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Abstract

We consider testing independence in group-wise selections with some restrictions
on combinations of choices. We present models for frequency data of selections for
which it is easy to perform conditional tests by Markov chain Monte Carlo (MCMC)
methods. When the restrictions on the combinations can be described in terms of a
Segre-Veronese configuration, an explicit form of a Gröbner basis consisting of moves
of degree two is readily available for performing a Markov chain. We illustrate our
setting with the National Center Test for university entrance examinations in Japan.
We also apply our method to testing independence hypotheses involving genotypes
at more than one locus or haplotypes of alleles on the same chromosome.
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1 Introduction

Suppose that people are asked to select items which are classified into categories or groups
and there are some restrictions on combinations of choices. For example, when a consumer
buys a car, he or she can choose various options, such as a color, a grade of air condi-
tioning, a brand of audio equipment, etc. Due to space restrictions for example, some
combinations of options may not be available. The problem we consider in this paper
is testing independence of people’s preferences in group-wise selections in the presence
of restrictions. We assume that observations are the counts of people choosing various
combinations in group-wise selections, i.e., the data are given in a form of a multiway
contingency table with some structural zeros corresponding to the restrictions.

If there are m groups of items and a consumer freely chooses just one item from each
group, then the combination of choices is simply a cell of an m-way contingency table.
Then the hypothesis of independence reduces to the complete independence model of
an m-way contingency table. The problem becomes harder if there are some additional
conditions in a group-wise selection. A consumer may be asked to choose up to two items
from a group or there may be a restriction on the total number of items. Groups may
be nested, so that there are further restrictions on the number of items from subgroups.
Some restrictions may concern several groups or subgroups. Therefore the restrictions on
combinations may be complicated.

As a concrete example we consider restrictions on choosing subjects in the National
Center Test (NCT hereafter) for university entrance examinations in Japan (Section 2).
Due to time constraints of the schedule of the test, the pattern of restrictions is rather
complicated. However we will show that restrictions of NCT can be described in terms
of a Segre-Veronese configuration.

Another important application of this paper is a generalization of the Hardy-Weinberg
model in population genetics. We are interested in testing various hypotheses of inde-
pendence involving genotypes at more than one locus and haplotypes of combination of
alleles on the same chromosome. Although this problem seems to be different from the
above introductory motivation on consumer choices, we can imagine that each offspring is
required to choose two alleles for each gene (locus) from a pool of alleles for the gene. He
or she can choose the same allele twice (homozygote) or different alleles (heterozygote). In
the Hardy-Weinberg model two choices are assumed to be independently and identically
distributed. A natural generalization of the Hardy-Weinberg model for a single locus is
to consider independence of genotypes of more than one locus. In many epidemiological
studies, the primary interest is the correlation between a certain disease and the genotype
of a single gene (or the genotypes at more than one locus, or the haplotypes involving al-
leles on the same chromosome). Further complication might arise if certain homozygotes
are fatal and can not be observed, thus becoming a structural zero.

In this paper we consider conditional tests of independence hypotheses in the above two
important problems from the viewpoint of Markov bases and Gröbner bases. Evaluation
of P -values by MCMC using Markov bases and Gröbner bases was initiated by Diaconis
and Sturmfels [8]. See also [20]. Since then, this approach attracted much attention from
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statisticians as well as algebraists. Contributions of the present authors are found, for
example, in [1], [3], [15], [16], [17] and [21]. Methods of algebraic statistics are currently
actively applied to problems in computational biology [18]. In algebraic statistics, results
in commutative algebra may find somewhat unexpected applications in statistics. At
the same time statistical problems may present new problems to commutative algebra.
A recent example is a conjunctive Bayesian network proposed in [4], where a result of
Hibi [10] is successfully used. In this paper we present application of results on Segre-
Veronese configuration to testing independence in NCT and Hardy-Weinberg models. In
fact, these statistical considerations have prompted further theoretical developments of
Gröbner bases for Segre-Veronese type configurations and we will present these theoretical
results in our subsequent paper.

Even in two-way tables, if the positions of the structural zeros are arbitrary, then
Markov bases may contain moves of high degrees ([1]). However if the restrictions on
the combinations can be described in terms of a Segre-Veronese configuration, then an
explicit form of a Gröbner basis consisting of moves of degree two with a squarefree initial
term is readily available for running a Markov chain for performing conditional tests
of various hypotheses of independence. Therefore models which can be described by a
Segre-Veronese configuration are very useful for statistical analysis.

The organization of this paper is as follows. In Section 2 we take a close look at
patterns of selections of subjects in NCT and in Section 3 we consider various hypotheses
of independence for NCT data and their conditional tests. In Section 4 we study gener-
alizations of the Hardy-Weinberg model. In Section 5 we give a brief review of MCMC
approach to conditional tests based on Markov basis and in Section 6 we define Segre-
Veronese configuration. We give an explicit expression of a reduced Gröbner basis for
the configuration and describe a simple procedure for running MCMC using the basis for
conditional tests. We end the paper by some discussions in Section 8.

2 The case of National Center Test in Japan

One important example of group-wise selection is the entrance examination for univer-
sities in Japan. In Japan, as the common first-stage screening process, most students
applying for universities take the National Center Test for university entrance examina-
tions administered by National Center for University Entrance Examinations (NCUEE).
Basic information in English on NCT in 2006 is available from the booklet published by
NCUEE ([12] in the references). After obtaining the score of NCT, students apply to
departments of individual universities and take second-stage examinations administered
by the universities. Due to time constraints of the schedule of NCT, there are rather
complicated restrictions on possible combination of subjects. Furthermore each depart-
ment of each university can impose different additional requirement on the combinations
of subjects of NCT to students applying to the department.

In NCT examinees can choose subjects in Mathematics, Social Studies and Science.
These three major subjects are divided into subcategories. For example Mathematics is
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divided into Mathematics 1 and Mathematics 2 and these are then composed of individual
subjects. In the test carried out in 2006, examinees could select two mathematics subjects,
two social studies subjects and three science subjects at most as shown below. The details
of the subjects can be found in web pages and publications of NCUEE. In parentheses we
show our abbreviations for the subjects in this paper.

• Mathematics:

◦ Mathematics 1: One subject from {MathI, MathIA}

◦ Mathematics 2: One subject from {MathII, MathIIB, Basics in Mathematics
and Science for Industry (BMSI), Bookkeeping and Accounting (BKA), Basics
in Information Processing (Info)}

• Social Studies:

◦ Geography and History: One subject from {World History A (WHA), World
History B (WHB), Japanese History A (JHA), Japanese History B (JHB),
Geography A (GeoA), Geography B (GeoB)}

◦ Civics: One subject from {Contemporary Society (ContSoc), Ethics, Politics
and Economics (P&E)}

• Science:
◦ Science 1: One subject from {Comprehensive Science B (CSciB), Biology I

(BioI), Integrated Science (IntegS), Biology IA (BioIA)}

◦ Science 2: One subject from {Comprehensive Science A (CSciA), Chemistry I
(ChemI), Chemistry IA (ChemIA)}

◦ Science 3: One subject from {Physics I (PhysI), Earth Science I (EarthI),
Physics IA (PhysIA), Earth Science IA (EarthIA)}

Frequencies of the examinees selecting each combination of subjects in 2006 are given
in the website of NCUEE. We reproduce part of them in Tables 8–14 at the end of
the paper. As seen in these tables, examinees may select or not select these subjects.
For example, one examinee may select two subjects from Mathematics, two subjects from
Social Studies and three subjects from Science, while another examinee may select only one
subject from Mathematics, one subject from Science and none from Social Studies. Hence
each examinee is categorized into one of the (2+1)×· · ·×(4+1) = 50400 combinations of
individual subjects. Here 1 is added for not choosing from the subcategory. As mentioned
above, individual departments of universities impose different additional requirements on
the choices of subjects of NCT. For example, many science or engineering departments of
national universities ask the students to take two subjects from Science and one subject
from Social Studies.

Let us observe some tendencies of the selections by the examinees to illustrate what
kind of statistical questions one might ask concerning the data in Tables 8–14.

(i) The most frequent triple of Science subjects is {BioI, ChemI, PhysI} in Table 14,
which seems to be consistent with Table 12 since these three subjects are the most
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frequently selected subjects in Science 1, Science 2 and Science 3, respectively. How-
ever in Table 13, while the pairs {BioI, ChemI} and {ChemI, PhysI} are the most
frequently selected pairs in {Science 1, Science2} and {Science 2, Science 3}, respec-
tively, the pair {BioI, PhysI} is not the first choice in {Science 1, Science 3}. This
fact indicates differences in the selection of Science subjects between the examinees
selecting two subjects and those selecting three subjects.

(ii) In Table 11 the most frequent pair is {GeoB, ContSoc}. However the most frequent
single subject from Geography and History is JHB both in Table 10 and 11. This
result indicates the interaction effect in selecting pairs of Social Studies.

These observations lead to many interesting statistical questions. However Tables 8–14
only give frequencies of choices separately for Mathematics, Social Studies and Science,
i.e., they are the marginal tables for these three major subjects. In this paper we are
interested in independence across these three major subjects, such as “are the selections
on Social Studies and Science related or not?” Unfortunately NCUEE currently do not
provide cross tabulations of frequencies of choices across the major subjects. Although
appropriate data are not available at present, in the next section we consider hypotheses
of independence across the major subjects, since the conditional null distribution can be
evaluated from the marginal tables.

3 Formulations of independence hypotheses for NCT

and their conditional tests

In this section we formulate data types and their statistical models in view of NCT.
Suppose that there are J different groups (or categories) and mj different subgroups in
group j for j = 1, . . . , J . There are mjk different items in subgroup k of group j (k =
1, . . . , mj, j = 1, . . . , J). In NCT J = 3 and m1 = |{Mathematics 1, Mathematics 2}| = 2
and similarly m2 = 2, m3 = 3. The sizes of subgroups are m11 = |{MathI, MathIA}| = 2
and similarly m12 = 5, m21 = 6, m22 = 3, m31 = 4, m32 = 3, m33 = 4.

Each individual selects cjk items from the subgroup j of group k. We assume that
the total number τ of items chosen is fixed and common for all individuals. In NCT cjk

is either 0 or 1. For example if an examinee is required to take two Science subjects in
NCT, then (c31, c32, c33) is (1, 1, 0), (1, 0, 1) or (0, 1, 1). For the analysis of genotypes in
Section 4, cjk ≡ 2 although there is no nesting of subgroups, and the same item (allele)
can be selected more than once (selection “with replacement”).

We now set up our notation for indexing a combination of choices somewhat carefully.
In NCT, if an examinee chooses WHA from “Geography and History” of Social Studies
and PhysI from Science 3 of Science, we denote the combination of these two choices as
(211)(331). In this notation, the selection of cjk items from the subgroup k of group j are
indexed as

ijk = (jkl1)(jkl2) . . . (jklcjk
), 1 ≤ l1 ≤ · · · ≤ lcjk

≤ mjk.
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Here ijk is regarded as a string. If nothing is selected from the subgroup, we define ijk to
be an empty string. Now by concatenation of strings, the set I of combinations is written
as

I = {i = i1 . . . iJ}, ij = ij1 . . . ijmj
, j = 1, . . . , J.

For example the choice of (MathIA, MathIIB, P&E, BioI, ChemI) in NCT is denoted
by i = (112)(122)(223)(312)(322). Following the terminology of contingency tables, each
i ∈ I is called as a cell. We denote the number of possible combinations by ν = |I|.

We write j ⊂ i to denote that a string j appears as a substring of i. For 1 ≤ l ≤ mjk,
we denote the number of times l appears in {l1, . . . , lcjk

} by

#(l; ijk) =

cjk
∑

t=1

1{lt=l}.

If nothing is selected from the subgroup, #(l; ijk) = 0, 1 ≤ l ≤ mjk. For NCT #(l; ijk) is
either 0 or 1.

Let p(i) denote the probability of selecting the combination i (or the probability of
cell i) and write p = {p(i)}i∈I. When there are structural zeros or some other restrictions
on the possible cells, it often becomes difficult to determine the normalizing constant
c =

∑

i∈I p(i) for a given unnormalized functional specification of p(·). Denote the result
of the selections by n individuals as x = {x(i)}i∈I, where x(i) is the frequency of the cell
i. We call x a frequency vector. Under the usual multinomial model, the joint probability
of frequencies is given by

Pr(X(i) = x(i), i ∈ I) =
n!

∏

i∈I x(i)!

∏

i∈I

p(i)x(i). (1)

Now we consider some statistical models for p. For NCT data, we consider three sim-
ple statistical models, namely, complete independence model, subgroup-wise independence
model and group-wise independence model. The complete independence model is defined
as

p(i) =
J
∏

j=1

mj
∏

k=1
ijk⊂i

cjk
∏

t=1

qjk(lt) (2)

for some parameters qjk(l), j = 1, . . . , J ; k = 1, . . . , mj; l = 1, . . . , mjk. Note that if cjk >

1 we need a multinomial coefficient in (2) as in (10) below. The complete independence
model means that each p(i), the inclination of the combination i, is explained by the set
of inclinations qjk(l) of each item. Here qjk(l) corresponds to the marginal probability of
the item (jkl). However we do not necessarily normalize them as 1 =

∑cjk

l=1 qjk(l), because
the normalization for p is not trivial anyway. The same comment applies to other models
below.

The subgroup-wise independence model is defined as

p(i) =
J
∏

j=1

mj
∏

k=1
ijk⊂i

qjk(ijk) (3)
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for some parameters qjk(·). This model means that each p(i) is explained by the set
of qjk(·), the inclinations of each combination of items for each subgroup and there is
no further structure in the specification of qjk(·). Finally, the group-wise independence
model is defined as

p(i) =
J
∏

j=1

qj(ij) (4)

for some parameters qj(·). In this paper, we treat these models as the null models and
give testing procedures to assess their fitting to observed data. Since the arguments for
three models are almost similar, we first give a description for the complete independence
model. We then consider the subgroup-wise and the group-wise independence model
briefly.

Under the complete independence model (2), the joint probability function (1) is
written as

Pr(X(i) = x(i), i ∈ I ) =
n!

∏

i∈I x(i)!

J
∏

j=1

mj
∏

k=1

mjk
∏

l=1

qjk(l)
tjk(l), (5)

where
tjk(l) =

∑

i∈I

x(i)#(l; ijk) (6)

is the frequency that the item (jkl) is selected. We see that t = {tjk(l)} is the sufficient
statistic for the parameter under the complete independence model. Note that (6) can
be written in a matrix form. Regard x = {x(i)}i∈I as a column vector with dimension
ν = |I| and regard t as a column vector with dimension d =

∑J

j=1

∑mj

k=1 mjk. Then the
relation (6) is written as

t = Ax, (7)

where A is a d×ν matrix with #(l; ijk) as the ((jkl), i) element. We call A a configuration
in connection with the theory of toric ideals in Section 6. Once the sufficient statistic t
is written in the form (7), the theory of Markov basis can be used to perform MCMC for
conditional test of the complete independence model.

As for the group-wise and category-wise independence model, the sufficient statistics
are simpler. Under the subgroup-wise independence model (3) the joint probability is
written as

Pr(X(i) = x(i), i ∈ I) =
n!

∏

i∈I x(i)!

J
∏

j=1

mj
∏

k=1

qjk(ijk)
tjk(ijk),

where tjk(ijk) =
∑

i∈I,ijk⊂i x(i) is the frequency of the combination of items ijk. Let

t = {tjk(ijk)} be the column vector of the sufficient statistic. When cjk ≡ 1 its dimension

d is given as d =
∑J

j=1

∏mj

k=1 mjk. Then as in (7) we can write t = Ax. Here A is a
d × ν matrix of 0’s and 1’s such that (ijk, i) element of A equals 1 if and only if ijk ⊂ i.
Similarly under the group-wise independence model (4) the joint probability is written as

Pr(X(i) = x(i), i ∈ I) =
n!

∏

i∈I x(i)!

J
∏

j=1

qj(ij)
tj(ij),
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where tj(ij) =
∑

i∈I,ij⊂i x(i) is the frequency of the combination of items ij. Again we can
write the relation between the cell frequencies x and the sufficient statistic t as t = Ax
with an appropriate A.

4 Hardy-Weinberg models

In this section, we consider problems of population genetics from the viewpoint of group-
wise selections. Because of practical importance of this application, we present our frame-
work adapted to this application from scratch without reference to the previous section.
In addition the availability of haplotype data or diplotype data requires a separate treat-
ment.

The allele frequency data are usually given as the genotype frequency. For multi-allele
locus with alleles A1, A2, . . . , Am, the probability of the genotype AiAj in an individual
from a random breeding population is q2

i (i = j) or 2qiqj (i 6= j), where qi is the proportion
of the allele Ai. These are known as the Hardy-Weinberg equilibrium probabilities. Since
the Hardy-Weinberg law plays an important role in the field of population genetics and
often serves as a basis for genetic inference, much attention has been paid to tests of the
hypothesis that a population being sampled is in the Hardy-Weinberg equilibrium against
the hypothesis that disturbing forces cause some deviation from the Hardy-Weinberg ratio.
See [6] for example. [21] considers conditional tests of Hardy-Weinberg model by using
Markov basis technique.

Due to the rapid progress of sequencing technology, more and more information is
available on the combination of alleles on the same chromosome. A combination of al-
leles at more than one locus on the same chromosome is called a haplotype and data
on haplotype counts are called haplotype frequency data. The haplotype analysis has
gained an increasing attention in the mapping of complex-disease genes, because of the
limited power of conventional single-locus analyses. Haplotype data may come with or
without pairing information on homologous chromosomes. It is technically more difficult
to determine pairs of haplotypes of the corresponding loci on a pair of homologous chro-
mosomes. A pair of haplotypes on homologous chromosomes is called a diplotype. In this
paper we are interested in diplotype frequency data, because haplotype frequency data
on individual chromosomes without pairing information are standard contingency table
data and can be analyzed by statistical methods for usual contingency tables. For the
diplotype frequency data, the null model we want to consider is the independence model
that the probability for each diplotype is expressed by the product of probabilities for
each genotype.

In this section, first we consider the models for genotype frequency data in Section 4.1
and then consider the models for diplotype frequency data in Section 4.2.
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4.1 Models for the genotype frequency data

We assume that there are J distinct loci. In the locus j, there are mj distinct alleles,
Aj1, . . . , Ajmj

. In this case, we can imagine that each individual selects two alleles for
each locus with replacement. Therefore the set of the combinations is written as

I = {i = (i11i12)(i21i22) . . . (iJ1iJ2) | 1 ≤ ij1 ≤ ij2 ≤ mj, j = 1, . . . , J}.

Let p(i) denote the probability of the combination i in the population and write p =
{p(i)}i∈I. Write the genotype frequency by n individuals as x = {x(i)}i∈I. We consider
conditional tests of various hypotheses of independence based on x.

For the genotype frequency data, we consider two models of hierarchical structure,
namely, genotype-wise independence model

p(i) =
J
∏

j=1

qj(ij1ij2) (8)

and the Hardy-Weinberg model

p(i) =

J
∏

j=1

q̃j(ij1ij2), (9)

where

q̃j(ij1ij2) =

{

qj(ij1)
2 if ij1 = ij2,

2qj(ij1)qj(ij2) if ij1 6= ij2.
(10)

For the genotype-wise independence model the sufficient statistic is given by the set of
frequencies t = {tj(ij1ij2)} of the genotypes, where

tj(ij1ij2) =
∑

i′∈I

(i′
j1

i′
j2

)=(ij1ij2)

x(i′).

For the Hardy-Weinberg model the sufficient statistic is given by the set of frequencies
t = {tj(ij)} of individual alleles, where

tj(ij) = 2
∑

(i′j1i′j2)=(ij ij)

x(i′) +
∑

ij=i′j1<i′j2

x(i′) +
∑

i′j1<i′j2=ij

x(i′).

Note that for both cases the sufficient statistic t can be written as t = Ax for appropriate
matrix A as shown in Section 7.2. Given these sufficient statistics conditional tests of
these models can be performed by Markov chain Monte Carlo methodology presented in
Section 5.
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4.2 Models for the diplotype frequency data

In order to illustrate the difference between genotype data and diplotype data, consider
a simple case of J = 2, m1 = m2 = 2 and suppose that genotypes of n = 4 individuals are
given as

{A11A11, A21A21}, {A11A11, A21A22}, {A11A12, A21A21}, {A11A12, A21A22}.

In this genotype data, for an individual who has homozygote genotype on at least one loci,
the diplotypes are uniquely determined. However, for the fourth individual who has the
genotype {A11A12, A21A22}, there are two possible diplotypes as {(A11, A21), (A12, A22)}
and {(A11, A22), (A12, A21)}.

Now suppose that information on diplotypes are available. The set of combinations
for the diplotype data is given as

I = {i = i1i2 = (i11 · · · iJ1)(i12 · · · iJ2) | 1 ≤ ij1, ij2 ≤ mj, j = 1, . . . , J}.

In order to determine the order of i1 = (i11 . . . ir1) and i2 = (i12 . . . ir2) uniquely, we assume
that these two are lexicographically ordered, i.e., there exists some j such that

i11 = i12, . . . , ij−1,1 = ij−1,2, ij1 < ij2

unless i1 = i2.
For the parameter p = {p(i)} where p(i) is the probability for the diplotype i, we can

consider the same models as for the genotype case. Corresponding to the null hypothesis
that diplotype data do not contain more information than the genotype data, we can
consider the genotype-wise independence model (8) and the Hardy-Weinberg model (9).
The sufficient statistics for these models are the same as in the previous subsection.

If these models are rejected, we can further test independence in diplotype data. For
example we can consider a haplotype-wise Hardy-Weinberg model.

p(i) = p(i1i2) =

{

q(i1)
2 if i1 = i2,

2q(i1)q(i2) if i1 6= i2.

The sufficient statistic for this model is given by the set of frequencies of each haplotype
and the conditional test can be performed as in the case of Hardy-Weinberg model for a
single gene by formally identifying each haplotype as an allele.

5 Markov chain Monte Carlo methods and Markov

bases

In this section we give a brief review on performing MCMC for conducting conditional
tests based on the theory of Markov basis. Markov basis was introduced by [8] and there
are now many references on the use of Markov basis (e.g. [2]).
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In the models considered in this paper the cell probability p(i) is written as some
product of functions, which correspond to various marginal probabilities. It should be
noted that unlike the case of standard multiway contingency tables, our index set I can
not be written as a direct product in general. Let J denote the index set of for the
marginals. Then our models presented so far can be written as

p(i) = h(i)
∏

j∈J

q(j)aji , (11)

where h(i) is a known function and q(j)’s are the parameters. Traditionally a model of
the form (11) is called a log-linear model in statistics, but recently it is also called a toric
model in algebraic statistics ([18, Chap.1]). Under the usual multinomial sampling, the
joint probability of frequencies is written as

Pr(X(i) = x(i), i ∈ I) =
n!
∏

i∈I h(i)x(i)

∏

i∈I x(i)!

∏

j∈J

q(j)
P

i∈I
ajix(i).

Therefore the sufficient statistic t = {t(j), j ∈ J } is written in a matrix form as

t = Ax, A = (aji)j∈J ,i∈I ,

where A is d × ν matrix of non-negative integers and d = |J |, ν = |I|.
By the standard theory of conditional tests (e.g. [11]), we can perform conditional test

of the model (11) based on the conditional distribution given the sufficient statistic t:

Pr(X(i) = x(i), i ∈ I | t) = c
∏

i∈I

h(i)x(i)

x(i)!
, c =

(

∑

x∈Ft

∏

i′∈I

h(i′)x(i′)

x(i′)!

)−1

. (12)

The conditional sample space given t, called the t-fiber, is

Ft = {x ∈ N
ν | t = Ax},

where N = {0, 1, . . . }. If we can sample from the conditional distribution over Ft, we
can evaluate P -values of any test statistic. One of the advantages of MCMC method
of sampling is that it can be run without evaluating the normalizing constant c. Also
once a connected Markov chain over the conditional sample space is constructed, then the
chain can be modified to give a connected and aperiodic Markov chain with the stationary
distribution by the Metropolis-Hastings procedure (e.g. [9]). Therefore it is essential to
construct a connected chain and the solution to this problem is given by the notion of
Markov basis ([8]).

Let Z denote the set of integers and MA ⊂ Z
ν be the set of integer vectors in the

kernel of A, i.e.,
MA = {z | Az = 0}.
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We call an elements in MA a move for A. Note that adding z ∈ MA to any frequency
vector x ∈ N

ν does not change the sufficient statistics, i.e.,

A(x + z) = Ax. (13)

x + z above might contain a negative element. However, if x + z ∈ FAx, we see that x is
moved to x + z ∈ FAz by z, which is why we call z ∈ Mp a move. Now the definition of
the Markov basis is as follows.

Definition 5.1. A Markov basis for A is a set of moves B = {z1, . . . , zL}, zj ∈ MA, j =
1, . . . , L, such that, for any y,y∗ ∈ Fto, to = Ayo, there exist S > 0, (ε1, zj1), . . . , (εS, zjS

)
with εs ∈ {−1, +1}, zjs

∈ B, s = 1, . . . , S, satisfying

y = y∗ +
S
∑

s=1

εszjs
and y∗ +

r
∑

s=1

εszjs
∈ Fto for r = 1, . . . , S.

By definition, a Markov basis enables us to construct a connected chain over the
conditional sample space Ft for any observed frequency vector xo. The fundamental
contribution of [8] is to show that a Markov basis is a generator of the well-specified
polynomial ideal (toric ideal) and it can be give as a Gröbner basis. In the next section,
we show that our problem corresponds to a well-known toric ideal and give an explicit
form of the reduced Gröbner basis.

6 Gröbner basis for Segre-Veronese configuration

In this section, we introduce toric ideals of algebras of Segre-Veronese type ([14]) with a
generalization to fit statistical applications in the present paper.

First we define toric ideals. A configuration in R
d is a finite set A = {a1, . . . , aν} ⊂

N
d. A can be regarded as a d × ν matrix and corresponds to the matrix connecting

the frequency vector to the sufficient statistic as in (7). Let K be a field and K[q] =
K[q1, . . . , qd] the polynomial ring in d variables over K. We associate a configuration
A ⊂ Z

d with the semigroup ring K[A] = K[qa1 , . . . ,qaν ] where qa = qa1
1 · · · qad

d if a =
(a1, . . . , ad). Note that d = |J | and qai corresponds to to the term

∏

j∈J q(j)aji on the
right-hand side of (11). Let K[Y ] = K[y1, . . . , yν] be the polynomial ring in ν variables
over K. Here ν = |I| and the variables y1, . . . , yν correspond to the cells of I. The toric
ideal IA of A is the kernel of the surjective homomorphism π : K[Y ] → K[A] defined
by setting π(yi) = qai for all 1 ≤ i ≤ ν. It is known that the toric ideal IA is generated
by the binomials u − v, where u and v are monomials of K[Y ], with π(u) = π(v). More
precisely,

Proposition 6.1. Work with the same notation as above. Then

IA =
〈

Y z+

− Y z−
∣

∣

∣
z ∈ Z

ν, Az = 0
〉

,

where z = z+ − z− with z+, z− ∈ N
ν .
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Toric ideals have a good property for a Gröbner basis (a set of generators satisfying a
certain condition). Let M denote the set of monomials belonging to K[Y ]. Fix a monomial
order < on K[Y ], that is, < is a total order on M such that (i) 1 < u if 1 6= u ∈ M

and (ii) for u, v, w ∈ M, if u < v then uw < vw. The initial monomial in<(f) of
0 6= f ∈ K[Y ] with respect to < is the biggest monomial appearing in f with respect to
<. The initial ideal of IA with respect to < is the ideal in<(IA) of K[Y ] generated by all
initial monomials in<(f) with 0 6= f ∈ IA. Let G be a finite subset of IA and write in<(G)
for the ideal 〈in<(g) | g ∈ G〉 of K[Y ]. A finite set G of IA is called a Gröbner basis of IA

with respect to < if in<(G) = in<(IA). A Gröbner basis G is called reduced if, for each
g ∈ G, none of the monomials in g is divided by in<(g′) for some g 6= g′ ∈ G. It is known
that a Gröbner basis of IA with respect to < always exists. Moreover if G is a Gröbner
basis of IA, then IA is generated by G. It is known for Gröbner bases of toric ideals that

Proposition 6.2. The reduced Gröbner basis of IA is a finite subset of the set {Y z+
−

Y z− | z ∈ Z
ν, Az = 0}.

The following proposition is shown by Diaconis–Sturmfels and associates Markov bases
with toric ideals.

Proposition 6.3 (Diaconis–Sturmfels, [8]). A set of moves B = {z1, . . . , zL} ⊂ MA

is Markov basis if and only if IA is generated by binomials Y z
+
1 − Y z

−

1 , . . ., Y z
+
L − Y z

−

L .

Second, we introduce the notion of algebras of Segre-Veronese type. Fix integers τ ≥ 2,
M ≥ 1 and sets of integers a = {a1, . . . , aM}, b = {b1, . . . , bM}, r = {r1, . . . , rM} and
s = {s1, . . . , sM} such that

(i) 0 ≤ bi ≤ ai for all 1 ≤ i ≤ M ;

(ii) 1 ≤ si ≤ ri ≤ d for all 1 ≤ i ≤ M .

Let Aτ,a,b,r,s ⊂ N
d denote the configuration consisting of all nonnegative integer vectors

(f1, f2, . . . , fd) ∈ N
d such that

(i)
∑d

j=1 fj = τ .

(ii) bi ≤
∑ri

j=si
fj ≤ ai for all 1 ≤ i ≤ M .

Then the affine semigroup ring K[Aτ,a,b,r,s] is generated by all monomials
∏d

j=1 qj
fj over K

and called an algebra of Segre-Veronese type. Note that the present definition generalizes
the definition in [14].

Several popular classes of semigroup rings are algebras of Segre-Veronese type. If
M = 2, τ = 2, a1 = a2 = b1 = b2 = 1, s1 = 1, s2 = r1 + 1 and r2 = d, then the
affine semigroup ring K[Aτ,a,b,r,s] is the Segre product of polynomial rings K[q1, . . . , qr1]
and K[qr1+1, . . . , qd]. On the other hand, if M = d, si = ri = i, ai = τ and bi = 0 for
all 1 ≤ i ≤ M , then the affine semigroup ring K[Aτ,a,b,r,s] is the classical τth Veronese
subring of the polynomial ring K[q1, . . . , qd]. Moreover, if M = d, si = ri = i, ai = 1 and
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bi = 0 for all 1 ≤ i ≤ M , then the affine semigroup ring K[Aτ,a,b,r,s] is the τth squarefree
Veronese subring of the polynomial ring K[q1, . . . , qd]. In addition, algebras of Veronese
type (i.e., M = d, si = ri = i and bi = 0 for all 1 ≤ i ≤ M) are studied in [7] and [20].

Let K[Y ] denote the polynomial ring with the set of variables

{

yj1j2···jτ

∣

∣

∣

∣

∣

1 ≤ j1 ≤ j2 ≤ · · · ≤ jτ ≤ d,

τ
∏

k=1

qjk
∈ {qa1, . . . ,qaν}

}

.

where K[Aτ,a,b,r,s] = K[qa1 , . . . ,qaν ]. The toric ideal IAτ,a,b,r,s
is the kernel of the surjective

homomorphism π : K[Y ] −→ K[Aτ,a,b,r,s] defined by π(yj1j2···jτ
) =

∏τ

k=1 qjk
.

A monomial yα1α2···ατ
yβ1β2···βτ

· · · yγ1γ2···γτ
is called sorted if

α1 ≤ β1 ≤ · · · ≤ γ1 ≤ α2 ≤ β2 ≤ · · · ≤ γ2 ≤ · · · ≤ ατ ≤ βτ ≤ · · · ≤ γτ .

Let sort(·) denote the operator which takes any string over the alphabet {1, 2, . . . , d} and
sorts it into weakly increasing order. Then the quadratic Gröbner basis of toric ideal
IAτ,a,b,r,s

is given as follows.

Theorem 6.1. Work with the same notation as above. Then there exists a monomial
order on K[Y ] such that the set of binomials

{yα1α2···ατ
yβ1β2···βτ

− yγ1γ3···γ2τ−1yγ2γ4···γ2τ
| sort(α1β1α2β2 · · ·ατβτ ) = γ1γ2 · · ·γ2τ} (14)

is the reduced Gröbner basis of the toric ideal IAτ,a,b,r,s
. The initial ideal is generated by

squarefree quadratic (nonsorted) monomials.
In particular, the set of all integer vectors corresponding to the above binomials is a

Markov basis. Furthermore the set is minimal as a Markov basis.

We omit a proof of this theorem. This theorem can be proved along the lines of [20,
Theorem 14.2] and the proof in [16]. We will give a generalization of this theorem in our
subsequent paper.

Finally we describe how to run a Markov chain using the Gröbner basis given in
Theorem 6.1. First, given a configuration A in (7), we check that (with appropriate
reordering of rows) that A is indeed a configuration of Segre-Veronese type. It is easy
to check that our models in Sections 3 and 4 are of Segre-Veronese type, because the
restrictions on choices are imposed separately for each group or each subgroup. Recall
that each column of A consists of non-negative integers whose sum τ is common.

We now associate to each column ai of A a set of indices indicating the rows with
positive elements aji > 0 and a particular index j is repeated aji times. For example if
d = 4, τ = 3 and ai = (1, 0, 2, 0)′, then row 1 appears once and row 3 appears twice in
ai. Therefore we associate the index (1, 3, 3) to ai. We can consider the set of indices as
τ × ν matrix Ã. Note that Ã and A carry the same information.

Given Ã, we can choose a random element of the reduced Gröbner basis of Theorem
6.1 as follows. Choose two columns (i.e. choose two cells from I) of Ã and sort 2 × τ

elements of these two columns. From the sorted elements, pick alternate elements and
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form two new sets of indices. For example if τ = 3 and two chosen columns of Ã are
(1, 3, 3) and (1, 2, 4), then sorting these 6 elements we obtain (1, 1, 2, 3, 3, 4). Picking
alternate elements produces (1, 2, 3) and (1, 3, 4). These new sets of indices correspond
to (a possibly overlapping) two columns of Ã, hence to two cells of I. Now the difference
of the two original columns and the two sorted columns of Ã correspond to a random
binomial in (14), hence to a move in (13). It should be noted that when the sorted
columns coincide with the original columns, then we discard these columns and choose
other two columns. The rest of the procedure for running a Markov chain is described in
[8]. See also [2].

7 Numerical examples

In this section we present numerical experiments on NCT data and a diplotype frequency
data.

7.1 The analysis of NCT data

First we consider the analysis of NCT data concerning selections in Social Studies and
Science. We omit Mathematics for simplicity. Because NCUEE currently do not provide
cross tabulations of frequencies of choices across the major subjects, we can not evaluate
the P -value of the actual data. However for the models in Section 3, the sufficient statistics
(the marginal frequencies) can be obtained from Tables 10–14. Therefore in this section
we evaluate the conditional null distribution of the Pearson’s χ2 statistic by MCMC and
compare it to the asymptotic χ2 distribution.

In Section 3, we consider three models, complete independence model, subgroup-wise
independence model and group-wise independence model, for the setting of group-wise
selection problems. Note that, however, the subgroup-wise independence model coincides
with the group-wise independence model for NCT data, since cjk ≤ 1 for all j and k.
Therefore we consider fitting of the complete independence model and the group-wise
independence model for NCT data.

As we have seen in Section 2, there are many kinds of choices for each examinee.
However, it may be natural to treat some similar subjects as one subject. For example,
WHA and WHB may well be treated as WH, ChemI and Chem IA may well be treated
as Chem, and so on. As a result, we consider the following aggregation of subjects.

• In Social Studies: WH = {WHA,WHB}, JH = {JHA,JHB}, Geo = {GeoA,GeoB}

• In Science: CSiB = {CSiB, ISci}, Bio = {BioI, BioIA}, Chem = {ChemI, ChemIA},
Phys = {PhysI, PhysIA}, Earth = {EarthI, EarthIA}

In our analysis, we take a look at examinees selecting two subjects for Social Studies and
two subjects for Science. Therefore

J = 2, m1 = 2, m2 = 3, m11 = m12 = 3, m21 = m22 = m23 = 2,
c11 = c12 = 1, (c21, c22, c23) = (1, 1, 0) or (1, 0, 1) or (0, 1, 1).
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The number of possible combination is then ν = |I| = 3 · 3 × 3 · 22 = 108. Accordingly
our sample size n is n = 195094, which is the number of examinees selecting two subjects
on Science from Table 12. Our data set is shown in Table 1.

Table 1: The data set of number of the examinees in NCT in 2006 (n = 195094)

ContS Ethics P&E
WH 32352 8839 8338
JH 51573 8684 14499
Geo 59588 4046 7175

CSiA Chem Phys Earth
CSiB 1648 1572 169 4012
Bio 21392 55583 1416 1845
Phys 3286 102856 — —
Earth 522 793 — —

From Table 1, we can calculate the maximum likelihood estimates of the numbers of
the examinees selecting each combination of subjects. The sufficient statistics under the
complete independence model are the numbers of the examinees selecting each subject,
whereas the sufficient statistics under the group-wise independence model are the numbers
of the examinees selecting each combination of subjects in the same group. The maximum
likelihood estimates calculated from the sufficient statistics are shown in Table 2. For the
complete independence model the maximum likelihood estimates can be calculated as in
Section 5.2 of [5].

The configuration A for the complete independence model is written as

A =





E3 ⊗ 1′
3 ⊗ 1′

12

1′
3 ⊗ E3 ⊗ 1′

12

1′
9 ⊗ B





and the configuration A for the group-wise independence model is written as

A =

[

E9 ⊗ 1′
12

1′
9 ⊗ E ′

12

]

,

where En is the n × n identity matrix, 1n = (1, . . . , 1)′ is the n × 1 column vector of 1’s,
⊗ denotes the Kronecker product and

B =

















111100000000
000011110000
100010001100
010001000011
001000101010
000100010101

















.

Note that the configuration B is the vertex-edge incidence matrix of the (2, 2, 2) com-
plete multipartite graph. Quadratic Gröbner bases of toric ideals arising from complete
multipartite graphs are studied in [14].

Given these configurations we can easily run a Markov chain as discussed at the end
of Section 6. After 5, 000, 000 burn-in steps, we construct 10, 000 Monte Carlo samples.
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Table 2: MLE of the number of the examinees selecting each combination of subjects
under the complete independence model (upper) and the group-wise independence model
(lower).

WH JH Geo
ContS Ethics P&E ContS Ethics P&E ContS Ethics P&E

CSiB,CSiA 180.96 27.20 37.84 273.12 41.05 57.12 258.70 38.88 54.10
273.28 74.66 70.43 435.65 73.36 122.48 503.35 34.18 60.61

CSiB,Chem 1083.82 162.89 226.65 1635.85 245.86 342.10 1549.48 232.88 324.03
260.68 71.22 67.18 415.56 69.97 116.83 480.14 32.60 57.81

CSiB,Phys 110.04 16.54 23.01 166.09 24.96 34.73 157.32 23.64 32.90
28.02 7.66 7.22 44.68 7.52 12.56 51.62 3.50 6.22

CSiB,Earth 7.33 1.10 1.53 11.06 1.66 2.31 10.47 1.57 2.19
665.30 181.77 171.47 1060.57 178.58 298.16 1225.39 83.20 147.55

Bio,CSiA 1961.78 294.84 410.26 2960.99 445.02 619.21 2804.66 421.52 586.52
3547.39 969.19 914.26 5654.96 952.20 1589.81 6533.81 443.64 786.74

Bio,Chem 11749.94 1765.93 2457.19 17734.63 2665.39 3708.74 16798.27 2524.66 3512.92
9217.20 2518.26 2375.53 14693.34 2474.10 4130.82 16976.84 1152.72 2044.18

Bio,Phys 1193.01 179.30 249.49 1800.65 270.63 376.56 1705.58 256.34 356.68
234.81 64.15 60.52 374.32 63.03 105.23 432.49 29.37 52.08

Bio,Earth 79.43 11.94 16.61 119.88 18.02 25.07 113.55 17.07 23.75
305.95 83.59 78.85 487.72 82.12 137.12 563.52 38.26 67.85

CSiA,Phys 2691.94 404.58 562.95 4063.04 610.65 849.68 3848.52 578.41 804.82
544.91 148.88 140.44 868.65 146.27 244.21 1003.65 68.15 120.85

CSiA,Earth 179.22 26.94 37.48 270.50 40.65 56.57 256.22 38.51 53.58
86.56 23.65 22.31 137.99 23.24 38.79 159.44 10.83 19.20

Bio,Phys 16123.14 2423.20 3371.73 24335.27 3657.42 5089.09 23050.40 3464.31 4820.39
17056.38 4660.03 4395.90 27189.93 4578.31 7644.05 31415.54 2133.10 3782.75

Bio,Earth 1073.41 161.33 224.48 1620.14 243.50 338.81 1534.60 230.64 320.92
131.50 35.93 33.89 209.63 35.30 58.93 242.21 16.45 29.16

Figure 1 show histograms of the Monte Carlo sampling generated from the exact con-
ditional distribution of the Pearson goodness-of-fit χ2 statistics for the NCT data under
the complete independence model and the group-wise independence model, respectively,
along with the corresponding asymptotic distributions χ2

98 and χ2
88.

7.2 The analysis of PTGDR (prostanoid DP receptor) diplotype
frequencies data

Next we give a numerical example of genome data. Table 3 shows diplotype frequencies
on the three loci, T-549C (locus 1), C-441T (locus 2) and T-197C (locus 3) in the human
genome 14q22.1, which is given in [13]. Though the data is used for the genetic association
studies in [13], we simply consider fitting our models. As an example, we only consider
the diplotype data of patients in the population of blacks (n = 79).

First we consider the analysis of genotype frequency data. Though Table 3 is diplo-
type frequency data, here we ignore the information on the haplotypes and simply treat
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Figure 1: Asymptotic and Monte Carlo sampling distributions of NCT data

Table 3: PTGDR diplotype frequencies among patients and controls in each population.
(The order of the SNPs in the haplotype is T-549C, C-441T and T-197C.)

Diplotype Whites Blacks
Controls Patients Controls Patients

CCT/CCT 16 78 7 10
CCT/TTT 27 106 12 27
CCT/TCT 48 93 4 12
CCT/CCC 17 45 3 9
TTT/TTT 9 43 2 7
TTT/TCT 34 60 8 6
TTT/CCC 4 28 1 6
TCT/TCT 11 20 7 0
TCT/CCC 6 35 1 2
CCC/CCC 1 8 0 0

it as a genotype frequency data. Since J = 3 and m1 = m2 = m3 = 2 holds, there are
33 = 27 distinct set of genotypes, i.e., |I| = 27, while only 8 distinct haplotypes appear
in Table 3. Table 4 is the set of genotype frequencies of patients in the population of
blacks. Under the genotype-wise independence model (8), the sufficient statistic is the
genotype frequency data for each locus. On the other hand, under the Hardy-Weinberg
model (9), the sufficient statistic is the allele frequency data for each locus, and the geno-
type frequencies for each locus are estimated by the Hardy-Weinberg law. Accordingly,
the maximum likelihood estimates for the combination of the genotype frequencies are
calculated as Table 5. The configuration A for the Hardy-Weinberg model is written as
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Table 4: The genotype frequencies for patients among blacks of PTGDR data
locus 3 CC CT TT
locus 2 CC CT TT CC CT TT CC CT TT

locus 1 CC 0 0 0 9 0 0 10 0 0
CT 0 0 0 2 6 0 12 27 0
TT 0 0 0 0 0 0 0 6 7

Table 5: MLE for PTGDR genotype frequencies of patients among blacks under the
Hardy-Weinberg model (upper) and genotype-wise independence model (lower)

locus 3 CC CT TT
locus 2 CC CT TT CC CT TT CC CT TT

locus 1 CC 0.1169 0.1180 0.0298 1.939 1.958 0.4941 8.042 8.118 2.049
0 0 0 1.708 2.018 0.3623 6.229 7.361 1.321

CT 0.2008 0.2027 0.0512 3.331 3.362 0.8486 13.81 13.94 3.519
0 0 0 4.225 4.993 0.8962 15.41 18.21 3.268

TT 0.0862 0.0870 0.0220 1.430 1.444 0.3644 5.931 5.988 1.511
0 0 0 1.169 1.381 0.2479 4.262 5.037 0.9040

A =

















222222222 111111111 000000000
000000000 111111111 222222222
222111000 222111000 222111000
000111222 000111222 000111222
210210210 210210210 210210210
012012012 012012012 012012012

















and the configuration A for the genotype-wise independence model is written as

A =





E3 ⊗ 1′
3 ⊗ 1′

3

1′
3 ⊗ E3 ⊗ 1′

3

1′
3 ⊗ 1′

3 ⊗ E ′
3



 .

Since these two configurations are of the Segre-Veronese type, again we can easily perform
MCMC sampling as discussed in Section 6. After 100, 000 burn-in steps, we construct
10, 000 Monte Carlo samples. Figure 2 show histograms of the Monte Carlo sampling
generated from the exact conditional distribution of the Pearson goodness-of-fit χ2 statis-
tics for the PTGDR genotype frequency data under the Hardy-Weinberg model and the
genotype-wise independence model, respectively, along with the corresponding asymptotic
distributions χ2

24 and χ2
21.

From the Monte Carlo samples, we can also estimate the P -values for each null model.
The values of the Pearson goodness-of-fit χ2 for the PTGDR genotype frequency data of
Table 4 are χ2 = 88.26 under the Hardy-Weinberg models, whereas χ2 = 103.37 under
the genotype-wise independence model. These values are highly significant (p < 0.01 for
both models), which implies the susceptibility of the particular haplotypes.
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Figure 2: Asymptotic and Monte Carlo sampling distributions of PTGDR genotype fre-
quency data

Next we consider the analysis of the diplotype frequency data. In this case of J = 3
and m1 = m2 = m3 = 2, there are 23 = 8 distinct haplotypes, and there are

|I| = 8 +

(

8

2

)

= 36

distinct diplotypes, while there are only 4 haplotypes and 10 diplotypes appear in Table
3. The numbers of each haplotype are calculated as the second column of Table 6. Under
the Hardy-Weinberg model, the haplotype frequencies are estimated proportionally to the
allele frequencies, which is shown as the third column of Table 6. The maximum likelihood

Table 6: Observed frequency and MLE under the Hardy-Weinberg model for PTGDR
haplotype frequencies of patients among blacks.

Haplotype observed MLE under HW Haplotype observed MLE under HW
CCC 17 6.078 TCC 0 5.220
CCT 68 50.410 TCT 20 43.293
CTC 0 3.068 TTC 0 2.635
CTT 0 25.445 TTT 53 21.853

estimates of the diplotype frequencies under the Hardy-Weinberg model are calculated
from the maximum likelihood estimates for each haplotype. These values coincide with
appropriate fractions of the values for the corresponding combination of the genotypes
in Table 5. For example, the MLE for the diplotype CCT/CCT coincides with the MLE
for the combination of the genotypes (CC,CC,TT) in Table 5, whereas the MLE’s for the
diplotype CCC/TTT, CCT/TTC, CTC/TCT, CTT/TCC coincide with the 1

4
fraction of

the MLE for the combination of the genotypes (CT,CT,CT), and so on. Since we know
that the Hardy-Weinberg model is highly statistically rejected, it is natural to consider the
haplotype-wise Hardy-Weinberg model given in Section 4.2. Table 7 shows the maximum
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likelihood estimates under the haplotype-wise Hardy-Weinberg model. It should be noted
that the MLE for the other diplotypes are all zeros. We perform the Markov chain Monte

Table 7: MLE for PTGDR diplotype frequencies of patients among blacks under the
haplotype-wise Hardy-Weinberg model.

Diplotype observed MLE Diplotype observed MLE
CCT/CCT 10 14.6329 TTT/TCT 6 6.7089
CCT/TTT 27 22.8101 TTT/CCC 6 5.7025
CCT/TCT 12 8.6076 TCT/TCT 0 1.2658
CCT/CCC 9 7.3165 TCT/CCC 2 2.1519
TTT/TTT 7 8.8892 CCC/CCC 0 0.9146

Carlo sampling for the haplotype-wise Hardy-Weinberg model. The configuration A for
this model is written as

A =

























200000001111111000000000000000000000
020000001000000111111000000000000000
002000000100000100000111110000000000
000200000010000010000100001111000000
000020000001000001000010001000111000
000002000000100000100001000100100110
000000200000010000010000100010010101
000000020000001000001000010001001011

























,

which is obviously of the Segre-Veronese type. We give a histogram of the Monte Carlo
sampling generated from the exact conditional distribution of the Pearson goodness-of-fit
χ2 statistics for the PTGDR diplotype frequency data under the haplotype-wise Hardy-
Weinberg model, along with the corresponding asymptotic distributions χ2

9 in Figure 3.
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Figure 3: Asymptotic and Monte Carlo sampling distributions of PTGDR diplotype fre-
quency data under the haplotype-wise Hardy-Weinberg model (df = 9).

The P -value for this model is estimated as 0.8927 with the estimated standard devi-
ation 0.0029 (We also discard the first 100, 000 samples, and use a batching method to
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obtain an estimate of variance, see [9] and [19]).

8 Some discussions

In this paper we considered independence models in group-wise selections, which can be
described in terms of a Segre-Veronese configuration. We have shown that our framework
can be applied to two important examples in educational statistics and biostatistics. We
expect that the methodology of the present paper finds applications in many other fields.

In the NCT example, we assumed that the examinees choose the same number τ of
subjects. We also assumed for simplicity that the examinees choose either nothing or one
subject from a subgroup. This restricts our analysis to some subset of the examinees of
NCT. Actually the examinees make decisions on how many subjects to take and modeling
this decision making is clearly of statistical interest. Further complication arises from the
fact that the examinees can choose which scores to submit to universities after taking
NCT. For example after obtaining scores of three subjects on Science, an examinee can
choose the best two scores for submitting to a university.

It seems that the simplicity of the reduced Gröbner basis for the Segre-Veronese con-
figuration comes from the fact that the index set J of the rows of A can be ordered
and the restriction on the counts can be expressed in terms of one-dimensional intervals.
From statistical viewpoint, ordering of the elements of the sufficient statistic in group-
wise selection seems to be somewhat artificial. It is of interest to look for other statistical
models, where ordering of the elements of the sufficient statistic is more natural and the
Segre-Veronese configuration can be applied.
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A Tables of numbers of examinees in NCT in 2006

Table 8: Number of examinees who takes subjects on Mathematics
Mathematics 1 Mathematics 2 # total # actual
MathI MathIA MathII MathIIB BMSI BKA Info examinees examinees

1 subject 6,454 33,381 113 363 4 480 93 40,888 40,888

2 subjects 7,553 322,758 12,076 317,099 83 591 462 660,622 330,311

Total 14,007 356,139 12,189 317,462 87 1,071 555 701,510 371,199

Table 9: Number of examinees who selects two subjects on Mathematics
Mathematics 2

Mathematics 1 MathII MathIIB BMSI BKA Info Total

MathI 5,065 2,159 19 217 93 7,553
MathIA 7,011 314,940 64 374 369 322,758

Total 12,076 317,099 83 591 462 330,311

Table 10: Number of examinees who takes subjects on Social Studies
Geography and History Civics # total # actual

WHA WHB JHA JHB GeoA GeoB ContS Ethics P&E examinees examinees

1 subject 496 29,108 1,456 54,577 1,347 27,152 40,677 16,607 25,321 196,741 196,741

2 subjects 1,028 61,132 3,386 90,427 5,039 83,828 180,108 27,064 37,668 489,680 244,840

Total 1,524 90,240 4,842 145,004 6,386 110,980 220,785 43,671 62,989 686,421 441,581

Table 11: Number of examinees who selects two subjects on Social Studies
Geography and History

Civics WHA WHB JHA JHB GeoA GeoB Total

ContSoc 687 39,913 2,277 62,448 3,817 70,966 180,108
Ethics 130 10,966 409 10.482 405 4,672 27,064
P&E 211 10253 700 17,497 817 8,190 37,668

Total 1,028 61,132 3,386 90,427 5,039 83,838 244,840
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Table 12: Number of examinees who takes subjects on Science
Science 1 Science 2 Science 3 # total #actual

CSciB BioI ISci BioIA CSciA ChemI ChemIA PhysI EarthI PhysIA EarthIA examinees examinees

1 subject 2,558 80,385 511 1,314 1,569 19,616 717 14,397 10,788 289 236 132,380 132,380

2 subjects 6,878 79,041 523 1,195 26,848 158,027 2,777 106,822 6,913 905 259 390,188 195,094

3 subjects 7,942 18,519 728 490 6,838 20,404 437 18,451 8,423 361 444 83,037 27,679

Total 17,378 177,945 1,762 2,999 35,255 198,047 3,931 139,670 26,124 1,555 939 605,605 355,153

Table 13: Number of examinees who selects two subjects on Science
Science 2 Science 3

CSciA ChemI ChemIA PhysI EarthI PhysIA EarthIA

Science 1 CSciB 1,501 1,334 23 120 3,855 1 44
BioI 21,264 54,412 244 1,366 1,698 5 52
ISci 147 165 50 43 92 5 21

BioIA 128 212 715 16 33 29 62

Science 3 Physics 3,243 101,100 934 — — — —
EarthI 485 730 20 — — — —
PhysIA 43 54 768 — — — —
EarthIA 37 20 23 — — — —

Table 14: Number of examinees who selects three subjects on Science
Science 3 PhysI EarthI Physics IA Earth science IA

Science 2 CSciA ChemI ChemIA CSciA ChemI ChemIA CSciA ChemI ChemIA CSciA ChemI ChemIA

Science 1 CSciB 1,155 5,152 17 1,201 317 7 16 5 16 48 5 3
BioI 553 10,901 31 3,386 3,342 16 30 35 19 130 56 20
ISci 80 380 23 62 34 4 32 13 27 48 14 11

BioIA 6 114 39 22 22 10 12 6 150 57 8 44
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