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Abstract

Let G = (V, E) be an undirected graph, and let B ⊆ V × V be
a collection of vertex pairs. We give an incremental polynomial time
algorithm to generate all minimal edge sets X ⊆ E such that every
pair (s, t) ∈ B of vertices is disconnected in (V, E r X), generalizing
well-known efficient algorithms for generating all minimal s-t cuts, for a
given pair s, t of vertices. We also present an incremental polynomial
time algorithm for generating all minimal subsets X ⊆ E such that
no (s, t) ∈ B is a bridge in (V, X ∪ B). Both above problems are
special cases of a more general problem that we call generating cut
conjunctions for matroids: given a matroid M on ground set S = E∪B,
generate all minimal subsets X ⊆ E such that no element b ∈ B is
spanned by E r X . Unlike the above special cases, corresponding
to the cycle and cocycle matroids of the graph (V, E ∪ B), the more
general problem of generating cut conjunctions for vectorial matroids
turns out to be NP-hard.
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1 Introduction

Given a graph G = (V,E) and two vertices s, t ∈ V , the two-terminal
cut generation problem calls for listing all minimal subsets of edges whose
removal disconnects s and t. This problem is known to be solvable in
O(Nm + m + n) time and O(n + m) space [TSOA80], where n and m are
the numbers of vertices and edges in the input graph, and N is the total
number of cuts. In this paper, we study the following natural extension of
this problem:

Generating Cut Conjunctions in Graphs

Input: An undirected graph G = (V,E), and a collection B =
{(s1, t1), . . . , (sk, tk)} of k pairs of vertices si, ti ∈ V

Output: The list of all minimal edge sets X ⊆ E such that for all
i = 1, . . . , k, vertices si and ti are disconnected in G′ = (V,E rX)

Note that for i 6= j, si and sj, or si and tj, or ti and tj may coincide. We
call a minimal edge set X ⊆ E for which all pairs of vertices (si, ti) ∈ B are
disconnected in the subgraph G′ = (V,E r X), a minimal B-cut, or simply
a cut conjunction if B is clear from the context.

Let F denote the family of all minimal B-cuts. Observe that each edge
set X ∈ F must indeed be the union of some minimal si-ti cuts for i =
1, . . . , k, justifying the name ”cut conjunction”. Note also that not all unions
of minimal si-ti cuts for i = 1, . . . , k are minimal B-cuts. Figure 1 depicts
a graph with the number of minimal sk-tk cuts not bounded polynomially
in |V | and |F|, showing that the generation of cut conjunctions cannot be
efficiently reduced to two-terminal cut generation.

Without any loss of generality we can assume for each i = 1, ..., k that
(i) the pair of vertices si and ti are in the same connected component of
G, since otherwise the pair (si, ti) could simply be deleted from B without
changing the problem, and (ii) vertices si and ti are not adjacent in G, since
otherwise the edge siti would belong to all cut conjunctions.

When B is the collection of all pairs of distinct vertices drawn from
some vertex set V ′ ⊆ V , minimal B-cuts are known as multiway cuts, see
e.g., [Hu63, Vaz01]. The optimization problem of finding a minimum weight
multiway cut is known to be NP-hard for |V ′| ≥ 3 [DJP+92]. On the other
hand, the generation of multiway cuts is a special case of the generation of
cut conjunctions in graphs, which turns out to be tractable, in the sense it
is defined at the end of this section.

It will be convenient to consider generating cut conjunctions of graphs
in the context of the more general problem of generating cut conjunctions
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Figure 1: Minimal B-cuts contain exactly one edge of each pair siui and
uiti, for i = 1, . . . , k − 1, thus we have |F| = 2k−1. On the other hand, the

number of minimal sk-tk cuts is more than 2(k−1)2 , so it is not polynomially
bounded by |V | = k2 + k and |F|.
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of (vectorial) matroids. In what follows we assume familiarity with matroid
theory (see e.g., [Wel76, Oxl92] for a thorough introduction).

Generating Cut Conjunctions in Matroids

Input: A matroid M on ground set S and a set B ⊆ S

Output: The list of all maximal sets X ⊆ A
def
= S r B that span no

element of B

When M is the cycle matroid of a graph G = (V,E ∪B), where E ∩B = ∅,
we can let S = E ∪B, and then by definition, an edge set Y ⊆ A = E spans
b = (si, ti) ∈ B if and only if Y contains an si-ti path. This means that a
maximal edge set Y ⊆ E spans no edge b ∈ B in the matroid M if and only
if X = E r Y is a minimal B-cut in the graph (V,E). Thus, the problem
of generating cut conjunctions in graphs is a special case of the problem of
generating cut conjunctions in matroids.

Let r : S → Z+ be the rank function of a matroid M on S. The
dual matroid M ∗ on S is defined by the rank function r∗(X) = r(S r

X) + |X| − r(S), see e.g., [Wel76]. In particular, Y ⊆ A = S r B spans
b ∈ B in M ∗ if and only if r∗(Y ∪ {b}) = r∗(Y ), which is equivalent to
r(X∪B) = r(X∪(Br{b}))+1. This means that generating cut conjunctions
for the dual matroid M ∗ is equivalent to the following generation problem:

Generating Cut Conjunctions in the Dual Matroid

Input: A matroid M on ground set S and a subset B ⊆ S

Output: The list of all minimal sets X ⊆ A
def
= S r B such that each

element b ∈ B is spanned by X ∪ (B r {b})

In particular, when M is the cycle matroid of a graph G = (V,E) (and
consequently, M ∗ is the cocycle matroid of G), the dual formulation can be
restated as follows:

Generating Bridge-Avoiding Extensions in Graphs

Input: An undirected graph G = (V,E) and a collection of edges B ⊆ E

Output: The list of all minimal edge sets X ⊆ E r B such that no edge
b ∈ B is a bridge in G′ = (V,B ∪X)
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Note that in all of the mentioned generation problems, the output, F ,
may consist of exponentially many sets, in terms of the input size. Therefore
we measure the running time of generation algorithms in both the input and
output size. A generation algorithm may output an element of F any time
during its execution. A generation algorithm runs in incremental polynomial
time if it outputs K elements of F (or all, if |F| < K ) in time polynomial
in the input size and K. A generation algorithm runs with polynomial delay
if it outputs K elements of F (or all) in time polynomial in the input size
and linear in K (see e.g., [LLK80, JP88]).

2 Main results

We show that all of the above generation problems for graphs can be solved
in incremental polynomial time. Let G = (V,E) be a graph, n = |V |, and
m = |E|.

Theorem 1 For every K we can generate K (or all, if there are no more
than K) cut conjunctions of G in O(K2log(K)nm2 +K2k(n+m)m2) time.

Theorem 2 For every K we can generate K (or all, if there are no more
than K) bridge-avoiding extensions of G in O(K 2log(K)m2 +K2m2(n+m)
time.

In contrast, we recall that generating cut conjunctions in matroids is an
NP-hard problem:

Proposition 1 [BEG+05] Let M be a vectorial matroid defined by a col-
lection S of n-dimensional vectors over a field of characteristic zero or of
large enough characteristic (at least 8n), let B be a subset of S and let F be

the family of all maximal subsets of A
def
= S r B that span no vector b ∈ B.

Given a subfamily X ⊆ F , it is NP-hard to decide if X 6= F .

In addition to indicating that generating cut conjunctions in vectorial
matroids is NP-hard, the above result also implies that the dual formulation
is NP-hard, too. This follows from the fact that the dual M ∗ of an explicitly
given vectorial matroid M over a field F is again a vectorial matroid over
the same field. Moreover, an explicit representation for M ∗ can be obtained
efficiently from the given representation of M (see [Sch03]).

As stated in Proposition 1, our NP-hardness result for generating cut
conjunctions in vectorial matroids is valid over sufficiently large fields. In
particular, the complexity of generating cut conjunctions in binary matroids
remains open. We can only show that this problem is tractable for |B| = 2:

Proposition 2 Let M be a binary matroid on ground set S and let B =

{b1, b2} ⊆ S. All maximal subsets X of A
def
= S rB that span neither b1 nor

b2 can be generated in incremental polynomial time.
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Finally, it is worth mentioning that generating cut conjunctions in binary
matroids includes, as a special case, the well-known hypergraph dualization
problem [EG95, FK96]:

Generating Minimal Transversals of a Hypergraph

Input: A hypergraph H.

Output: The list of all minimal transversals (equivalently, maximal in-
dependent sets) of H.

To see this inclusion, let us consider the following construction. Let B be
the n×|H| binary matrix whose columns are the characteristic vectors of the
hyperedges of H, and let I be the n×n identity matrix. Letting M = [I,B]
and denoting by A the columns set of I, we can readily identify each max-
imal subset of A that spans no columns of B with a maximal independent
vertex set of H. This shows that generating cut conjunctions for a binary
matroid is at least as hard as generating all maximal independent sets for a
hypergraph. The theoretically fastest currently available algorithm for hy-
pergraph dualization generates all maximal independent sets in incremental
quasi-polynomial time [FK96].

The remainder of the paper is organized as follows: In the next section we
describe a general approach for generation problems. We prove Theorems 1
and 2 respectively in Sections 4 and 5. In Section 6 we prove Proposition 2,
and for completeness we include the proof of Proposition 1 in the Appendix
(an alternative proof can be found in [BEG+05]).

3 The X − e + Y method

In this section we present a technique which is a variant of the so called
supergraph approach that has been used in the literature for instance, to
generate all minimal feedback vertex and arc sets [SS02], minimal s-t cuts
[TSOA80], minimal spanning trees [ST95], and minimal blockers of perfect
matchings in bipartite graphs [BEG06]. To explain the method briefly, a
supergraph is a strongly connected directed graph G whose vertices are the
objects that we would like to generate. We can arrive to such a directed
graph by appropriately defining the out-neighborhood of each object. Once
we have an efficient way of generating such a neighborhood, and they define
a strongly connected directed graph, then we can generate all objects simply
by traversing G.

In this section we present a variant of this general approach, which we
call the X − e + Y method. To formulate this method, let us consider
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a general framework for generation problems. Let E be a finite set and
πE : 2E → {0, 1} be a monotone Boolean function, i.e., one for which X ⊆ Y
implies πE(X) ≤ πE(Y ). We shall assume that πE(∅) = 0 and πE(E) = 1.
Let us then define a family F as follows

F = {X | X ⊆ E is a minimal set satisfying πE(X) = 1},

and consider the goal of generating all sets belonging to F .

This goal can be achieved by the following X−e+Y method. To simplify
notation, we write in the sequel X ∪ e and X r e instead of X ∪ {e} and
X r {e}, respectively.

First we fix an arbitrary linear order ≺ on elements of E and define a
projection Π : {X ⊆ E | πE(X) = 1} → F by Π(X) = X r Z, where
Z is the lexicographically first subset of X, with respect to ≺, such that
πE(X r Z) = 1 and πE(X r (Z ∪ e)) = 0 for every e ∈ X r Z. We can
compute Π(X) by deleting one by one in their ≺ order the elements of X,
whose removal does not change the value of πE(X). This requires evaluating
the function πE exactly |X| times.

We next introduce a directed graph G = (F , E) on vertex set F . We
define the neighborhood N(X) of a vertex X ∈ F as follows

N(X) = {Π((X r e) ∪ Y ) | e ∈ X,Y ∈ YX,e},

where YX,e is defined by

YX,e = {Y | Y is a minimal subset of ErX satisfying πE((Xre)∪Y ) = 1}.

In other words, for every set X ∈ F and for every element e ∈ X we
extend X r e in all possible minimal ways to a set X ′ = (X r e) ∪ Y for
which πE(X ′) = 1 (since X ∈ F , we have πE(X r e) = 0), and introduce
each time a directed arc from X to Π(X ′). We call the obtained directed
graph G the supergraph of our generation problem.

Lemma 1 For all subsets X ∈ F , elements e ∈ X and sets Y ∈ YX,e we
have Π((X r e) ∪ Y ) r (X r e) = Y .

Proof: By the minimality of Y , we have πE((X re)∪ (Y ry)) = 0 for every
y ∈ Y . Thus Π((X r e) ∪ Y ) must contain Y , and by definition, it cannot
contain any other elements outside X r e. �

Proposition 3 The supergraph G = (F , E) is strongly connected.

Proof: Let X,X ′ ∈ F be two vertices of G. We show by induction on
|X r X ′| that G contains a directed path from X to X ′. If X r X ′ = ∅ then
X ⊆ X ′, but since X ′ is minimal, X = X ′ must follow.
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Suppose that |X r X ′| > 0. We show that there is a neighbor X ′′ of X
such that |X ′′

rX ′| is smaller than |XrX ′|. For this, we choose an arbitrary
element e ∈ X r X ′. Since (X r e) ∪X ′ contains X ′ and πE(X ′) = 1, we
have πE((X r e) ∪ X ′) = 1 by the monotonicity of πE. Hence there is a
minimal nonempty set Y ⊆ X ′

r X such that πE((X r e) ∪ Y ) = 1. Now
let X ′′ = Π((X r e) ∪ Y ) be a neighbor of X. By Lemma 1, we have
X ′′ = (X r (Z ∪ e)) ∪ Y . Thus |X ′′

r X ′| ≤ |X r (X ′ ∪ e)| < |X r X ′|. �

Since G is strongly connected, by performing a breadth-first search in G
we can generate all elements of F . Thus, given a procedure that generates all
elements of YX,e for every X ∈ F and e ∈ X, the procedure Transversal(G),
defined below, generates all elements of F .

Traversal(G)

Find the initial vertex X0 ← Π(E), initialize a queue Q = ∅ and a
dictionary of output vertices D = ∅.

Perform a breadth-first search of G starting from X 0:

1 output X0 and insert it to Q and to D

2 while Q 6= ∅ do

3 take the first vertex X out of the queue Q

4 for every e ∈ X do

5 for every Y ∈ YX,e

6 compute the neighbor X ′ ← Π((X r e) ∪ Y )

7 if X ′ /∈ D then output X ′ and insert it to Q and to D

Lemma 2 If Y and Y ′ are distinct elements of YX,e, then they produce
different neighbors of X in G in line 6.

Proof: First we observe that for every Y ∈ YX,e we have Π((X r e) ∪
Y ) = ((X r (Z ∪ e)) ∪ Y , where Z is the lexicographically first subset
of X r e, with respect to ≺, such that πE((X r (Z ∪ e)) ∪ Y ) = 1 and
πE((X r (Z ∪ e∪ f))∪Y ) = 0 for every f ∈ X r (Z ∪ e). By the minimality
of Y , we have πE((Xre)∪(Y ry)) = 0 for every y ∈ Y . Thus Π((Xre)∪Y )
must contain Y . Also note that by minimality of Y , we obtain X r e and
Y are disjoint.

Hence for Y and Y ′, distinct elements of YX,e, we have Π((X re)∪Y ) =
((X r (Z ∪ e)) ∪ Y and Π((X r e) ∪ Y ′) = ((X r (Z ′ ∪ e)) ∪ Y ′. Since
Π((X r e) ∪ Y ) contains Y , Π((X r e) ∪ Y ′) contains Y ′, X r e and Y are
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disjoint, X r e and Y ′ are disjoint and Y 6= Y ′ we obtain Π((X r e)∪ Y ) 6=
Π((X r e) ∪ Y ′). �

Proposition 4 Assume that there is a procedure that outputs K elements of
YX,e in time φ(K,E) and there is an algorithm evaluating πE in time γ(E).
Then Traversal(G) outputs K elements of F in time O(K 2|E|2γ(E) +
K2log(K)|E|2 + K|E|φ(K,E)).

Proof: Let X ∈ F and e ∈ X. Note that we output a vertex of the
supergraph G every time we insert it to the queue Q and each vertex of G is
inserted to the queue Q and removed from Q only once. Thus to generate K
elements we repeat the while loop of lines 2-7 at most K times. As |X| < |E|
we repeat the for loop of lines 4-7 at most |E| times. By Lemma 2 we repeat
the for loop of lines 5-7 at most K times (otherwise we generate more than
K distinct neighbors). Generating K elements of YX,e takes φ(K,E) time.

We repeat lines 6,7 at most K2|E| times. Recall that evaluating Project
takes |E|γ(E) time. We can implement the dictionary D as a balanced bi-
nary search tree. Then the operations FIND and INSERT in D require at
most a logarithmic number of comparisons, where each comparison takes
O(|E|) time. This implies that executing lines 6,7 a single time takes
O(|E|γ(E) + log(K)|E|) time.

Thus the time Traversal(G) needs to output K elements is O(K 2|E|2

γ(E)+ K2log(K)|E|2 +K|E|φ(K,E)). �

To illustrate the X−e+Y method, let us consider the following problem
from [BEG+04]:

Path Conjunctions Generation Problem

Input: An undirected graph G = (V,E) and a collection B =
{(s1, t1), . . . , (sk, tk)} of k vertex pairs si, ti ∈ V

Output: The list of all minimal edge sets X ⊆ E such that ti is reachable
from si in (V,X) for all i = 1, . . . , k

We call such edge set X a path conjunction. As shown in [BEG+04]
path conjunctions can be generated in incremental polynomial time. Here
we show that the X−e+Y method provides a simple alternative algorithm.
More precisely, for every K we can generate K (or all, if their number is less
than K) path conjunctions of a given graph in O(K 2log(K)m2+K2m2k(n+
m)) time, where as before n and m denote the number of vertices and edges
of G, respectively.
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First, we define a Boolean function πE as follows: for a subset X ⊆ E
let

πE(X) =

{
1, every ti is reachable from si in (V,X);
0, otherwise.

Clearly π is monotone and F = {X | X ⊆ E is a minimal set satisfying
πE(X) = 1} is the family of all minimal path conjunctions. We can test if ti

is reachable from si applying breadth first search. Thus γ(E) = O(k(n+m)).
We next show that we can generate K (or all) elements of YX,e in φ(K,E) =
O(Km + n + m) time.

Let X ∈ F . We observe that X is a collection of vertex-disjoint trees T
such that for each vertex pair (si, ti) there is a tree containing both si and
ti. Removing an edge e from X splits a tree T ∈ T containing e into two
subtrees T ′, T ′′. By the minimality of X there is at least one pair of B with
one vertex belonging to T ′ and the other to T ′′.

Let G′ be the graph obtained from G by contracting each tree of T r

T and T ′, T ′′ into a vertex, and let u and v denote the vertices of G′

corresponding to T ′ and T ′′. A minimal edge set Y restores that every
ti is reachable from si in (V, (X r e) ∪ Y ) if and only if Y is a path from u
to v in G′.

Thus YX,e is the family of all u-v paths in G′, where G′ has at most
n vertices and m edges. K paths between two vertices in a graph can be
generated via backtracking in O(Km + n + m) time [RT75]. Consequently,
by Proposition 4 Traversal(G) generates K (or all) path conjunctions in
O(K2log(K)m2 + K2m2k(n + m)) time.

4 Proof of Theorem 1

In this section we apply the X − e + Y method to the generation of all cut
conjunctions.

Given a graph G = (V,E), a collection B = {(s1, t1), . . . , (sk, tk)} of k
pairs of vertices si, ti ∈ V , and a subset X ⊆ E, we define a Boolean function
π as follows: for a subset X ⊆ E let

π(X) =

{
1, si is disconnected from ti in (V,E r X) for all i = 1, . . . , k;
0, otherwise.

Clearly, π is monotone, and F = {X | X ⊆ E is a minimal set satisfying
π(X) = 1} is the family of all cut conjunctions of G.

In Section 4 we use the following notation. Let U be a subset of vertices
of G, let F be a subset of edges of G, and let G′ = (V ′, E′) and G′′ = (V ′′, E′′)
denote subgraphs of G (i.e., V ′, V ′′ ⊆ V and E′, E′′ ⊆ E). We denote by

G[U ] a subgraph of G induced on the vertex set U . Then G−U
def
= G[V rU ]

is a graph obtained from G by deleting all the vertices of U and their incident
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edges, G−F
def
= (V,E rF ) is obtained by deleting all the edges of F from E

and G−G′ def
= G−V ′. We also define G+U

def
= (V ∪U,E), G+F

def
= (V,E∪F ),

and G′ + G′′ def
= (V ′ ∪ V ′′, E′ ∪E′′).

4.1 Characterization of Cut Conjunctions

It will be convenient to define a cut to be a set of edges E(G1, . . . , Gl) =⋃
i6=j{uv ∈ E : u ∈ Gi, v ∈ Gj} where G1, . . . , Gl are induced subgraphs

of G such that their vertex sets partition V , and Gi is connected for each
i = 1, . . . , l.

Let B = {(s1, t1), . . . , (sk, tk)} be a set of distinct source-sink pairs of
G. A B-cut is a cut E(G1, . . . , Gl) such that, for each i, si and ti do not
belong to the same Gj . If the set B is clear from the context we shall call
the minimal B-cut a cut conjunction. The following characterization of cut
conjunctions follows directly from their definition.

s1

s2

t3

G1

t1

s4
G3

s3

G4

t2
t4

G2

1

Figure 2: Minimal B-cut E(G1, G2, G3, G4). The dashed lines are the edges
of the B-cut.

Proposition 5 Let E(G1, G2, . . . , Gl) be a B-cut. Then, E(G1, G2, . . . , Gl)
is a minimal B-cut if and only if for every x, y ∈ {1, . . . , l} with x 6= y, if
there is an edge of G between Gx and Gy then there must exist a source-sink
pair (si, ti) with exactly one vertex in Gx and the other in Gy (see Figure 2).

4.2 Reduction

In this section we reduce the problem of generating all elements of YX,e to
generating all cut conjunctions in a graph of a simpler structure.
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Let F be a subset of edges of G and let (si, ti) ∈ B. Suppose that si

and ti are in the same component of G − F . Then we say that (si, ti) is
F -conflicting.

Let X = E(G1, G2, . . . , Gl) be a minimal B-cut of G and let b ∈ X.
The removal of b from X reconnects some two components, Gx and Gy,
of G − X, where one endpoint of b is in Gx and the other in Gy. Thus
G − (X r b) contains at least one (X r b)-conflicting pair (see Figure 3).
Hence generating all minimal sets Y ⊆ E r X which restore the property
that no si is connected to ti, is equivalent to generating all minimal B ′-cuts
in the graph Gx + Gy + b where B ′ is the set of (X r b)-conflicting pairs.

s7

t4

s1

t2
Gx

t7

s4

t5

Gy

b

1

Figure 3: Graph G− (X r b) contains two (X r b)-conflicting pairs (s4, t4)
and (s7, t7).

Let L = Gx and R = Gy. We can always relabel the (X r b)-conflicting
pairs to guarantee that the conflicting si’s are in L and the conflicting ti’s
are in R. We denote the resulting graph by H(X, b) (see Figure 4). Note
that we have reduced our generation problem to listing all cut conjunctions
in H(X, b). As we discuss in the next section, the latter problem can be
efficiently solved by traversing an appropriately defined supergraph of cut
conjunctions of H(X, b).

4.3 Generating Cut Conjunctions in H(X, b)

In this section we describe an algorithm of generating cut conjunctions of the
graph H(X, b) defined at the end of Section 4.2. We apply the supergraph
approach, i.e., we define the neighborhood operation on cut conjunctions
of H(X, b) so that the supergraph, whose vertices are these cut cunjunc-
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b

L

s1

s2

t1

t2 R

1

Figure 4: Graph H(X, b) with all sources in L and sinks in R.

tions, is strongly connected, then we describe an algorithm of traversing
this supergraph and analyze the complexity of the algorithm.

Let H = H(X, b) = (V,E) be the graph defined at the end of Section 4.2,
that is:

• H = L + R + b,

• b = vLvR is a bridge (note that vL can be a source and vR can be a
sink, but b 6= siti for all i),

• L contains the sources s1, . . . , sk′ , and

• R contains the sinks t1, . . . , tk′ (see Figure 4).

Note that H is connected and the number k ′ of the vertex pairs in H is at
most the number k of the vertex pairs in G.

4.3.1 Characterization of Cut Conjunctions of H

Let B = {(s1, t1), . . . , (sk′ , tk′)} and let K = E(G1, . . . , Gl) be a cut con-
junction of H, such that K 6= {b}. Without loss of generality, assume that
b is in G1. Note that every other Gj is contained either in L or in R (since
Gj is connected and all paths from L to R go through b). We denote by
M = G1 the component containing b and call it the root component of K.
The other components will be called leaf components of K. Denote the Gj ’s
contained in L by L1, . . . , Lm and those in R by R1, . . . , Rn (see Figure 5).

Proposition 6 All edges of K = E(M,L1, . . . , Lm, R1, . . . , Rn) lie between
the root and leaf components. Hence M uniquely determines the leaf com-
ponents of K.
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t3

M
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L1

s4L2

t1

t2

t4

R1

1

Figure 5: Minimal B-cut E(M,L1, L2, R1). Dashed lines are the edges of
the B-cut.

Proof: Suppose that there is an edge e ∈ K between two leaf components.
Since there is no edge between Li and Rj , we can assume that e connects
Li and Lj. But Li and Lj contain only sources. Thus, by Proposition 5 , K
is not minimal, a contradiction. �

4.3.2 Supergraph of Cut Conjunctions of H

Now we define the digraph H, the supergraph of cut conjunctions of H. The
vertex set of H is the family of all cut conjunctions of H other than {b}. For
each cut conjunction K = E(M,L1, . . . , Lm, R1, . . . , Rn) of H we define its
out-neighborhood to consist of all cut conjunctions which can be obtained
from K by the following sequence of steps (see example in Figure 11):

(q1) Choose a vertex v incident to e ∈ K such that v /∈ {vL, vR}. Depend-
ing on v we have the following three cases.

(q2-a) Suppose v is in a leaf component of K and M + v + e does not
contain a source-sink pair (si, ti). Without loss of generality, assume
that v ∈ Rj and either v is not a sink, or v = ti and si 6∈ M (see
Figure 6).

Let W1, . . . ,Wp be the components of Rj − v, and let M̂ = M + v +⋃
u∈M{uv ∈ E}. Then

D = E(M̂ , L1, . . . , Lm, R1, . . . , Rj−1,W1, . . . ,Wp, Rj+1, . . . , Rn)

is a B-cut. Note that we have moved v from Rj to M . Removing v
from Rj splits Rj into components W1, . . . ,Wp (see Figure 7). In (q3)
we may remove some edges of D to obtain a minimal B-cut.

14
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Figure 6: Cut conjunction K in (q2-a)
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1

Figure 7: B-cut D in (q2-a)
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(q2-b) Suppose v is in a leaf component of K and M + v + e contains
a source-sink pair (si, ti). Without loss of generality, assume that
v ∈ Rj and v = ti, si ∈M and vL 6= si (If vL = si we do not allow to
include ti to M). Let W1, . . . ,Wp be the components of Rj − ti and
let U1, . . . , Ur be the components of M − si not containing b. Denote
M̂ = (M + ti +

⋃
u∈M{uti ∈ E}) − (si + U1 + . . . + Ur). Then

D = E(M̂, L1, . . . , Lm, si, U1, . . . , Ur, R1, . . . , Rj−1, W1, . . . , Wp, Rj+1, . . . , Rn)

is a B-cut. Note that we have moved ti from Rj to M . To restore
the property that no si is connected to ti, we have removed si from
M . Removing v from Rj splits Rj into components W1, . . . ,Wp, and

removing si from M splits M into components U1, . . . , Ur and M̂ , the
component containing b (see Figure 8). In (q3) we may remove some
edges of D to obtain a minimal B-cut.

b

�

M

ti

L1

L2 W3

W2

W1

si

si

U1

1

Figure 8: B-cut D in (q2-b)

(q2-c) Suppose v ∈M − {vL, vR}. Without loss of generality, assume that
v is adjacent to Lj (see Figure 9). Note that v 6∈ {t1, . . . , tk′}.

Let U1, . . . , Ur be the components of M − v not containing b, and let
M̂ = M − (v + U1 + . . . + Ur). Then

D = E(M̂, L1, . . . , Lj−1, Lj+v+
⋃

u∈Lj
uv∈E

uv, Lj+1, . . . , Lm, U1, . . . , Ur, R1, . . . , Rn)

is a B-cut. Note that we have moved v from M to Lj splitting M

into components U1, . . . , Ur and M̂ (see Figure 10). In (q3) we may
remove some edges of D to obtain a minimal B-cut.
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Figure 9: Cut conjunction K in (q2-c)

b

v

�

M
Lj + v

R1

U1 U2

1

Figure 10: B-cut D in (q2-c)

(q3) Let D = E(G1, . . . , Gl) be the B-cut obtained in the previous step.
Choose the lexicographically first two sets Gx and Gy such that there
is an edge e ∈ D connecting Gx and Gy and there is no (D r e)-
conflicting pair. Replace Gx and Gy in D by Gx + Gy. Repeat
until no such pair exist, thus the resulting B-cut is minimal. Let
K ′ = E(M ′, L′

1, . . . , L
′
m′ , R′

1, . . . , R
′
n′) be the resulting cut conjunc-

tion. Then K ′ is a neighbor of K in H.

Proposition 7 The supergraph H is strongly connected.

To prove Proposition 7 we need two lemmas.
Let K1, K3 be cut conjunctions and let M1, M3 be their root components.

We call the vertices of M3 blue vertices, and all other vertices green vertices .
Let K be an induced subgraph of H, whose vertices are the cut conjunctions
with root components containing all the blue vertices. Note that K has at
least one vertex, namely K3.

Lemma 3 There exists a cut conjunction K2 ∈ K such that there is a path
from K1 to K2 in H.
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H
vL vR

b
s1 s2s3

s4

u

t1

t2

t3

t4

v

b
s1 s2s3

s4

t1

t2

t3

t4
M

L1

R1

R2K

add t1 to M, remove s1, s4, u (p2-b)

D
b

s1 s2s3

s4

t1

t2

t3

t4

(M + t1 + t1vR + t1v) − {s1, s4, u}

L1

W1

R2

U1

s1

merge L1, s1, U1 and merge (M + t1 + t1vR + t1v) − {s1, s4, u}), W1

b
s1 s2s3

s4

t1

t2

t3

t4M ′L′

1

R′

1

K
′

2Figure 11: Consider the graph H above and the cut conjunction K =
E(M,L1, R1, R2) = E({s1, s2, s4, u, vL, vR, t3, v}, {s3}, {t1, t4}, {t2}). Then
K ′ = E(M ′, L′

1, R
′
1) = E({s2, vL, vR, t1, t3, t4, v}, {s1, s3, s4, u}, {t2}) is a

neighbor of K obtained by moving t1 to M .
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Proof: Let T be an arbitrary spanning tree of M3 containing the bridge b.
For a B-cut D of H with M as its root component, we partition the edges
of T into two groups. Edges that form a contiguous part within M will be
called D-solid edges, and the remaining edges will be called D-dashed edges.
More precisely, we call an edge e of T a D-solid edge, if

• e ∈M ,

• e is reachable from b by using only edges of T that are in M .

Otherwise e is called a D-dashed edge (see Figure 12). Note that b is a
D-solid edge. We denote the set of D-solid edges by SD and the set of
D-dashed edges by DD. Clearly, |SD|+ |DD| = |T |.

Let K1 = E(M1, L1, . . . , Lm, R1, . . . , Rn). We will show by induction on
the number of K1-solid edges |SK1

| that there is a path from K1 to K2.
If |SK1

| = |T |, then M1 contains the spanning tree T of blue vertices.
Hence K1 ∈ K.

If |SK1
| < |T |, then there exists a K1-dashed edge vw between two blue

vertices v and w such that v is in a leaf component of K1, w ∈M1 and w is
incident to a K1-solid edge. Without loss of generality, suppose that v ∈ Rj

(see Figure 12). Such an edge exists because K1-dashed and K1-solid edges
form the spanning tree of blue vertices.

b

M1

w

L1

L2

v

Rj

1

Figure 12: Cut conjunction K1. Solid lines are the K1-solid edges, dashed
lines are the K1-dashed edges.

We now show that K ′
1, a neighbor of K1, obtained by moving the blue

vertex v from the leaf to the root component, has |SK′
1
| ≥ |SK1

| + 1. De-
pending on v there are two cases.

Case 1: v is not a sink or v = ti and si 6∈ M1. Let D be the B-cut
obtained in (q2-a) and MD be its root component. Recall that MD =
M1 + v +

⋃
u∈M{uv ∈ E}. Thus SD contains all K1-solid edges. Since MD

contains both v and w, vw is a D-solid edge, so |SD| = |SK1
|+ 1. In (q3)
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MD can only merge with leaf components, hence |SK′
1
| ≥ |SD|. This implies

that |SK′
1
| ≥ |SK1

|+ 1.
Case 2: v = ti, si ∈ M . Note that ti is a blue vertex, so si must be

green, since M3 does not contain any source-sink pair, and in particular si

cannot be an endpoint of b. Let D be the B-cut obtained in (q2-b) and
MD be its root component. Recall that MD = (M1 + ti +

⋃
u∈M{uti ∈

E})− (si + U1 + . . . + Ur), where U1, . . . , Ur are the components of M − si

not containing b.
Observe that in (q2-b) we did not remove any K1-solid edge from M1.

Since si is a green vertex, all edges incident to si do not belong to T . Edges in
U1, . . . , Ur and incident to these components are also not K1-solid, because
all paths from b to U1, . . . , Ur, which use edges of T that are in M1, must
go through si. Thus |SD| = |SK1

|+ 1.
In (q3) MD can only increase its size after merging with leaf components,

hence |SK′
1
| ≥ |SD|. This implies that |SK′

1
| ≥ |SK1

|+ 1. �

Lemma 4 For every K2 ∈ K there is a path from K2 to K3 in K.

Proof: Let W1, . . . ,Wq be the leaf components of K3 and T1, . . . , Tq be
arbitrary spanning trees of W1, . . . ,Wq. Recall that vertices of W1, . . . ,Wq

are called green vertices.
For every leaf Wj there is at least one source-sink pair (si, ti) such that

one of si and ti belongs to Wj and the other to the root component of
K3. Choose one such source or sink for every Wj and denote this set by
P = {p1, . . . , pq}.

Let D = E(M,G1, . . . , Gl) be a B-cut of H such that all vertices of P
are in the leaf components. Let e ∈ Ti for some i ∈ {1, . . . , q}. We call e
a D-solid edge if there is j ∈ {1, . . . , l} such that e ∈ Gj , pi ∈ Gj and e is
reachable from pi by using only edges of Ti that are in Gj . Otherwise e is
called a D-dashed edge (see Figure 13). We denote the set of D-solid edges
by SD and the set of D-dashed edges by DD. Note that |SD| + |DD| =
|T1|+ . . . + |Tq|.

Let K2 = E(M2, L1, . . . , Lm, R1, . . . , Rn). Recall that M3 is the root
component of K3 and its vertices are called blue vertices. Since M3 ⊆ M2,
all elements of P must belong to leaf components of K2 and thus the notion
of K2-solid edges is well defined. We will show by induction on the number
of K2-solid edges |SK2

|, that there is a path in K from K2 to K3 (note that
since this path is in K, the root components of vertices on that path must
contain all the blue vertices).

If |SK2
| = |T1| + . . . + |Tq|, all green vertices are in leaf components, so

M2 contains only blue vertices, thus M2 = M3 and by Proposition 6, we
have K2 = K3.

If |SK2
| < |T1| + . . . + |Tq|, then there exists a K2-dashed edge e = vw

between two green vertices v and w such that w is in a leaf component,
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Figure 13: Cut conjunction K2. The solid lines are K2-solid edges, the
dashed lines are K2-dashed edges.

v ∈ M2 and w is incident to a K2-solid edge or w = pi. Without loss of
generality, suppose that e ∈ Ti and w ∈ Lj (see Figure 13). Such an edge
exists because K2-dashed and K2-solid edges form a spanning forest of green
vertices.

We show that K ′
2, a neighbor of K2 obtained by moving v from M2 to

Lj, has |SK′
2
| ≥ |SK2

|+ 1 and K ′
2 ∈ K.

Let D = E(M̂ , L1, . . . , Lj + v, . . . , Lm, U1, . . . , Ur, R1, . . . , Rn) be the B-

cut obtained in (q2-c). Recall that M̂ = M2 − (v + U1 + . . . + Ur), where
U1, . . . , Ur are the components of M2 − v not containing b. Note also that
U1, . . . , Ur cannot contain any blue vertices, since M2 contains M3, which
is connected, thus removing a green vertex v cannot disconnect any blue
vertex from b. Hence M3 ⊆ M̂ . Since in (q3) M̂ can only increase its size,
the root component of K ′

2 contains M3.
Since Lj + v contains both v and w, e is a D-solid edge. Thus |SD| =

|SK2
| + 1. In (q3) only leaf components not containing vertices of P can

merge with M̂ . Since these leaf components do not not contain any solid
edges, we obtain |SK′

2
| ≥ |SD|. This implies that |SK′

2
| ≥ |SK2

|+ 1. �

Proof of Proposition 7. Let K1 and K3 be arbitrary cut conjunctions
and K be the induced subgraph of H defined above. By Lemma 3 there is a
path in H from K1 to some cut conjunction K2 in K. By Lemma 4 there is
a path from any cut conjunction of K to K3. The proposition follows. �
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4.3.3 Algorithm of Generating Cut Conjunctions of H

Since H is strongly connected we can generate all cut conjunctions of H
by performing a breadth-first search in H. Recall that a root component
uniquely determines the cut conjunctions of H. Thus we generate root
components but we output the corresponding cut conjunctions.

We say that a vertex is nonconflicting to a root component M if M ∪ v
does not contain a source-sink pair.

Traversal(H)

Find an initial root component M 0: M0 ← {vL, vR}, repeat adding
adjacent and nonconflicting vertex to M 0 until no such vertex exists.

Initialize a queue Q ← ∅ and a dictionary of visited vertices D ← ∅.

Perform a breadth-first search of H starting from M 0:

1 output the cut conjunction X0 corresponding to M 0, insert M 0

to Q and to D

2 while Q 6= ∅ do

3 take the first vertex M out of the queue Q

4 find the sets N1 and N2 of vertices adjacent to M and V r M

6 for every vertex v ∈ N1 ∪N2 do

7 if v ∈ N1 then M ′ ←M ∪ v

else M ′ is the set of vertices reachable from vL in H[M r

v]

8 add adjacent and nonconflicting vertex to M ′, repeat until
no such

vertex exists

9 if M ′ /∈ D then

output M ′ corresponding to M ′, insert it to Q and to D

Proposition 8 Traversal(H) generates K (or all) cut conjunctions of H
in O(Klog(K)nm) time, where n and m are the number of vertices and
edges of H, respectively.

Proof: Since H is connected, we have n ≤ m.
We assume that we have a binary vector of length k ′ associated to a root

component indicating that the root component contains the ith source or
sink. Thus we can test if a vertex is nonconflicting to a root component in
O(1) time.
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Finding an initial root component M 0 using a breadth-first search takes
in O(m) time.

Since a vertex is removed from Q every time we execute the while loop
and it will never be reinserted to Q, the while loop is executed at most K
times. Note that computing sets N1 and N2 takes O(m) time and |N1∪N2| ≤
n. Thus we perform the for loop at most n times.

Computing M ′ takes O(m) time, checking if M ′ is in the dictionary takes
O(log(K)m) (we implement D as a balanced binary search tree) and finding
the cut conjunction corresponding to M ′ takes O(m) time.

Thus Transversal(H) generates K (or all) cut conjunctions in O(K log
(K)nm) time. �

4.4 Complexity

In this section we utilize Proposition 4 to analyze the total running time of
the procedure Transversal(G). Let n = |V |, m = |E|.

Since using a breadth-first search one can test if an edge set is a cut
conjunction in O(k(n + m)) time, we have γ(E) = O(k(n + m)). As H has
at most n vertices and m edges and by Proposition 8 we obtain φ(K,E) =
O(Klog(K)nm).

By Proposition 4 procedure Transversal(G) generates K (or all) cut
conjunctions in O(K2log(K)nm2 + K2k(n + m)m2) time. This completes
the proof of Theorem 1.

5 Proof of Theorem 2

We apply the X − e + Y method to the generation of all minimal bridge-
avoiding extensions.

It will be convenient to assume in this section that the input graph
G = (V,E) may contain parallel edges, i.e., that G is a multigraph. For a
nonempty set B ⊆ E we define a Boolean function π as follows: for a subset
X ⊆ E r B

π(X) =

{
1, no b ∈ B is a bridge in (V,X ∪B);
0, otherwise.

Clearly π is monotone. Then F = {X | X ⊆ E r B is a minimal set
satisfying π(X) = 1} is the family of all minimal bridge-avoiding extensions
of B.

We show that generating elements of YX,e is equivalent to generating all
directed paths between a pair of vertices in some explicitly given directed
multigraph.

Let X ∈ F and e ∈ X. We define B ′ = {b1, . . . , bk} to be the subset of
edges of B that are bridges in (V,B ∪ (X r e)).
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Claim 1 There is a path in (V,B ∪ (X r e)) containing all edges of B ′.

Proof: First observe that for each edge bi ∈ B′ there is a cycle Ci in (V,B∪
X) containing e and bi. Suppose bi ∈ Ci r Cj for some i, j ∈ {1, . . . , k}.
Then there is a cycle C ′ consisting of some edges of Ci and Cj such that
bi ∈ C ′ and e /∈ C ′. Note that C ′ is also the cycle in (V,B ∪ (X r e)). Thus
bi is not a bridge in (V,B ∪ (X r e)), a contradiction. Hence there is a cycle
in (V,B ∪X) containing {b1, . . . , bk} and e, and consequently, edges of this
cycle without e form a path in (V,B ∪ (X r e)). �

We next construct the multigraph G′ = (V ′, E′) from (V,E r e) by
contracting all edges in (B r B ′) ∪ (X r e). By Claim 1 the edges of B ′

form a path in G′. Note that edges if G and G′ are in the one to one
correspondence. Moreover no edge b ∈ B is a bridge in (V,B ∪ (X r e)∪Y ),
where Y ⊆ E r (X ∪ B), if and only if no edge b ∈ B ′ is a bridge in
(V ′, B′ ∪ Y ′), where Y ′ is the set of edges of G′ corresponding to Y . Thus
the general generation problem for cut conjunctions in cocycle matroids
reduces to the special case of the same problem for multigraphs in which B
is a path.

Let u1, . . . , uk+1 denote the k + 1 vertices on the path B ′ = {b1, . . . , bk}
in G′. We can assume without loss of generality that bi = uiui+1 for i =
1, . . . , k. We next consider the directed multigraph G̃′ = (V ′, Ẽ′) obtained
from the multigraph G′ = (V ′, E′) by replacing the undirected path B ′ by

the directed path B̃′ = u1 ← u2 ← . . . ← uk ← uk+1 and by adding two
opposite arcs u→ v and v → u for each of the remaining edges uv ∈ E ′

rB′.
We show that no edge b ∈ B ′ is a bridge in (V ′, B′ ∪ Y ′), where Y ′ ⊆

E′
r B′ if and only if there is a u1-uk+1 dipath corresponding to Y ′ in G̃′.
If no edge b ∈ B ′ is a bridge in (V ′, B′ ∪ Y ′), then for each i = 1, . . . , k

there must exist a path P ⊆ Y ′ such that

(P ′) P and B′ are edge disjoint and

(P ′′) the vertex set of P contains exactly two vertices uα, uβ of B′ such that
α ≤ i and β ≥ i + 1.

By the minimality of Y ′ we conclude that

Y ′ = P1 ∪ . . . ∪ Ps (1)

for some paths P1, . . . , Ps satisfying conditions (P ′) and (P ′′) above, where
no two distinct paths in the above decomposition have a common vertex
outside of B ′. Denoting by uαi

and uβi
the intersection of the vertex set of

Pi with B′, we can also assume without loss of generality that

u1 = α1 < α2 ≤ β1 < α3 ≤ β2 < α4 ≤ . . . < αs ≤ βs−1 < βs = uk+1, (2)
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α1 α2 β1 α3 = β2 β3 = α4
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1

Figure 14: Subgraph (V ′, B′ ∪ Y ′).

where some pairs of consecutive paths Pj and Pj+1 may have the same
endpoint on B ′ (see Figure 14).

From the above discussion it follows that there exists a one to one corre-
spondence between all minimal sets Y ′ admitting decomposition (1) which

satisfies (2) and all directed paths from u1 to uk+1 in G̃′ (see Figure 15).

α1 α2 β1 α3 = β2 β3 = α4
α5 β4 β5

1

Figure 15: Directed path in G̃′.

We next utilize Proposition 4 to analyze the total running time of the
procedure Transversal(G). Let n and m be the number of vertices and
edges of G, respectively.

Since one can find all bridges in G in O(n + m) time, we have γ(E) =
O(n+m) [Tar74]. Note that contracting an edge takes O(n+m) time, thus

we can construct G̃′ in O(m(n + m)) and G̃′ has at most n vertices and
2m arcs. As K paths between a given pair of vertices can be generated via
backtracking in O(Km + n + m) time [RT75], we obtain φ(K,E) = Km +
m(n+m). By Proposition 4 the procedure Transversal(G) generates K (or
all) minimal bridge-avoiding extensions in O(K 2log(K)m2 + K2m2(n + m)
time. This completes the proof of Theorem 2.
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6 Proof of Proposition 2

Let us consider a binary matroid M on ground set S = A ∪ B, where
B = {b1, b2}. As we mentioned in the Introduction, it is enough to consider
the dual formulation of the cut conjunction problem:

Generate all minimal subsets X ⊆ A
def
= S r B such that X ∪ {b2}

spans b1 and X ∪ {b1} spans b2 in the dual matroid M ∗.

To see that this generation problem is tractable, we show first that for a
subset X of A, b1 is a linear combination of vectors of X ∪ {b2} and b2 is
a linear combination of vectors of X ∪ {b1} if and only if b1 + b2 is a linear
combination of vectors of X.

If
∑

a∈Y

a = b1+b2, where Y ⊆ X, then
∑

a∈Y

a+b1 = b2 and
∑

a∈Y

a+b2 = b1.

Conversely, we consider X ⊆ A such that b1 is a linear combination of
X ∪ {b2} and b2 is a linear combination of X ∪{b1}. Depending on whether
these linear combination include b2 and b1, respectively, we have two cases:

Case 1: b2, b1 do not appear in either of the linear combinations. Thus∑

a∈X1

a = b1,
∑

a∈X2

a = b2, where X1, X2 ⊆ X. Then
∑

a∈(X1∪X2)r(X1∩X2)

a =

b1 + b2.
Case 2: suppose b2 appears in the first linear combination. Thus∑

a∈Y

a + b2 = b1, where Y ⊆ X. Then
∑

a∈Y

a = b1 + b2.

Hence X is a minimal subset of A such that X ∪ {b2} spans b1 and
X ∪ {b1} spans b2 in M∗ if and only if X is a minimal subset of A spanning
b1 + b2 in the matroid on ground set A ∪ {b1 + b2}. Thus our problem
reduces to the generation of all circuits containing b1 + b2 in the matroid on
ground set A∪{b1 + b2}, which can be done in incremental polynomial time
[BEG+05].

Remark 1 A similar simplification does not work for |B| > 2. For in-
stance, for B = {b1, b2, b3}, the facts that bi is a linear combination of
vectors of X ∪ {B r bi}, for i = 1, 2, 3, do not imply that b1 + b2 + b3

is a linear combination of vectors of X. Consider e.g., the vectors a1 =
(1, 1, 0, 0) a2 = (1, 0, 1, 0) a3 = (0, 1, 1, 0) b1 = (1, 0, 0, 1) b2 = (0, 1, 0, 1) and
b3 = (0, 0, 1, 1) in 4-dimensions (mod 2) satisfying b1 = a1 + b2 = a2 + b3,
b2 = a1 + b1 = a3 + b3, b3 = a2 + b1 = a3 + b2, but b1 + b2 + b3 = (1, 1, 1, 1)
is not in the linear space spanned by a1,a2, and a3.
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Appendix: Proof of Proposition 1
For the sake of completeness we present the proof of Proposition 1. An

alternative proof can be found in [BEG+05].
Let M be a vectorial matroid on ground set S, let B ⊆ S and let F

be the family of all maximal subsets of A
def
= S r B that span no vector

b ∈ B. In this section we show that given a subfamily X ⊆ F , it is NP-hard
to decide whether X 6= F . We reduce our problem from the well known
3-satisfiability.

Let φ = C1 ∧ C2 . . . ∧ Cm be a given CNF on n variables with exactly
three literals per clause. We may represent the sets A and B as matrices.
We let

A = (~ax̄1 ,~ax̄2 , . . . ,~ax̄n ,~ax1 ,~ax2 , . . . ,~axn),

where ~ax̄i and ~axi are (n + 1)-dimensional vectors defined as

(~ax̄i)j =

{
1, if i = j;

0, otherwise,
(~axi)j =

{
1, if i = j or i = n + 1;

0, otherwise.

For every clause Cp = li1∨ li2∨ li3 , where lij ∈ {xij , x̄ij}, and α ∈ {0, . . . , n−
3}, we define

~bp,α = 4n~ali1 + 2n~ali2 + n~ali3 + ~fp + α~e,

where ~fp and ~e are (n + 1)-dimensional vectors defined as

(~fp)i =

{
0, if i ∈ {i1, i2, i3, n + 1};

1, otherwise,
and ~e = (0, . . . , 0, 1)T .

Then B = (~bp,α), for p = 1, . . . ,m and α = 0, . . . , n− 3 (see Example .1).

Example .1 Consider φ = C1 ∧ C2 = (x1 ∨ x̄2 ∨ x3)(x1 ∨ x̄4 ∨ x̄5). Then
A = (~ax̄1 ,~ax̄2 , . . . ,~ax̄5 ,~ax1 ,~ax2 , . . . ,~ax5), i.e.,

A =




1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 1 1 1 1 1




and B = {~b1,0,~b1,1,~b1,2,~b2,0,~b2,1,~b2,2}, where

~b1,α =




4 · 5
2 · 5

5
1
1

4 · 5 + 5 + α




and ~b2,α =




5
1
1

4 · 5
2 · 5

5 + α



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Claim 2 For each i ∈ {1, . . . , n}, A r {~ax̄i ,~axi} is a maximal subset of A
spanning no ~b ∈ B.

Proof: Observe that all vectors of A r {~ax̄i ,~axi} have ith entry zero and
every ~b ∈ B has all entries nonzero. Both A r {~ax̄i} and A r {~axi} span all
b ∈ B, since rank(Ar{~ax̄i}) = rank(Ar{~axi}) = n+1. Thus Ar{~ax̄i ,~axi}
is maximal subset of A spanning no ~b ∈ B. �

Let X = {A r {~ax̄1 ,~ax1}, . . . , A r {~ax̄n ,~axn}} ⊆ F . We shall call ele-
ments of F r X nontrivial. Let H be a family of subsets of A of the form
(~al1 ,~al2 , . . . ,~aln), where li ∈ {xi, x̄i}, i.e. subsets of A that contain exactly
one of each pair ~ax̄i , ~axi , for i ∈ {1, . . . , n}.

Claim 3 Every nontrivial element X of F belongs to H.

Proof: X is a maximal subset of A spanning no ~b ∈ B and is not a subset
of an element of X , thus X must contain at least one of each pair ~ax̄i , ~axi .
Suppose that for some j, X contains both ~ax̄j , ~axj . Then rank(X) = n + 1,
thus X spans all ~b ∈ B, a contradiction. Hence X contains exactly one of
~ax̄i , ~axi , for i ∈ {1, . . . , n}. �

Now let X = (~al1 ,~al2 , . . . ,~aln) ∈ H and ~x = (x1, . . . , xn) be an assign-
ment of φ. We define a bijection between elements of H and assignments of
φ as follows: xi = 0 if and only if ~axi ∈ X, xi = 1 if and only if ~ax̄i ∈ X.

Claim 4 X is nontrivial element of F if and only if ~x is a satisfying as-
signment of φ.

Proof: Let X be nontrivial element of F . By Claim 3, X ∈ H, so there
exists an assignment ~x corresponding to X. Suppose that ~x is not a satisfying
assignment, then ~x does not satisfy a clause Cp = li1 ∨ li2 ∨ li3 . Thus li1 , li2 ,
li3 are assigned 0. Then {~ali1 ,~ali2 ,~ali3 } ∈ X. Let α =

∑
j 6∈{i1,i2,i3}

(1 − xj)
be the number of 0’s in entries of ~x different than i1, i2, i3.

Then
∑

i6∈{i1,i2,i3}
~ali = ~f + α~e, hence ~bp,α = 4n~ali1 + 2n~ali2 + n~ali3 +

∑
i6∈{i1,i2,i3}

~ali . Thus~bp,α is spanned by X, a contradiction (see Example .2).
Now let ~x be a satisfying assignment. We will show that X spans no

b ∈ B. Choose ~bp,α = (b1, . . . , bn+1) ∈ B corresponding to the clause Cp =

li1 ∨ li2 ∨ li3 . Observe that X =

(
In

~r

)
, where In is n× n identity matrix

and ~r = (rl1 , . . . , rln) is a n-dimensional vector. Then the system In~y =
(b1, . . . , bn) has a unique solution

yi = bi =





4n, if i = i1;

2n, if i = i2;

n, if i = i3;

1, otherwise.
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However the linear combination, with coefficients yi, of entries of the
last row of A cannot be equal to bn+1, the last entry of ~bp,α, for any α ∈
{0, . . . , n− 3} (see Example .3), because

• the linear combination is
∑

i=1...n yirli = 4nri1 +2nri2 +nri3 +β, where
β =

∑
i6∈{i1,i2,i3}

(1−xi) is the number of zero entries of ~x different than
i1, i2, i3,

• bn+1 = 4n(~ali1 )n+1 + 2n(~ali2 )n+1 + n(~ali3 )n+1 + α,

• there is at least one index j of {i1, i2, i3} such that it satisfies (~alj )n+1 6=
rj (since ~x is a satisfying assignment, it must satisfy every clause).

Hence X is nontrivial element of F . �

Example .2 Let φ, A, B be as defined in Example .1. A nonsatisfying
assignment ~x = (0, 1, 0, 0, 1) of φ corresponds to

X = (~ax1 ,~ax̄2 ,~ax3 ,~ax4 ,~ax̄5) =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

1 0 1 1 0




~x does not satisfy the first clause x1∨ x̄2∨x3, number of 0’s not in the first,
second or third entry of ~x is 1, thus X spans ~b1,1:

4 ·5




1
0
0
0
0

1




+2 ·5




0
1
0
0
0

0




+5




0
0
1
0
0

1




+




0
0
0
1
0

1




+




0
0
0
0
1

0




=




4 · 5
2 · 5

5
1
1

4 · 5 + 5 + 1




Example .3 A satisfying assignment ~x = (1, 0, 0, 0, 1) of φ corresponds to

X = (~ax̄1 ,~ax2 ,~ax3 ,~ax4 ,~ax̄5) =

(
I5

~r

)
=




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 1 1 1 0




Choose

~b1,α =




b1

b2

b3

b4

b5

b6




=




4 · 5
2 · 5

5
1
1

4 · 5 + 5 + α



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corresponding to the first clause x1 ∨ x̄2 ∨ x3. Then the system I5~y = (b1, . . . , b5)
has a unique solution

~y =




4 · 5
2 · 5

5
1
1




However
∑

i=1,...,5 yirli = 2 · 5 + 5 + 1 6= 4 · 5 + 5 + α = b1,α
6 , for any α ∈ {0, 1, 2}.

Thus X does not span ~b1,0, ~b1,1, ~b1,2. Similarly X does not span ~b2,0, ~b2,1, ~b2,2.
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