzero width.
Assumption 3. The circular disk is held by a machine while being cut, and hence there is
enough area in the unused region at which the disk is held.

When we decide a cutter path on a PCD disk, we should satisfy several constraints that come
from physical reality in industry. Hereafter, we list up such constraints. The first constraint
comes from the thickness of the wire. In wire cutting, the wire is oriented perpendicular to the
PCD disk, and moves along the cutter path. Since the wire has finite volume, the section of the
wire is not a point but a circle with a nonzero radius. Therefore, the shapes of the pieces are
enlarged by the radius of the wire before they are packed in the disk. However, the shape of a
piece actually cut is not the same as the desired shape of the piece in the following sense.

Suppose that we want to cut off the triangle piece shown by solid lines in Figure 3. For this
purpose, the triangle is enlarged by the radius of the cutting wire and consequently the center of
the wire moves along the broken lines in the figure. Let p1 be the point at which the wire starts
cutting, and assume that the wire moves counterclockwise. Then, the piece is cut off when the
center of the wire reaches point p2 in the figure, at which the wire touches the area occupied
by the wire at the initial location. This means that the shaded area in Figure 3 remains uncut,
and thus the actually cut off piece is different from the desired piece. We call this remaining
portion projection. In Figure 4, we can see two types of projections appearing on an edge and
at a corner.

Consider the piece shown in Figure 1(a) again. This piece is triangular and has three edges
s, t and u. As shown in Figure 1(b), this piece is braced to the supporter along the edge s. In
order to brace them tightly, the edge s should have the exactly the same shape as the counter
part shape of the supporter. Hence, the projection is not allowed on the edge s. On the other

3



p1p2

Figure 3: Projection generated by a wire cutter.

Figure 4: Projections generated on an edge (left) and at a corner (right).

hand, the projection is allowed on the edges t and u because these edges face towered the open
space. We note that there is a grinding process after the bracing process, and hence projections
on the edges t and u will be removed later. Thus the edges of each piece are classified into
projection-inhibited edges and projection-allowed edges with respect to that piece, and here we
have the following constraint.

Constraint 1 (projection constraint). The cutter path should finish cutting of each piece
at a projection-allowed edge with respect to the piece.

The second constraint is that the wire cutter should cut each piece completely so that no
additional cut is required later. In other words, when a piece is cut off from the circular disk, it
must be in its final shape. Thus we have the next constraint.

Constraint 2 (complete-shape constraint). Each piece should be cut off from the PCD
disk in its final shape.

The third constraint comes from the thickness of the material (PCD plate). We expect
that, when a piece is cut off, it drops from the material. However, a piece sometimes does
not drop, but it touches surrounding material and remains hanging. This happens occasionally
particularly when a large part of the surrounding area is occupied by remaining material, as
shown in Figure 5(a). This situation should be avoided, because the later wire motion might hit
and hurt the hanged piece. Thus, there must be large vacant space around a piece, as shown in
Figure 5(b), when we cut off the piece. To represent this constraint more formally, we introduce
some new concepts.

Let (e1, e2, . . . , ek) be a circular sequence of edges surrounding a piece counterclockwise. An
edge e is said to be open if the other side of the edge is vacant, and closed if the other side is
still occupied with material. The Constraint 2 implies that just before a piece is cut off, the
circular sequence of edges is divided into two; the sequence of open edges and that of closed
edges. Let ei and ej be the first and the last edges of the sequence of closed edges, as shown in

4



(a) 

ei ej

θ

ei ej

θ

(b) 

Figure 5: Open angle representing how large part of the surrounding is vacant.

current cutter position

Figure 6: Locally minimal diameters.

Figure 5. We extend ei and ej toward the terminal vertices incident to the open edges as shown
in the figure. The resulting two half lines form an angle (the angle θ in Figure 5), which we
call the open angle of the piece. If these two half lines do not cross, as in Figure 5(b), we define
the open angle positive, whereas if they cross each other as shown in Figure 5(a), we define the
open angle negative. Now, we can express our third constraint in the following way.

Constraint 3 (open-angle constraint). When a piece is cut off, its open angle should be
positive.

The next constraint comes from the force generated by the wire cutter. If the wire moves
very slowly, it gives almost no force to the material. However, in order to decrease cutting times,
the wire moves in its allowed maximum speed, and consequently a certain amount of force is
given to the material. Hence the material should be strong enough to support the force and to
avoid vibration.

Let p and q be distinct points moving continuously on the boundary of the remaining ma-
terial, and let d(p, q) denote the Euclidean distance between p and q. The distance d(p, q)
is called a locally minimal diameter if d(p, q) does not decrease when p and q moves in their
neighborhoods.

For example, assume that the material is as shown by solid lines in Figure 6. The locally
minimal diameters are generated by line segments represented by broken lines. There are in
general many locally minimal diameters. In particularly, when a piece is almost cut, the point
at the wire cutter generates locally minimal diameters with some other points. Our fourth
constraint can be represented in the following way.

5



Constraint 4 (force-support constraint). All the locally minimal diameters of the remaining
material, except for the diameters generated by the current point of the wire, should be greater
than the prespecified threshold d0.

As we can see in Figure 2, there are unused regions surrounding the pieces. In order to
satisfy Constraint 3, vacant space should be generated around pieces, and consequently not only
the pieces but also some part of the unused regions should be cut off. Thus, unused regions are
partitioned into smaller subregions and some of them are cut off. In this context we need the
next constraint.

Constraint 5 (open-angle constraint for unused subregions). When an unused subregion
is cut off, its open angle should be positive.

In what follows, we consider how to generate a good cutter path. The input data are a
placement of pieces inside a circular region, and the labels of edges, “projection-allowed” or
“projection-inhibited.” We have to find a cutter path that satisfies all the five constraints.

3 Partition of Unused Regions into Nearly Convex Subregions

As we have seen, the unused regions surround most of the pieces, and make the open angles of
these pieces negative. Hence, we should divide the unused regions into small subregions and cut
off some of them to make the open angles of pieces positive.

Let us fix a small positive constant ε; for example ε = 0.1. Let X be a two-dimensional
region bounded by a sequence of line segments and circular arcs. We say that X is almost convex
if all the inner angles are less than or equal to π + ε. A vertex whose inner angle is greater than
π + ε is called strongly reflex vertex.

We partition the unused regions into almost convex subregions. To this end we do the
following. Let v be a strongly reflex vertex of region R. Let s be the inner angle at v, and
define t by t = s− (π + ε). As shown in Figure 7, we divide the fan-shaped area at v into three
fan-shaped areas with angles t, π + ε − t and t in this order, and call the central fan-shaped
area the feasible fan-shaped area. Suppose that we divide the region R into two smaller regions
R1 and R2 by cutting R along a line segment that connects v and a point on the boundary of
R and that is contained in the feasible fan-shaped area. Then, the strongly reflex vertex v is
partitioned into two vertices one belongs to R1 and the other belongs to R2, neither of which is
strongly reflex. Note that this cut does not generate any new strongly reflex vertex. Hence, the
partition of the region R into R1 and R2 always decreases the number of strongly reflex vertices
at least by one.

Now, an algorithm for partitioning a region into almost convex subregions is described as
follows.

Algorithm 1 (partition into almost convex subregions)

Input: A region bounded by a sequence of line segments and circular arcs.
Output: Partition of the region into almost convex subregions.
Procedure:

1. Initialize the storage S so that the given region is the only element of S.

2. If all the regions in S are “almost convex”, then report S and stop. Otherwise, choose and
delete a region, say R, that is not almost convex from S.

3. Choose a strongly reflex vertex, say v, of R.

6



v

t

t

π+ε-t

R

Figure 7: Partition the fan-shaped area at vertex v into three fan-shaped areas.

Figure 8: Result of the partition of the unused regions in Figure 2.

4. Find the point p on the boundary of R that is in the feasible fan-shaped area and that is
nearest to v.

5. Cut R along the line segment connecting v and p into two subregions and put them into
the storage S. Go to Step 2. ¤

Let m be the number of vertices of the given region, and k be the number of strongly reflex
vertices. For each strongly reflex vertex, the cutting line can be found in Step 4 in O(m) time.
For each cutting in Step 5, the number of strongly reflex vertices decreases at least by one.
Hence, in O(km) time all the strongly reflex vertices disappear. The total computation time to
make all unused regions to convex subregions is O(n2) time.

Figure 8 shows the result of application of a slightly modified version of Algorithm 1 to the
unused regions in Figure 2. Actually, Algorithm 1 is modified so that long cuts in the lower area
are removed. This is because the lower wide unused area can be used later for other pieces, and
hence we want to keep that area as wide as possible.

By using Algorithm 1, we can partition unused regions into almost convex subregions, and
thus the circular disk is partitioned into pieces and unused subregions. All the edges introduced
by the partition are assigned the label “projection-allowed” with respect to the both side sub-
regions. In what follows we do not distinguish between the pieces and the unused subregions,
we call both of them as parts.

4 Force-Support Tree

Now we are given a partition of a circular disk into parts (i.e., pieces and unused subregions).
Our goal is to find the shortest cutter path that satisfies all the constraints listed in Section 2.

7



28

1

23

45

6

7

8

9

10

12

13

14

15

17

19

20

22

24

25

26

27

16 18

23

21

11

Figure 9: Force-support tree for the parts given in Figure 8; an arrow implies that the tail is a
parent node and the head is a child node, and thick lines represent projection-inhibited edges
with respect to the associated pieces.

Let n denote the number of pieces. Then, the number of parts is O(n) since the number of
vertices and edges of each piece is bounded by some constant denoted in Assumption 1. Here,
we assume that the number of vertices and edges of each part is also bounded by some constant.

A naive method might be to enumerate all the permutations of the parts, to compute the
length of the cutter path that cuts the parts in the given order if exists, and to select the shortest
one. However this is not practical because the number of the permutations is the exponential
order of n.

Actually the problem itself seems very hard in the sense that it is very likely impossible to
find the exactly optimal solution in polynomial time of n. Hence, it is reasonable to search for
effective heuristics to find a nearly optimal solution.

A simple heuristic method might be to repeat finding the cuttable part nearest from the
current location of the wire cutter, and to backtrack if we are stuck. This method also seems
impractical because our constraints are very complicated and there is no guarantee of success in
finding a possible cutter path within reasonable time.

Therefore, we need some heuristic mechanism in order to restrict the search area into the
paths that are feasible with respect to the constraints. For this goal we introduce the next
concept. For a given partition of the circular disk into parts, we consider a rooted tree; called
force-support tree, having the node set N and the arc set A that satisfies the following three
conditions:

Condition 1. The node set N is the set of all the parts in the circular disk;
Condition 2. The root corresponds to the largest unused subregion;

Condition 3. If part P1 is the parent of part P2, then P1 and P2 share an edge whose length is
greater than the threshold d0 (introduced in Constraint 4), and this edge is projection-allowed
with respect to the part P2.

Figure 9 shows an example of the force-support tree for the parts given in Figure 8. The
diagram in Figure 9 is deformed in order to make smaller parts more visible. The pieces are
numbered from 1 to 8, and the unused subregions are numbered from 9 to 28. The part 27
is the largest unused subregion, and hence it is chosen as the root of the force-support tree.
Arrows in the figure represent the tree arcs in such a way the tail represents the parent node
and the head represents the child node. The thick lines represent projection-inhibited edges
with respect to the associated pieces. Note that no arrow crosses thick lines toward the interior

8



27

13

201917 12 13

8 242526 4

1110 9

7 5 229 21

16 2818 22 14 156

27

13 13

201917 12 13201917 12 13

8 242526 48 242526 4

1110 91110 9

7 5 229 217 5 223 21

16 2818 22 14 15616 2818 22 14 156

Figure 10: Another representation of the force-support tree in Figure 9.

of the pieces. Some arrows cross thick lines toward outsides the pieces; this does not violate
Condition 3, because these edges are projection-inhibited with respect to the parent parts, but
not for the child parts. Figure 10 shows a graph structure of the same force-support tree as that
in Figure 9. A force-support tree can be constructed by the next algorithm.

Algorithm 2 (force-support tree)

Input: Partition of the circular disk into parts (pieces and unused subregions),
and the edge labels, “projection-allowed” and “projection-inhibited,”
with respect to each side of the edge.

Output: Force-support tree.
Procedure:

1. Find the largest unused subregion, and name it as the root.

2. Put the root node into storage S1, and put all the other parts into storage S2.

3. Choose and delete a part P from S2 that shares an edge with a part P ′ in S1 such that the
edge is projection-allowed with respect to P and the length of edge is larger than d0. If
there is no such a part in S2, terminate the procedure with the message “the force-support
tree does not exist.”

4. Augment the tree by adding P as a child node of P ′, and put P into S1.

5. If S2 is empty, report the tree and stop. Otherwise go to Step 3. ¤

If there are some feasible force-support trees, our algorithm can find one of them. Here, we
have freedom in the choice of a part P in Step 3. If we choose a part arbitrarily, Algorithm 2
runs in O(n) time. One possible criterion to find a good force-support tree is to choose as P
the piece with the longest edge. In this case, the storage S2 is implemented by a heap and
consequently requires O(log n) time for a selection of P ; hence total computation time becomes
O(n log n). Another criterion is to choose a piece P that shares an edge with a part P ′, where
P ′ has the maximum number of child nodes. Using this criterion, a tree with many leaves will
be found.

Assume that a force-support tree is given. Suppose that we cut off a part that corresponds
to one of leaf nodes in such a way that the edge corresponding to the tree arc is cut most lately,

9



and that no other tree arc is cut. This cutting satisfies Constraints 1, 2 and 4 automatically,
as can be seen in the following way. First, this cutting satisfies Constraint 4 because all the
other tree arcs are kept uncut and their lengths are greater than d0 (Condition 3). Secondly,
the tree arc is a projection-allowed edge with respect to the child part (Condition 3), and hence
the latest cut of this edge satisfies Constraint 1. Finally, only one part is cut off, and hence
Constraint 2 is satisfied.

Note that the use of a force-support tree does not restrict the search area for the cutter
path, because every cutter path subject to Constraints 1, 2, 3, 4 and 5 is associated with
a force-support tree. Indeed we can construct the corresponding force-support tree from the
cutter path in the following way. For each part P , let e be the edge that cut most lately, let P ′

be the part that is in the other side of e, and generate an arc from a parent node P ′ to a child
node P . Thus we get a rooted tree, which is nothing but a force-support tree.

5 Cutter Path Generation

According to the basic strategies considered in the previous sections, we can construct a heuristic
algorithm for generating a good cutter path that satisfies all the five constraints. A rough
description of the entire algorithm is as follows.

Algorithm 3 (cutter path)

Input: Nonoverlap placement of n pieces in a circular disk, and the distinction of edge types,
i.e., “projection-inhibited” or “projection-allowed” with respect to each piece.

Output: Cutter path that satisfies Constraints 1, 2, 3, 4 and 5.
Procedure:
1. Partition the unused regions into nearly convex subregions.

2. Generate a force-support tree. If the tree cannot be generated, stop the procedure with
the message “force-support tree cannot be generated.”

3. Initialize the cutter position as a point on the boundary of the disk, and initialize the
cutter path as empty.

4. Among the leaves of the force-support tree that satisfy the open-angle constraint, find the
one that is nearest to the current position of the wire cutter. If there are no such leaves,
stop the procedure with the message “cutter path cannot be found.”

5. Augment the cutter path by adding the shortest path from the current cutter position to
the leaf node, and by adding the path cutting the piece corresponding to the leaf node.
Update the current cutter position to the terminal point of the augmented path.

6. Remove the leaf from the force-support tree.

7. If the force-support tree consists of only the root node, report the cutter path and stop.
Otherwise go to Step 4. ¤

The time complexity of Algorithm 3 is O(n2). There are two cases where the algorithm fails
in generating the cutter path. The first case is that the force-support tree cannot be generated
at Step 2. In this case, we have to change the packing pattern of the pieces, and to try again.

The second case is that all the leaves of the force-support tree have negative open angles at
Step 4. In that case, we should generate another force-support tree. However, another option
to continue our algorithm is to choose the leaf node with the maximum open angle. This is
because in many cases a piece drops (instead of being hung) even if the open angle is negative.

10



(a) (c) (b) 

Figure 11: An example of the data used in our experiment: (a) a placement of 120 pieces;
(b) partition of the unused regions; (c) force-support tree.

Figure 12: CPU time for generating the cutter path.

6 Experimental Evaluation of the Performance

In order to see the performance of the proposed method, we generated cutter paths for many
patterns of packed pieces with various sizes. Figure 11 shows an example of the data used in
our experiment. Figure 11(a) shows 120 pieces packed in a disk. The reader might feel that
the package pattern in this figure still has unnecessarily large space among pieces. Actually this
paper concentrates on the method for generating the cutter path; the good-quality packing itself
is one of our future problems. Although the quality of package pattern shown in this figure is
rather poor, it still requires much time to generate, 103 times or more than the time required
for computing the cutter path.

Figure 11(b) shows the result of the partition of the surrounding unused area into almost
convex subregions, and (c) shows the force support tree where the arrows represent the arcs
of the tree such that they cross the associated edges perpendicularly from the parent regions
toward the child regions. Since some of the regions are too small, the start and end points of an
arrow are not necessarily placed in the corresponding parent and child regions.

Using this kind of data, we measured the CPU time for finding the cutter paths. The
computer used for this experiments was Ultra 45 workstation of Sun Microsystems with SunOS

11



Figure 13: Complexity of the geometric graph composed of the pieces and the nearly convex
unused regions.

5.10 and 1024 MB RAM. We generated 10 package patterns for each number of pieces, and
computed the cutter paths. The average CPU times are shown in Figure 12, where the horizontal
axis represents the number of pieces whereas the vertical axis represents the CPU time in seconds.
As we saw in the previous section, the theoretical time complexity of our method is O(n2). The
graph in Figure 12 shows that the actual CPU time obeys this theoretical time complexity.

Figure 13 shows the complexity of the geometric graph consisting of the pieces and the nearly
convex subregions. The horizontal axis represents the number of pieces, and the vertical axis
represents the complexity of the geometric graph in terms of the number of edges, that of the
vertices and that of the regions. These data are also the average of 10 different data for each
number of the pieces. The graph shows that all the three numbers grow almost linearly with
respect to the number of the pieces.

In order to see the quality of the generated cutter paths, we measured various lengths of
the paths. The result is summarized in Figure 14. The horizontal axis represents the number
of pieces, and the vertical axes represent the lengths of the paths and their ratios. In this
figure, there are five polygonal lines. The upper three polygonal lines represent the length of
the paths. The topmost polygonal line represents the total length of the paths along which the
cutter moves; in some portion of the path the cutter actually cuts the material (we call it a
cutting motion), while in the other portion the cutter just moves toward the start point of the
next cutting (we call it an empty motion).

The second polygonal line from the top represents the length of the cutting motion, and
hence the difference of the top and the second polygonal lines corresponds to the empty motion.
The third polygonal line from the top represents the total length of the boundaries of the pieces,
and hence the difference between the second and the third polygonal lines corresponds to the
additional cutting motion for cutting the unused regions into almost convex subregions.

These three polygonal lines are not monotone increasing. This is because we sometimes
switched to smaller pieces; otherwise all the pieces cannot be packed into the given disk. There-
fore the ratios represented by the other two polygonal lines might be more informative than the
absolute values of the lengths.

The lower two polygonal lines represents the ratios of the path lengths. The lowest one
represents the ratio of the length of the cutting motion over the total length of the boundaries
of the pieces. This ratio is roughly 1.1, independent of the number of pieces. This means that
about 10% additional cutting motion is required in order to cut the unused regions into almost

12



Figure 14: Lengths of the generated cutter paths.

convex subregions.
The second polygonal line from the bottom represents the ratio of the length of the cutter

path over the length of the cutting motion. This ratio is around 1.8 to 1.9, independent of the
number of pieces. This implies that the cutter need about 80% to 90% of additional empty
motion to move from the end point of a cut action to the start point of the next cut action.
Note that the cutter can move much faster in its empty motion than in the cutting motion.
Hence, this ratio is not so important.

According to these experimental data, we can say that the proposed method can generate
a feasible cutter path in O(n2) time for n pieces, and the resulting path contains about 10%
additional cutting motion for cutting the unused region into nearly convex subregions.

7 Concluding Remarks

We have constructed a heuristic method for generating a cutter path for diamond pieces used as
the top of cutting tools. The desired cutter path should satisfy several complicated constraints
due to physical reality in industry. To achieve our goal we introduced a new and powerful concept
named “force-support tree,” and search for a cutter path that cuts pieces for the leaf nodes of
this tree toward the root node. By this strategy, most of the constraints are automatically
satisfied, and consequently we can concentrate only on open-angle constraints.

The total process for cutting small pieces from a PCD plate consists of two stages, packing
the pieces into a disk and cutting them apart from the disk. In this paper we solved the latter
problem. Hence the next problem we have to attack is the former. Actually, packing required
large computational cost when compared with the cutting; if we use some existing algorithms
for packing phase and employ the algorithm proposed in this paper for cutting phase.

Another work for future is the stability of the computation against numerical errors. Indeed
the packed pieces are placed in highly degenerate positions because they touch each other very
often, and hence computation becomes unstable due to degeneracy [8]. A standard method to
cope with degeneracy is the symbolic perturbation [9, 10, 11, 12]. However, this technique is
useless because most algorithms for packing phase generate degenerate situation intentionally,
and hence the degeneracy should not be destroyed. Thus we need some other strategy to make
the computation robust against numerical errors.

13



Acknowledgements

This work is partly supported by the 21st Century COE Programs on Information Science
and Technology Strategic Core of the University of Tokyo, and the Grant-in-Aid for Scientific
Research (S).

References

[1] E. K. Burke, R. Hellier, G. Kendall and G. Whitwell, “A new bottom-left-fill heuristic
algorithm for the 2D irregular packing problem,” Operations Research, 54 (2006) 587–601.

[2] K. A. Dowsland, S. Vaid and W. B. Dowsland, “An algorithm for polygon placement using
a bottom-left strategy,” European Journal of Operational Research, 141 (2002) 371–381.

[3] J. Egeblad, B. K. Nielsen and A. Odgaard, “Fast neighborhood search for two- and three-
dimensional nesting problems,” European Journal of Operational Research, in press.

[4] A. M. Gomes and J. F. Oliveira, “Solving irregular strip packing problems by hybridising
simulated annealing and linear programming,” European Journal of Operational Research,
171 (2006) 811–829.

[5] M. Dror, Arc Routing: Theory, Solutions and Applications, Kluwer Academic Publishers,
2000.

[6] L. M. Moreira, J. F. Oliveira, A. M. Gomes and J. S. Ferreira, “Heuristics for a dynamic
rural postman problem,” Computers & Operations Research, in press.

[7] A. Pott and H. Glaab, “Optimization problems in a semi-automatic device for cutting
leather,” in Mathematics - Key Technology for the Future: Joint Projects Between Univer-
sities and Industry, W. Jaeger and H. J. Krebs (eds.), 609–622, 2003.

[8] K. Sugihara, “How to make geometric algorithms robust,” IEICE Transactions on Infor-
mation and Systems, E83-D (2000) 447–454.

[9] H. Edelsbrunner and E. P. Mücke, “Simulation of simplicity: a technique to cope with
degenerate cases in geometric algorithms,” ACM Transactions on Graphics, 9 (1990) 66–
104.

[10] I. Z. Emiris and J. F. Canny, “A general approach to removing degeneracies,” SIAM Journal
on Computing, 24 (1995) 650–664.

[11] R. Seidel, “The nature and meaning of perturbations in geometric computing,” Discrete
and Computational Geometry, 19 (1998) 1–17.

[12] C.-K. Yap, “Symbolic treatment of geometric degeneracies,” Journal of Symbolic Compu-
tation, 10 (1990) 349–370.

14


