
MATHEMATICAL ENGINEERING

TECHNICAL REPORTS

Stability Analysis of Cable–Bar Structures

by Inverse-Power Method

for Eigenvalue Analysis with Penalization

Makoto Ohsaki and Yoshihiro Kanno

METR 2007–26 April 2007

DEPARTMENT OF MATHEMATICAL INFORMATICS

GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO

BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.i.u-tokyo.ac.jp/mi/mi-e.htm



The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.



Stability Analysis of Cable–Bar Structures

by Inverse-Power Method

for Eigenvalue Analysis with Penalization

Makoto Ohsaki a, Yoshihiro Kanno b

bDepartment of Architecture and Architectural Engineering,
Kyoto University, Kyoto 615-8540, Japan
E-mail: ohsaki@archi.kyoto-u.ac.jp

aDepartment of Mathematical Informatics,
University of Tokyo, Tokyo 113-8656, Japan

E-mail: kanno@mist.i.u-tokyo.ac.jp

Abstract

A numerical method is presented for stability analysis of cable–bar structures. An op-
timization problem is formulated to find the minimum value of the incremental total
potential energy that depends on the direction of the incremental displacements. The
penalty method with slack variables is used for representing the discontinuity in mem-
ber stiffness. The tangent stiffness matrix is shifted to be positive definite so that the
minimum of its quadratic form is found by the inverse-power method. It is shown in the
numerical examples that the minimum value of the incremental potential energy and the
associated displacement increments can be found with good accuracy in about 10 steps
of iteration.
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1 Introduction

Stability analysis of elastic structures is a rather established field of research, and there have been
numerous number of papers on numerical techniques for detecting instability of finite dimensional
structures (e.g., [1, 2]).

Based on Liapunov’s direct method [3, 4], stability of an elastic conservative system is defined
by isolated local minimum of the total potential energy. For cases in which the potential energy
is twice differentiable with respect to the displacements, the stability of a given equilibrium state
in finite deformation is defined by the positive definiteness of the tangent stiffness matrix (stability
matrix) [5].

A cable–bar structure consists of the cable members that can transmit tensile forces only and the
bars that can transmit both compressive and tensile forces. A bar that transmits compressive force
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only is called a strut. A structure that consists of cables and struts is called a tensegrity structure.
Since the cable member has no flexural stiffness, tensegrity structures are usually stabilized by
introducing prestresses to maintain self-equilibrium state. In this paper, we assume that a bar can
transmit both tensile and compressive forces.

Inability of the cable to transmit compressive force leads to discontinuity of the tangent stiffness
matrix [6]. Such a discontinuity is also observed in contact problems and elastoplastic material
models. For an elastoplastic structure, the uniqueness of equilibrium state is defined by the positive
definiteness of the inloading tangent stiffness matrix [7], while its stability is defined based on the
directional stability [8]. For frictional contact problem with a non-associated friction law, for which
a potential energy cannot be defined, a method has been developed for stability analysis also based
on directional stability [9].

Choong and Hangai [10] presented an iterative approach for bifurcation analysis of beams and
arches with unilateral supports. Tschöpe et al. [11] developed an iterative approach to direct com-
putation of the critical point involving frictionless contact conditions. Villaggio [12] formulated
the buckling analysis problem of a beam with unilateral supports by minimization of the Rayleigh
quotient, but did not present a numerical algorithm.

In this paper, we present a numerical method for stability analysis of cable–bar structures. The
total potential energy is a smooth function of the nodal displacements, but is not twice differentiable;
i.e., the tangent stiffness matrix depends on the direction of the displacement increment. However,
the total potential energy satisfies the assumption for the stability theorem by Liapunov, and the
stability of the given equilibrium state is defined by the isolated local minimum of the total potential
energy.

This paper is organized as follows. Stability conditions are briefly summarized in Section2. In
Section 3, an optimization problem is formulated to find the minimum of the quadratic form of the
tangent stiffness matrix that depends on the direction of the incremental displacements. A slack
variable is used for representing the discontinuity in member stiffness. In Section 4, the tangent
stiffness matrix is shifted to be positive definite and the constraints are incorporated by penalty
approach so that its minimum incremental potential energy is found by the inverse-power method.
This way, the difficulty due to nonconvexity of the potential energy at an unstable equilibrium
state is successfully overcome. The conditions satisfied by the optimal solution and the convergence
property are investigated in Section 5. It is shown in the numerical examples in Section 6 that the
minimum incremental potential energy and the associated displacement increments can be found
with good accuracy in about 10 steps of iteration.

2 Stability conditions

Consider a cable–bar structure consisting of cable members that transmit tensile forces only, and
the bars that can transmit both compressive and tensile forces. Based on the standard framework
of the updated Lagrangian formulation, the current equilibrium state in finite deformation range is
considered to be the reference state. The conventional assumption of large deformation-small strain
is used and the linear relation is assumed for incremental strain and displacement.

Let u ∈ R
n denote an admissible incremental displacement vector satisfying the kinematic bound-
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ary conditions, where n is the number of degrees of freedom of displacements. We assume, for
simplicity, that all the boundary conditions are homogeneous, and the components corresponding
to fixed degree-of-freedom have been removed before constructing u; i.e., any vector u ∈ R

n is kine-
matically admissible. The vector of incremental member extensions is denoted by d ∈ R

s, where
s is the number of members including cables and bars. Note that the slack cables are excluded
a priori, because they have no effect on the structural properties under infinitesimal incremental
displacements. The relation between u and d is defined by using the constant matrix H ∈ R

s×n as

d = Hu (1)

In the following, all vectors are column vectors and the component is indicated by a subscript.
Let ki denote the extensional stiffness of the ith member. If the ith member is a bar, it has a

linear force-extension relation with the stiffness ki. If the ith member is a cable, ki is the stiffness
in tensile state. The set of indices of the cables that has zero extension at the equilibrium state is
denoted by I. The ith component of d is denoted by di. The relation between di and the incremental
force qi is written as

qi =

{
0 for i ∈ I and di < 0

diki for other cases
(2)

where the axial force and extension are defined to be positive in tensile state.
The stability of a static equilibrium state is defined with the use of dynamical system based

on Liapunov’s direct method [3, 4]. Let u̇ denote the velocity vector and define the state variable
vector x by x = (u�, u̇�)�. The total energy R(x), which is the sum of the potential energy and
the kinetic energy, can be chosen as the Liapunov function satisfying

C1 R(x) and its first derivative are continuous functions of x.

C2 R(0) = 0.

C3 R(0) is an isolated minimum of R(x).

For a moderately dumped system with positive definite damping matrix, the origin x = 0 is an
isolated minimum of the kinetic energy, and it is stable if the incremental total potential energy
Π(u) measured from the current equilibrium state attains an isolated minimum at u = 0.

The only one difference between a conventional conservative system and the cable–bar structure
is that the constitutive relation is given as (2). Although the stiffness of member i depends on the
sign of di, the strain energy qidi/2 and its derivative with respect to di are continuous functions of
di. Therefore, the condition C1 is satisfied, and the current equilibrium state u = 0 is stable if Π(u)
attains an isolated local minimum at u = 0.

Since the first derivative of Π(u) with respect to u vanishes from the equilibrium conditions, the
stability is defined by the quadratic term of Π(u). Suppose that the direction of the incremental
displacements u is given. The tangent stiffness matrix consistent to (2) is denoted by K̂(u) ∈ R

n×n.
The twice of the quadratic term of Π(u) is written as

V̂ (u) = u�K̂(u)u (3)

The equilibrium state is stable if V̂ (u) = u�K̂(u)u > 0 for any admissible u. On the contrary, the
structure is unstable if there exists an admissible u satisfying u�K̂(u)u < 0.
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3 Minimization of incremental potential energy

Stability is investigated by minimizing V̂ (u) with respect to u. Consider the following optimization
problem:

P1 : minimize V̂ (u) = u�K̂(u)u (4a)

subject to N(u) = 1 (4b)

where the constraint (4b) is given for preventing convergence to the trivial solution u = 0 for the
case where V̂ (u) is positive for any u (u �= 0). In the following, we use the quadratic constraint as
N(u) = u�u = 1.

If the optimal value of P1 is positive, then the equilibrium state is stable. However, the constraint
u�u = 1 is not convex, and the objective function is nonconvex if the equilibrium state is unstable.
Therefore, the global optimality of the solution of P1 obtained by a nonlinear programming cannot
be guaranteed.

The incremental extension di of the ith member is decomposed using the slack variables d+
i and

d−i as

di = d+
i − d−i , d+ ≥ 0, d−i ≥ 0, d+

i d−i = 0, (i = 1, . . . , s) (5)

The tangent stiffness matrix consisting of the cables in tensile state and the bars is denoted by
K+ ∈ R

n×n. The quadratic term of the incremental potential energy is then written as

V (u,d+) =
∑
i∈I

(d+
i )2ki + u�K+u (6)

The equilibrium state is stable if V (u,d+) is positive for any admissible set of u and d+ satisfying
(1) and (5).

Since ki > 0, the complementarity condition d+
i d−i = 0 with d+ ≥ 0 in (5) is automatically

satisfied by minimizing V (u,d+). Therefore, (5) is written as

d+
i − di ≥ 0, (i = 1, . . . , s) (7)

Let m denote the number of members in I which are numbered for simplicity as 1, . . . ,m. A
matrix A ∈ R

(n+m)×(n+m) and a vector t ∈ R
n+m are defined as

A =

(
K+ O

O diag(k1, . . . , km)

)
(8)

t = (u1, . . . , un, d+
1 , . . . , d+

m)� (9)

where diag(k1, . . . , km) is a diagonal matrix. Let h�
i denote the ith row of H and define gi as

gi = (h�
i ,−ei�)� (10)

where the elements in ei ∈ R
m are 0 except 1 in the ith element. Hence, (1) is written as

g�
i t = 0, (i = 1, . . . , s) (11)
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P1 is then rewritten as

P2 : minimize V (t) = t�At (12a)

subject to g�
i t ≤ 0, (i = 1, . . . ,m) (12b)

u(t)�u(t) = 1 (12c)

The structure is stable if V (t) is positive at the optimal solution of P2. Note again that the
constraint (12c) is given to prevent obtaining the degenerate solution t = 0 for the case where the
minimum of V (t) for t �= 0 is positive. Since u �= 0 for d �= 0, we use the quadratic constraint
t�t = 1 instead of (12c). Then the sign of the optimal value of P2 coincides with that of P3 defined
as

P3 : minimize V (t) = t�At (13a)

subject to g�
i t ≤ 0, (i = 1, . . . ,m) (13b)

t�t = 1 (13c)

The ith eigenvalue of the symmetric matrix A is denoted by λA
i (λA

1 ≤ λA
2 ≤ · · · ≤ λA

n+m). If A

is positive definite, then the equilibrium state is stable, and it is easily confirmed that the optimal
value of P3 is positive. Therefore, in the following, we consider the case where A is not positive
definite; i.e., λA

1 ≤ 0.
Let I ∈ R

(n+m)×(n+m) denote an identity matrix, and for a sufficiently large λ∗ (> |λA
1 |), define

A∗ by

A∗ = A + λ∗I(n+m) (14)

Then the eigenvalues of A∗ ∈ R
(n+m)×(n+m) satisfy λA∗

i = λA
i + λ∗ > 0 (i = 1, . . . ,m + n), and A

and A∗ share the same set of eigenvectors.
Accordingly, the structure is stable if the optimal value of the following problem P4 is greater

than λ∗.

P4 : minimize V ∗(t) = t�A∗t (15a)

subject to g�
i t ≤ 0, (i = 1, . . . ,m) (15b)

t�t = 1 (15c)

4 Optimization algorithm by using penalty approach

In order to solve P4 by the inverse-power method, the objective function is converted to Ṽ (t) as
follows by incorporating the constraint (15b) as the penalty term:

Ṽ (t) = t�A∗t +
m∑

i=1

µi(g�
i t)2 (16)

where µi > 0 is specified as follows using a positive penalty parameter µ:

µi = µ for g�
i t > 0

µi = 0 for g�
i t ≤ 0

(17)
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Define a matrix C ∈ R
(n+m)×(n+m) as

C = A∗ + P (18)

where

P =
m∑

i=1

µigig�
i (19)

Note that C is positive definite by the definition of A∗ and P. Hence, the stability of the structure
is detected by solving the following problem:

P5 : minimize Ṽ (t) = t�Ct (20a)

subject to t�t = 1 (20b)

If C is constant, P5 is a problem of finding the minimum eigenvalue of a positive definite matrix.
However, C depends on t through P, but we can iteratively update C and find the minimum
objective value of P5 by the inverse-power method as

Step 1 Specify the constants λ∗ and µ.

Step 2 Assign initial value of t.

Step 3 Normalize t by t�t = 1, and compute Ṽ (t).

Step 4 Set µi = µ for g�
i t > 0; otherwise set µi = 0.

Step 5 Compute C.

Step 6 Solve the linear equations Cy = t for y and let t ← y.

Step 7 Go to Step 3 if not converged.

5 Optimality conditions and convergence properties

The property of the optimal solution can be investigated by the optimality conditions of P5. Consider
first, for comparison purpose, an elastic structure without discontinuity in tangent stiffness matrix
denoted by K. Then the stability of the equilibrium state is detected by minimizing u�Ku under
constraint u�u = 1. The Lagrangian for this problem is written as

L0(u, η) = u�Ku + η(1− u�u) (21)

where η is the Lagrange multiplier. The stationary condition of L0 with respect to u gives the
eigenvalue problem

Ku = ηu (22)

for which η is regarded as the eigenvalue.
The Lagrangian for P5 is given as

L(t, η) = t�Ct + η(1− t�t) (23)
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Although µi in C is defined iteratively depending on the constraint activity in Step 4 of the inverse-
power method, it is assumed here that the algorithm has been converged and the active constraints
have been determined to fix the penalty parameters.

From the stationary conditions of L with (14), (18) and (19), we obtain

K+u +
m∑

i=1

µihi(h�
i u− d+

i ) + λ∗u = ηu (24)

kid
+
i − µi(h�

i u− d+
i ) + λ∗d+

i = ηd+
i , (i = 1, . . . ,m) (25)

Note that the constraint h�
i u−d+

i ≤ 0 is not satisfied in exact equality in this penalty approach, and
µi(h�

i u− d+
i ) in the second terms in (24) and (25) corresponds to the axial force due to elongation

of a member in I. We can also see from (22) and (24) that the eigenvalue is increased by λ∗ due to
the existence of the term λ∗u in the left-hand-side of (24).

Next we investigate the convergence properties with respect to the penalty parameter µ. The
following equation is obtained from the optimality conditions of the original problem P4:

A∗t0 − η0t0 +
1
2

∑
j∈J

µ0
jgj = 0 (26)

where t0 is the optimal value of t, η0 and µ0
j are the Lagrange multipliers, and J ⊆ I is the set of

indices of the active constraints.
On the other hand, the solution t of P5 obtained by the inverse-power method satisfies[

A∗ + µ
∑
j∈J

gjg�
j

]
t = λt (27)

where µ is the specified penalty parameter, and λ is regarded as the eigenvalue of the matrix
[A∗ + µ

∑
j∈J gjg�

j ].
From (26) and (27), we obtain

A∗(t0 − t) + (λt− η0t0) +
∑
j∈J

(µ0
j/2− µg�

j t)gj = 0 (28)

Therefore, if g�
j t converges to µ0

i /(2µ) as µ is increased, then t converges to t0 with λ→ η0; i.e., if
the error g�

j t of an active constraint is inversely proportional to µ, then the error can be reduced
to 0 as µ→∞.

6 Numerical examples

The convergence property of the algorithm proposed in Section 3 is first investigated by a small test
problem which can be solved analytically. Stability of a small cable–bar structure is next investigated
to confirm convergence to the optimal solution. Finally, a moderately large cable–bar structure is
solved to ensure the practical applicability.
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Table 1: Solutions of Ex1 for various values of penalty parameter.

µ x1 x2 x3 V ∆ δ

1 1.8970× 10−7 0.52573 0.85065 1.2764 1.3131× 10−1 3.2492× 10−1

10 7.6515× 10−7 0.68923 0.72455 1.4750 2.4979× 10−2 3.5322× 10−2

100 8.8476× 10−7 0.70534 0.70887 1.4975 2.5000× 10−3 3.5355× 10−3

1000 8.9769× 10−7 0.70693 0.70728 1.4998 2.5017× 10−4 3.5355× 10−3

6.1 Small test problem

Consider first a small numerical example as

Ex1 : minimize V (x) = 3x2
1 + 2x2

2 + x2
3 (29a)

subject to x2 ≥ x3 (29b)

x�x = 1 (29c)

The optimal solution is easily found as xopt = (0, 1/
√

2, 1/
√

2)� with V (xopt) = 1.5, where the
inequality constraint (29b) is active at the optimal solution.

The errors ∆ and δ of the solution and the active constraint are defined as

∆ =

√√√√ 3∑
i=1

(xi − xopt
i )2 (30a)

δ = |x2 − x3| (30b)

The results of 20 iterations from the initial solution x = (0.6,0.8,1.0)� with different values of
penalty parameter are shown in Table 1. As is seen, the results strongly depend on the value of
the penalty parameter. The histories of ∆ and δ for µ = 1, 10 and 100 are plotted in Figs. 1(a)
and (b). For µ = 100, the solution converges rapidly to a good approximate optimal solution with
∆ = 2.5000 × 10−3. The algorithm converged to the same value ∆ = 2.5000 × 10−3 in 20 steps for
µ = 100 from ten different randomly generated initial solutions. Therefore, the algorithm is robust
in the sense that the solution does not depend on the initial value.

The values of ∆ and δ at the 20th step are 2.5000 × 10−4 and 3.5355 × 10−4, respectively, for
µ = 1000. Therefore, the errors are inversely proportional to the penalty parameter and converge
to µ∆ = 0.25000, µδ = 0.35355. The solution is not sensitive to µ if it is moderately large; i.e., no
trial-and-error process is needed for tuning the penalty parameter.

6.2 Cable–bar Model 1

Consider next a cable–bar Model 1 as shown in Fig. 2, where the horizontal bars are supported by
the vertical cables. The bars and the cables in tensile state are modeled by the truss element. Let
H = W = 1, and Young’s modulus is 1, for simplicity. The cross-sectional areas are 100.0 for the
bars and 1.0 for the cables. A horizontal load p = 10.0 is applied at support 4. All the cables have
zero extension at the equilibrium state and are included in I in (2).
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Figure 1: Histories of the errors ∆ and δ for Ex1; solid line: µ = 1, dashed line: µ = 10, dotted line:
µ = 100.

The minimum eigenvalue of A is λA
1 = −30.0, and the maximum eigenvalue of the penalty matrix

P is 3.0. It is known in the inverse-power method that a large ratio of the second eigenvalue to the
lowest leads to rapid convergence to the lowest eigenvalue. Therefore, we define λ∗ to be equal to
1.01|λA

1 |.
Let ui (i = 2, 3) denote the vertical incremental displacement of node i. The results of 20

iterations from a randomly generated initial solution with different values of penalty parameter are
shown in Table 2. As is seen, the convergent solutions strongly depend on the value of the penalty
parameter.

The optimal values uopt
i of ui are (uopt

2 , uopt
3 ) = (−0.5,0.5) and the remaining displacement

components are 0; i.e., the incremental displacements are antisymmetric with respect to the y-axis.
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Figure 2: Cable–bar Model 1.

Table 2: Solutions of Model 1 for various values of penalty parameter.

µ u2 u3 V ∆ δ

100 −0.53693 0.53693 13.426 5.2226× 10−2 1.0863× 10−1

1000 −0.50386 0.50386 15.560 5.4585× 10−3 1.0959× 10−2

10000 −0.50039 0.50039 15.776 5.4781× 10−4 1.0960× 10−3

The errors ∆ and δ of the solution and the active constraints are defined as

∆ =

√√√√ n∑
i=1

(ui − uopt
i )2 (31a)

δ =
√∑

j∈J
(hiu− d+

i )2 (31b)

The histories of ∆ and δ for µ = 100, 500 and 1000 are plotted in Fig. 3. For µ = 10000, the solution
converges rapidly to a good approximate optimal solution with ∆ = 5.4781 × 10−4. The errors are
inversely proportional to the penalty parameter also for this case, and converge to µ∆ = 5.4781,
µδ = 10.960. Therefore, the solution is not sensitive to µ if it is moderately large; i.e., no trial-and-
error process is needed for tuning the penalty parameter.

The optimal value of V is 15.776, which is less than λ∗. Therefore, the equilibrium state is
unstable. If we assume the symmetric displacement increment (u2, u3) = (0.5,0.5), where the re-
maining components are 0, the value of V is 28.800, which confirms that the displacement increment
corresponding to the maximum decrease of the potential energy is antisymmetric with respect to
the y-axis.
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Figure 3: History of the error for Model 1; solid line: µ = 100, dashed line: µ = 500, dotted line:
µ = 1000.

6.3 Cable–bar Model 2

Consider next a cable–bar model as shown in Fig. 4, where the horizontal bars are supported by
the vertical cables. Let H = W = 1, and Young’s modulus is 1, for simplicity. The cross-sectional
areas are 100.0 for the bars and 1.0 for the cables. A horizontal load p = 1.0 is applied at each roller
support. All the cables have zero extension at the equilibrium state and are included in I in (2).

The minimum eigenvalue of A is λA
1 = −3.8478. Since the ratio of the second eigenvalue to the

lowest of A should be large enough, we define λ∗ to be equal to 1.01|λA
1 | also for this example.

The solution for µ = 106 is regarded as the optimal solution. The errors in (31) are also used in
this example. The histories of the errors ∆ and δ are plotted for µ = 10, 50 and 100 in Figs. 5(a) and
(b). The solution converges rapidly to a good approximate optimal solution with ∆ = 5.6088×10−3

if we choose µ = 100. The optimal incremental displacement for µ = 106 is plotted in Fig. 6.
Although µ∆ did not converge due to numerical oscillation, the error δ of constraints is inversely

proportional to µ, and µδ converged to 1.3696. The optimal value of V is 0.56180, which is less than
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Figure 4: Cable–bar Model 2.

λ∗. Therefore, the equilibrium state is unstable.

7 Conclusions

The stability analysis problem of elastic conservative systems with discontinuity in extensional stiff-
ness of a cable has been formulated as a minimization problem of convex quadratic function under
linear inequality constraints and a single quadratic equality constraint. The problem is solved by
an iterative algorithm based on the inverse-power method for eigenvalue analysis. The conclusions
obtained from this study are summarized as follows:

1. Instability of an equilibrium state of a cable–bar structure can be detected by solving a mini-
mization problem of the incremental total potential energy over the compatibility conditions.

2. The non-convex incremental total potential energy for an unstable state can be converted to
a convex quadratic function by using a shifting operator. The discontinuity in extensional
stiffness of a cable can be incorporated as a convex penalty term using the slack variables.

3. The minimization problem of the convex quadratic function under linear inequality constraints
and a quadratic equality constraint can be solved by the inverse-power method. This way, the
difficulty due to nonconvexity of the potential energy at an unstable equilibrium state has
been successfully overcome.

4. The error of the active constraint is inversely proportional to the penalty parameter. Therefore,
the error can be reduced to an arbitrary small value by increasing the penalty parameter.
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Figure 5: History of the error for Model 2; solid line: µ = 10, dashed line: µ = 50, dotted line:
µ = 100.

5. The numerical examples show that the iterative process converges in about ten steps irre-
spective of the size of the structure. Another advantage of the method is that the solution
converges to the exact value as the penalty parameter is increased. Therefore, a moderate
value of the penalty parameter can be assigned with a few trial steps.
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