
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

Minimizing a Monotone Concave Function

with Laminar Covering Constraints

Mariko Sakashita, Kazuhisa Makino,

and Satoru Fujishige

METR 2007–29 April 2007

DEPARTMENT OF MATHEMATICAL INFORMATICS

GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO

BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.i.u-tokyo.ac.jp/mi/mi-e.htm

The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.

Minimizing a Monotone Concave Function

with Laminar Covering Constraints∗

Mariko Sakashita† Kazuhisa Makino‡ Satoru Fujishige§

April 2007

Abstract

Let V be a finite set with |V | = n. A family F ⊆ 2V is called
laminar if for all two sets X, Y ∈ F , X ∩ Y 6= ∅ implies X ⊆ Y or
X ⊇ Y . Given a laminar family F , a demand function d : F → R+,
and a monotone concave cost function F : RV

+ → R+, we consider
the problem of finding a minimum-cost x ∈ RV

+ such that x(X) ≥
d(X) for all X ∈ F . Here we do not assume that the cost function
F is differentiable or even continuous. We show that the problem
can be solved in O(n2q) time if F can be decomposed into monotone
concave functions by the partition of V that is induced by the laminar
family F , where q is the time required for the computation of F (x)
for any x ∈ RV

+. We also prove that if F is given by an oracle, then it
takes Ω(n2q) time to solve the problem, which implies that our O(n2q)
time algorithm is optimal in this case. Furthermore, we propose an
O(n log2 n) algorithm if F is the sum of linear cost functions with
fixed setup costs. These also make improvements in complexity results
for source location and edge-connectivity augmentation problems in
undirected networks. Finally, we show that in general our problem
requires Ω(2

n

2 q) time when F is given implicitly by an oracle, and that
it is NP-hard if F is given explicitly in a functional form.

1 Introduction

Let V be a finite set with |V | = n. A family F ⊆ 2V is called laminar if for
arbitrary two sets X,Y ∈ F , X ∩ Y 6= ∅ implies X ⊆ Y or X ⊇ Y . Given a

∗An extended abstract of this paper appeared in Proceedings of the 16th Annual In-
ternational Symposium on Algorithms and Computation (ISAAC 2005), China, December
2005 [16].

†Graduate School of Informatics, Kyoto University, Kyoto, 606-8501, Japan.
sakasita@amp.i.kyoto-u.ac.jp

‡Graduate School of Information Science and Technology, University of Tokyo, Tokyo,
113-8656, Japan. makino@mist.i.u-tokyo.ac.jp

§Research Institute for Mathematical Sciences, Kyoto University, Kyoto, 606-8502,
Japan. fujishig@kurims.kyoto-u.ac.jp

1

laminar family F , a demand function d : F → R+, and a monotone concave
function F : RV

+ → R+, the problem to be considered in this paper is given
as

Minimize F (x)

subject to x(X) ≥ d(X) (X ∈ F), (1)

x(v) ≥ 0 (v ∈ V),

where R+ denotes the set of all nonnegative reals, and x(X) =
∑

v∈X x(v)
for any X ⊆ V . Here we do not assume that the cost function F is differ-
entiable or even continuous. The present problem has various applications,
since laminar families represent hierarchical structures in many organiza-
tions. Moreover, the problem can be regarded as a natural generalization of
the source location problem and the edge-connectivity augmentation prob-
lem in undirected networks, which do not seemingly have laminar structures.
We shall show in Section 3 that they can be formulated as (1) by using ex-
treme sets in given networks.

In this paper, we study the following three cases, in which the cost
functions F are expressed as

F1(x) =
∑

X∈F

f∆X(x[∆X]) (laminar sum), (2)

F2(x) =
∑

v∈V

fv(x(v)) (separable), (3)

F3(x) =
∑

v∈V :x(v)>0

(avx(v) + bv) (fixed-cost linear), (4)

where ∆X = X −
⋃

{Y | Y ∈ F , Y (X}, x[∆X] denotes the projection

of x on ∆X, f∆X : R∆X
+ → R+ and fv : R

{v}
+ → R+ are monotone concave,

and av and bv are nonnegative constants. It is clear that F2 is a special case
of F1, and F3 is a special case of F2 (and hence of F1).

We consider Problem (1) when the cost function F is given either in
a functional form or by an oracle (i.e., we can invoke an oracle for the
evaluation of F (x) for any x in RV

+ and use the function value F (x)). In
either case, we assume that F (x) can be computed for any x ∈ RV

+ in O(q)
time.

We show that if F = F1, the problem can be solved in O(n2q) time,
where q is the time required for the computation of F (x) for each x ∈ RV

+.
We also prove that the problem requires Ω(n2q) time, if F (= F2) is given by
an oracle. This implies that our O(n2q) algorithm is optimal if F (= F1, F2)
is given by an oracle. Moreover, we show that the problem can be solved
in O(n log2 n) and O(n(log2 n + q)) time if F (= F3) is given in a functional
form or by an oracle, respectively, and the problem is intractable in general.
Table 1 summarizes the complexity results obtained in this paper.

2

Table 1: Summary of the results obtained in this paper

F1 F2 F3 General

Functional Form O(n2q) O(n2q) O(n log2 n)
NP-hard

inapproximable

Oracle Θ(n2q) Θ(n2q) O(n(log2 n + q)) Ω(2
n
2 q)

q: the time required for computing F (x) for each x ∈ RV
+.

We remark that the results above remain true, even if we add the integrality
condition x ∈ ZV to the problem.

Our positive results can be applied to the source location problem and
the edge-connectivity augmentation problem (see Section 3 for details).
These make improvements in complexity results for the problems. Our
results imply that the source location problem can be solved in O(nm +
n2(q + log n)) time if the cost function F is expressed as F2, e.g., the sum
of fixed setup costs and concave running costs for facilities at v ∈ V , and in
O(n(m+n log n)) time if the cost function F is expressed as F3, i.e., the cost
is the sum of fixed setup costs and linear running costs. We remark that the
source location problem has been investigated, only when the cost function
depends on the fixed setup cost of the facilities (see (14)). Similarly to the
source location problem, our results together with the ones in [12, 14] imply
that the augmentation problem can be solved in O(nm+n2(q +log n)) time
if F = F1, and in O(n(m + n log n)) time if F = F3. We remark that the
augmentation problem has been investigated only when the cost function is
linear (see (19)).

The rest of the paper is organized as follows. Section 2 introduces some
notation and definitions, and Section 3 presents two applications of our cov-
ering problem. Sections 4 and 5 investigate the cases in which F is laminar
or separable, and F is linear with fixed costs, respectively. Finally, Section 6
considers the general case.

2 Definitions and Preliminaries

Let V be a finite set with |V | = n. A family F ⊆ 2V is called laminar [6] if
for arbitrary two sets X,Y ∈ F , at least one of the three sets X ∩Y , X −Y ,
and Y − X is empty, i.e., X ∩ Y 6= ∅ implies X ⊆ Y or X ⊇ Y .

For a laminar family F = {Xi | i ∈ I} define a directed graph T = (W,A)

3

with a vertex set W and an arc set A by

W = {wi | i ∈ I ∪ {i0}}

A = {ai = (wi, wj) | Xi (Xj ,F contains no set Y with Xi (Y (Xj}

∪ {ai = (wi, wi0) | Xi is a maximal set in F},

where i0 is a new index not in I. Since F is laminar, the graph T = (W,A)
is a directed tree toward the root wi0 and is called the tree representation

(e.g., [6]) of F (see Fig. 1). For each Xi ∈ F let us define the family of the

X1

X2

X3 X4

X7

X6

X5

w1

w2

w3

w4

w5

w6

w7

wi0

a3

a2 a4

a1 a5
a7

a6

F = {X1, X2, · · · , X7} The tree representation T = (W, A) of F

Figure 1:

children, the incremental set, and the depth by

S(Xi) = {Xj | aj = (wj , wi) ∈ A},

∆Xi = Xi \
⋃

Xj∈S(Xi)

Xj ,

h(Xi) = |{Xj | Xj ∈ F with Xj ⊇ Xi}|.

A function F : RV → R is called monotone nondecreasing (or simply
monotone) if F (x) ≤ F (y) holds for arbitrary two vectors x, y ∈ RV with
x ≤ y, and concave if

αF (x) + (1 − α)F (y) ≤ F (αx + (1 − α)y) (5)

holds for arbitrary two vectors x, y ∈ RV and real α with 0 ≤ α ≤ 1.
Now, we formulate the problem of minimizing a monotone concave func-

tion with laminar covering constraints. Given a laminar family F ⊆ 2V ,
a monotone concave function F : RV

+ → R+, and a demand function
d : F → R+, we consider the problem given by

(P) Minimize F (x) (6)

subject to x(X) ≥ d(X) (X ∈ F), (7)

x(v) ≥ 0 (v ∈ V), (8)

4

where x(X) =
∑

v∈X x(v). We assume without loss of generality that
F (0) = 0.

For a function d : F → R we also define the increment ∆d : F → R by
∆d(X) = d(X) −

∑

Y ∈S(X) d(Y). If ∆d(X) ≤ 0, we can remove constraint
x(X) ≥ d(X) from (7). Hence we assume that every set X ∈ F satisfies

∆d(X) > 0. (9)

3 Applications of Our Covering Problem

In this section we introduce two network problems as examples of our prob-
lem.

3.1 Source Location Problem in Undirected Flow Networks

Let N = (G = (V,E), u) be an undirected network with a vertex set V ,
an edge set E, and a capacity function u : E → R+. For convenience, we
regard N as a symmetric directed graph N̂ = (Ĝ = (V, Ê), û) defined by
Ê = {(v, w), (w, v) | {v, w} ∈ E} and û(v, w) = û(w, v) = u({v, w}) for any
{v, w} ∈ E. We also often write u(v, w) instead of u({v, w}).

A flow ϕ : Ê → R+ is feasible with a supply x : V → R+ if it satisfies
the following conditions:

∂ϕ(v)
def
=

∑

(v,w)∈Ê

ϕ(v, w) −
∑

(w,v)∈Ê

ϕ(w, v) ≤ x(v) (v ∈ V), (10)

0 ≤ ϕ(e) ≤ û(e) (e ∈ Ê). (11)

Here (10) means that the net out-flow value ∂ϕ(v) at v ∈ V is at most the
supply at v.

Given an undirected network N with a demand k > 0 and a cost function
F : RV

+ → R+, the source location problem considered in [2] is to find a
minimum-cost supply x such that for each v ∈ V there is a feasible flow ϕ
such that the sum of the net in-flow value and the supply at v is at least k.
The problem is rewritten as follows.

Minimize F (x)

subject to ∀ v ∈ V, ∃ a feasible flow ϕv in N with a supply x:

−∂ϕv(v) + x(v) ≥ k, (12)

x(v) ≥ 0 (v ∈ V). (13)

Note that the flow ϕv (v ∈ V) in (12) may depend on v ∈ V .
The above-mentioned source location problem was investigated in [2, 17]

in a special case where the cost function is given as

F (x) =
∑

v∈V :x(v)>0

bv. (14)

5

Namely, the cost function depends only on the fixed setup cost of the fa-
cilities at vertices v ∈ V with x(v) > 0, and is independent of the positive
supply value x(v). Some variants of the problem such as non-uniform de-
mand and directed network cases are also examined in [2, 7, 8, 18].

We show that (12) can be represented by laminar covering constraints
as (7).

A cut is a nonempty proper subset of V . For a cut X, κ(X) denotes the
cut capacity of X, i.e.,

κ(X) =
∑

{v,w}∈E:
v∈X,w∈V −X

u(v, w),

where note that κ(X) = κ(V \ X). By the max-flow min-cut theorem (see,
e.g., [1]), (12) is equivalent to

κ(X) + x(X) ≥ k (v ∈ X ⊆ V). (15)

A nonempty X ⊆ V is called an extreme set [19] if κ(Y) > κ(X) holds
for each nonempty Y (X, and let F be the family of all extreme sets of N .
Then, some redundant inequalities in (15) can be removed as follows.

Lemma 1 Under the nonnegativity condition (13) the constraint (12) (or
(15)) are equivalent to

κ(X) + x(X) ≥ k (X ∈ F). (16)

Proof. Let X be any non-extreme set and x be any nonnegative supply
satisfying the constraint (16). Then there exists an extreme set Y ∈ F such
that Y (X and we have κ(X) + x(X) ≥ κ(Y) + x(Y) ≥ k because of the
nonnegativity of x. �

It is known that the family F of extreme sets is laminar. (For, κ is posi-

modular [13], i.e., for any X,Y ⊆ V , κ(X) + κ(Y) ≥ κ(X \ Y) + κ(Y \ X).
If there exist X,Y ∈ F such that X ∩Y,X \Y , and Y \X are all nonempty,
then the posi-modularity implies that κ(X) ≥ κ(X \Y) or κ(Y) ≥ κ(Y \X),
which contradicts the extremality of X and Y .)

For any X ∈ F we denote by d(X) the deficiency of X defined by

d(X) = max{k − κ(X), 0}. (17)

Then it follows from the argument given above that (12) can be represented
as laminar covering constraints (7) with d given by (17), and hence the source
location problem can be formulated as (P) in Section 2. We remark that
given an undirected network N = (G = (V,E), u) and a demand k (> 0),
the family F of all extreme sets, as well as the deficiency d : F → R+,
can be computed in O(n(m + n log n)) time [12]. Therefore, our results for

6

the laminar covering problem immediately imply the ones for the source
location problem considered in [2, 17]. In particular, if the cost function is a
separable monotone concave function, i.e., the sum of fixed setup costs and
concave running costs for facilities at v ∈ V , the source location problem
can be solved in O(nm + n2(q + log n)) time. Moreover, we can solve the
problem in O(n(m+n log n)) time if the cost is the sum of fixed setup costs
and linear running costs.

3.2 Edge-connectivity Augmentation in Undirected Flow Net-

works

Let N = (G = (V,E), u) be an undirected network with a capacity function
u : E → R+. We call N k-edge-connected if for every two nodes v, w ∈ V the
maximum flow value between v and w is at least k. Given an undirected net-
work N and a positive real k, the edge-connectivity augmentation problem
is to find a smallest set D of new edges with capacity µD : D → R+ for which
N ′ = (G′ = (V,E ∪ D), u ⊕ µD) is k-edge-connected, where u ⊕ µD is the
direct sum of u and µD (see, e.g., [3, 4, 5, 12, 14, 15, 19]). It is known that
the problem can be solved in polynomial time. In fact, the node-cost edge-
connectivity augmentation problem [5] is polynomially solvable, while the
edge-cost one is NP-hard. Here the node-cost is defined by

∑

v∈V cv(∂µD(v))
for a given cv (v ∈ V), where ∂µD(v) =

∑

e∈D:e3v µD(e), and the edge-cost

is defined by
∑

e∈D ce(µD(e)) for a given ce (e ∈
(

V
2

)

). We claim that the
constraints of the edge-connectivity augmentation problem can be regarded
as the laminar covering constraints, together with nonnegativity constraints.

From the max-flow min-cut theorem, we can see that x = ∂µD must
satisfy κ(X) + x(X) ≥ k for any nonempty X (V (see, e.g., [5]). Similarly
to the source location problem in the previous section, this implies

x(X) ≥ d(X) (X ∈ F), (18)

where d(X) is given by (17), and F is the family of all extreme sets in N .
On the other hand, by using splitting technique [9, 10, 11], any x sat-

isfying (18) can create a capacity function µD : D → R+ for which N ′ is
k-edge-connected [9, 10, 11] and moreover, such an x of minimum x(V) can
be found in O(n(m + n log n)) time [14], which proves our claim.

Therefore, the node-cost edge-connectivity augmentation problem can
be represented by the laminar covering problem with a linear cost function
F : RV

+ → R+, i.e.,

F (x) =
∑

v∈V

cvx(v). (19)

Our results extend the existing ones for the augmentation problem (see, e.g.,
[3, 5, 12, 14]). Especially when F is given by (2), the algorithm proposed

7

in this paper together with the ones in [12, 14] solves the augmentation
problem in O(nm + n2(q + log n)) time. Moreover, if F is given by (4), we
can solve the problem in O(n(m + n log n)) time.

4 The Laminar Cost Case

In this section we consider the problem whose cost function is given by F1,
i.e.,

(P1) Minimize
∑

X∈F

f∆X(x[∆X]),

subject to x(X) ≥ d(X) (X ∈ F), (20)

x(v) ≥ 0 (v ∈ V),

where f∆X is a monotone concave function on ∆X with f∆X(0) = 0.
We shall present an O(n2q) time algorithm for the problem and show

the Ω(n2q) time bound when the cost function is given by an oracle.

4.1 Structural Properties of Optimal Solutions

This section reveals structural properties of optimal solutions of Problem
(P1) in (20), which makes it possible for us to devise a polynomial algorithm
for Problem (P1).

Let F be a laminar family on V , and T = (W,A) be the tree repre-
sentation of F . Consider the problem projected on Y ∈ F that is given
as

(PY) Minimize
∑

X∈F :X⊆Y

f∆X(x[∆X])

subject to x(X) ≥ d(X) (X ∈ F , X ⊆ Y), (21)

x(v) ≥ 0 (v ∈ V).

From Assumption (9), the following lemma holds.

Lemma 2 For any feasible solution x ∈ RV of Problem (PY) in (21), there

exists a feasible solution y ∈ RV of (21) such that y(Y) = d(Y) and y[X] ≤
x[X] for all X ⊆ Y .

We first show properties of optimal solutions of (PY), from which we
derive properties of optimal solutions of (P1).

Lemma 3 For a minimal Y ∈ F , Problem (PY) has an optimal solution

x = zv for some v ∈ Y such that

zv(t) =

{

d(Y) (= ∆d(Y)) (t = v)
0 (t ∈ V \ {v}).

(22)

8

Proof. Because of Lemma 2 and the monotonicity of the cost function, there
is an optimal solution x such that

x(Y) = d(Y) (23)

and x(v) = 0 for v ∈ V \ Y . Moreover, any feasible solution x of (PY)
satisfying (23) is described as

x =
∑

v∈Y

x(v)

d(Y)
zv,

where zv is defined by (22). Since zv is feasible, x(v)
d(Y) ≥ 0 (v ∈ Y), and

∑

v∈Y
x(v)
d(Y) = 1, it follows from the concavity of f∆Y that

f∆Y (zv∗ [∆Y]) ≤ f∆Y (x[∆Y])

for some v∗ ∈ Y . �

We next show properties of optimal solutions for non-minimal Y ∈ F .

Lemma 4 Let Y be a non-minimal set in F . Then there exists an optimal

solution x of Problem (PY) such that for some v ∈ ∆Y

x(t) =

{

∆d(Y) (t = v)
0 (t ∈ (V \ Y) ∪ (∆Y \ {v})) ,

x(X) = d(X) (X ∈ S(Y)),

(24)

or for some X ∈ S(Y)

x(Z) =

{

d(X) + ∆d(Y) (Z = X)
d(Z) (Z 6= X, Z ∈ S(Y)),

x(v) = 0 (v ∈ (V \ Y) ∪ ∆Y) .

(25)

Proof. By Lemma 2 and the monotonicity of the cost function, there is an
optimal solution x such that x(Y) = d(Y) and x(v) = 0 (v ∈ V − Y). For
such an x, we define δv (v ∈ ∆Y) and δX (X ∈ S(Y)) by

δv =
x(v)

∆d(Y)
(v ∈ ∆Y),

δX =
x(X) − d(X)

∆d(Y)
(X ∈ S(Y)).

Then we have

∑

v∈∆Y

δv +
∑

X∈S(Y)

δX = 1, and δv , δX ≥ 0 (v ∈ ∆Y, X ∈ S(Y)). (26)

9

We also define zv (v ∈ ∆Y) and yX (X ∈ S(Y)) by

zv(t) =















∆d(Y) (t = v)
0 (t ∈ (V \ Y) ∪ (∆Y \ {v}))
d(X)

x(X)
x(t) (t ∈ X, X ∈ S(Y)),

yX(t) =























d(X) + ∆d(Y)

x(X)
x(t) (t ∈ X)

d(Z)

x(Z)
x(t) (t ∈ Z, Z 6= X, Z ∈ S(Y))

0 (t ∈ (V \ Y) ∪ ∆Y)).

We can easily see that zv and yX are feasible and satisfy the properties
shown in Lemma 4, and

x =
∑

v∈∆Y

δvzv +
∑

X∈S(Y)

δXyX .

Since δv and δX satisfy (26) and F is concave, we have

F (x) ≥
∑

v∈∆Y

δvF (zv) +
∑

X∈S(Y)

δXF (yX).

Hence at least one of zv (v ∈ ∆Y) and yX (X ∈ S(Y)) is optimal. �

Let W ∗ = {wi | Xi ∈ F}. A partition P = {P1, · · · , Pk} of W ∗ is called
a path-partition of W ∗ if each Pj = {wj0 , wj1 , · · · , wjrj

} ∈ P forms a directed

path wj0 → wj1 → · · · → wjrj
in T = (W,A) with ∆Xj0 6= ∅.

We are now ready to describe our structure theorem.

Theorem 5 Problem (P1) in (20) has an optimal solution x∗ that can be

obtained from a path-partition P = {P1, · · · , Pk} of W ∗ together with vj ∈
∆Xj0 (j = 1, · · · , k) as follows.

x∗(t) =







∑

wji
∈Pj

∆d(Xi) (t = vj , j = 1, · · · , k)

0 (t ∈ V \ {vj | j = 1, · · · , k}).

Proof. We proceed by induction on the height h of T = (W,A).
Let us first consider the case when h = 1. It follows from Lemma3

that Problem (PY) for any Y ∈ F has an optimal solution of form (22).
We denote by xY such an optimal solution. Then by the separability and
monotonicity of F , x =

∑

Y ∈F xY is an optimal solution of (P1) in (20).
This x clearly satisfies the condition in the present theorem.

Next, assume that the statement in the theorem is true for h ≤ ` for
some integer ` ≥ 1. Then consider the case when h = `+1. From Lemma4,

10

Problem (PY) for a maximal set Y in F has an optimal solution of form (24)
or (25). If x = zv of form (24) is optimal, then we consider Problem (PX)
for each X ∈ S(Y). By the induction hypothesis on h, each such problem
has an optimal solution xX based on some path-partition PX of X. Define

PY =
⋃

X∈S(Y)

PX ∪ {Y },

xY =
∑

X∈S(Y)

xX + ev ,

where ev(t) = ∆d(Y) if t = v, and ev(t) = 0 otherwise. We can see that xY

is an optimal solution of Problem (PY) and is based on path-partition PY .
On the other hand, if x = yX of form (25) is an optimal solution of

Problem (PY) for a maximal Y ∈ F , then we consider Problem (PZ) (in
(21)) for each Z ∈ S(Y) with Z 6= X and also consider the following problem.

Minimize
∑

Z∈F :Z⊆X

f∆Z(x[∆Z])

subject to x(X) ≥ d(X) + ∆d(Y), (27)

x(Z) ≥ d(Z) (Z ∈ F , Z (X),

x(v) ≥ 0 (v ∈ V).

By induction on h, Problem (PZ) (in (21)) for each Z ∈ S(Y) with Z 6= X
has an optimal solution xZ based on a path-partition PZ , and similarly,
Problem (27) has an optimal solution xX based on a path-partition PX .
Hence we can construct an optimal solution xY =

∑

X∈S(Y) xX based on
the path-partition

PY =
⋃

Z∈S(Y):Z 6=X

PZ ∪ (PX \ {P}) ∪ {P ∪ {wY }} ,

where P denotes the set in PX that contains the node corresponding to X,
and wY denotes the node corresponding to Y .

Finally, by letting x =
∑

Y ∈S(Xi0
) xY and P =

⋃

Y ∈S(Xi0
) PY , we have a

desired optimal solution x and its corresponding path-partition P. �

4.2 A Polynomial Algorithm

In this section we present a polynomial algorithm for Problem (P1) in (20).
The algorithm applies dynamic programming to compute an optimal path-
partition of W ∗.

For any Y ∈ F , we denote by wY the node in W corresponding to Y ,
and by wj0(= wY), wj1 , · · · , wjh(Y)−1

, wjh(Y)
(= wi0) the directed path from

11

wY to the root wi0 . Our dynamic programming solves the following h(Y)
problems for each Y ∈ F .

(P(Y, k)) Minimize
∑

X∈F :X⊆Y

f∆X(x[∆X]) (28)

subject to x(Y) ≥ d(Y) +
k
∑

i=1

∆d(Xji
), (29)

x(X) ≥ d(X) (X ∈ F , X (Y), (30)

x(v) ≥ 0 (v ∈ V), (31)

where Y ∈ F and k = 0, 1, · · · , h(Y) − 1. Let α(Y, k) denote the optimal
value of Problem (P(Y, k)). By Theorem 5, these problems (P(Y, k)) have
optimal solutions based on a path-partition P of {wi | Xi ∈ F , Xi ⊆ Y }.
For Pj ∈ P containing wY ∈ W (that corresponds to Y), let vj be the node
in ∆Xj0 given in Theorem 5. We store vj as β(Y, k). It follows from Lemmas
3 and 4 that α(Y, k) and β(Y, k) can be computed as follows.

For each minimal Y ∈ F (which corresponds to a leaf in T) the following
zk
v for some v ∈ Y gives an optimal solution, due to Lemma3.

zk
v (t) =

{
∑k

i=0 ∆d(Xji
) (t = v)

0 (t ∈ ∆Y \ {v}).

Hence we have

(α(Y, k), β(Y, k)) =

(

min
v∈Y

fY (zk
v), arg min

v∈Y
fY (zk

v)

)

(32)

for k = 0, · · · , h(Y)−1, where arg minv∈Y fY (zk
v) denotes a vertex v∗ ∈ Y

satisfying fY (zk
v∗) = minv∈Y fY (zk

v).
For a non-minimal Y ∈ F , Lemma 4 validates the following recursive

formulas.

α(Y, k) = min











min
X∈S(Y)

{

α(X, k + 1) +
∑

Z∈S(Y)
Z 6=X

α(Z, 0)

}

,

min
v ∈∆Y

{

f∆Y (zk
v) +

∑

X∈S(Y)

α(X, 0)

}







, (33)

β(Y, k) =



















β(X, k + 1) if α(Y, k) = α(X, k + 1) +
∑

Z∈S(Y)
Z 6=X

α(Z, 0),

v if α(Y, k) = f∆Y (zk
v) +

∑

X∈S(Y)

α(X, 0).
(34)

By using (32), (33), and (34), our algorithm first computes each α and
β from the leaves toward root wi0 of T . Then we obtain an optimal value

12

∑

X∈S(Xi0
) α(X, 0) of Problem (P1) in (20). Next, we compute an optimal

solution x∗ by using β from the root toward the leaves of T .
Our algorithm is formally described as follows.

Algorithm DP

Input: A laminar family F , a demand function d : F → R+, and a cost
function F as in (20).

Output: An optimal solution x∗ for Problem (P1) in (20).

Step 0. W̃ := W.

Step 1. (Compute α and β) While W̃ 6= {wi0} do

Choose an arbitrary leaf w ∈ W̃ of T [W̃].

/∗ Let Y be the set in F corresponding to w. ∗/

(1-I) Compute α(Y, k) and β(Y, k) for k = 0, · · · , h(Y)−1 by using
either (32) or ((33) and (34)).

(1-II) W̃ := W̃ \ {w}.

Step 2. W̃ := W \ {wi0}, and x∗(v) := 0 for all v ∈ V .

Step 3. (Compute an optimal x∗) While W̃ 6= ∅ do

Choose an arbitrary node w of T [W̃] having no leaving arc.

/∗ Let Y be the set in F corresponding to w, wj0 be the node in W
corresponding to Xj0 such that β(Y, 0) ∈ ∆Xj0 and let wj0 → wj1 →
· · · → wjl

(= w) be a directed path in T [W̃]. ∗/

(3-I) x∗(β(Y, 0)) :=
∑l

i=0 ∆d(Xji
).

(3-II) W̃ := W̃ \ {wj0 , · · · , wjl
}.

Step 4. Output x∗ and halt. �

Here T [W̃] denotes the subtree of T induced by W̃ .

We now analyze the complexity of Algorithm DP. Steps 0, 2, 3, and 4
require O(n) time. For Step 1, if Y ∈ F is a minimal set in F (i.e., w is a
leaf of T), then we compute α(Y, k) and β(Y, k) (k = 0, · · · , h(Y) − 1) in
O(h(Y)|∆Y |q) time. On the other hand, if Y is not minimal, then α(Y, k)
and β(Y, k) (k = 0, · · · , h(Y) − 1) can be computed in O(h(Y)(|S(Y)| +

13

|∆Y |q)) time, since α(Y, k) is obtained by taking the minimum among
|S(Y)| + |∆Y | values. Hence Step 1 requires

O

(

∑

Y ∈F

h(Y)(|S(Y)| + |∆Y |q)

)

= O(n2q)

time. Here, note that h(Y) ≤ n,
∑

Y ∈F |∆Y | = |V | = n, and
∑

Y ∈F |S(Y)| ≤
|F| − 1 ≤ 2n − 2, since F is laminar. Therefore, we have the following the-
orem.

Theorem 6 Algorithm DP computes an optimal solution for Problem (P1)
in O(n2q) time. �

4.3 The Lower Bound for the Time Complexity When F is

Given by an Oracle

In this section we consider a lower bound for the time complexity of our
problem when F is given by an oracle. We shall show that the oracle has
to be invoked Ω(n2) times even if we know in advance that F is given in
the form of (3), i.e., F =

∑

v∈V fv(x(v)). This, together with Theorem 6,
implies that Algorithm DP is optimal if F is given by an oracle.

Suppose n is a positive even number. Let g0 : R+ → R+ be a monotone
increasing and strictly concave function (e.g., g0(x) = −1

x+1 +1 (x ≥ 0)), and
for each i = n

2 + 1, n
2 + 2, · · · , n define gi : R+ → R+ by

gi(ξ) =

{

g0(
n
2 + 1) − g0(i −

n
2) (ξ > 0)

0 (ξ = 0).

Then, let V = {v1, · · · , vn} and consider a problem instance I obtained by

a laminar family F =
{

Xi = {v1, · · · , vn
2
+i}

∣

∣ i = 0, · · · , n
2

}

,

a demand function d : d(Xi) = i + 1 (i = 0, 1, · · · , n
2), (35)

a cost function F (x) =
∑

v∈V

fv(x(v)),

where

fvi
(ξ) =

{

g0(ξ) (vi ∈ X0)
gi(ξ) (vi ∈ V − X0).

From Theorem 5, we can get an optimal solution of this instance I as follows.

x(vi,k)(v) =







k (v = vi)
n
2 + 1 − k (v = vn

2
+k)

0 (v ∈ V \ {vi, vn
2
+k})

(36)

14

for some vi ∈ X0 and k ∈ {1, 2, · · · , n
2 +1}. Here, when k = n

2 +1, we mean
x(vi,k)(v) = k if v = vi, and 0 otherwise. Note that the optimal value for
the instance I is g0(

n
2 + 1), and any optimal solution can be represented as

(36) because g0 = fvi
(vi ∈ X0) is strictly concave and for each v ∈ V \ X0

fv(x(v)) is identical for x(v) > 0. For the instance I, suppose that F is given
by an oracle and that an algorithm A can compute an optimal solution by
invoking the oracle for F (x) for each x ∈ S with |S| ≤ n

2 (n
2 + 1) − 1. Then

we are led to a contradiction as shown below.
For each x ∈ S, we know the value of F (x) =

∑

v∈V fv(x(v)) after
executing Algorithm A. Furthermore, let us assume that we know that F is
separable, and fv(k) for all the pairs (v, k) 6∈ X0 × {1, · · · , n

2 + 1} such that
x(v) = k for some x ∈ S. Then, in order to compute the values fv(k) with
(v, k) ∈ X0 × {1, · · · , n

2 + 1}, we solve a linear system Bη = b of equations,
one for each x ∈ S that corresponds to

∑

v∈V fv(x(v)) = F (x). Here, B is
a |S| × n

2 (n
2 + 1) 0-1 matrix, b is a column |S|-vector, and η is an unknown

n
2 (n

2 + 1)-column vector η = (ηv(k) | v ∈ X0, k = 1, · · · , n
2 + 1), where ηv(k)

denotes the unknown variable representing the possible value of fv(k). Since
the number of the rows in B (≤ n

2 (n
2 + 1) − 1) is less than the number of

the columns, it follows from elementary linear algebra that there exists a
non-zero vector ϕ ∈ R

n
2
(n

2
+1) such that

ηε = (fv(k) | v ∈ X0, k ∈ {1, · · · , n
2 + 1}) + εϕ (−∞ < ε < +∞)

is a solution of Bη = b. Note that the ϕ ∈ R
n
2
(n
2
+1) \ {0} must satisfy

ϕv′(k
′) > 0, ϕv′′(k

′′) < 0 (37)

for some v′, v′′, k′, and k′′, since B is a 0-1 matrix. For a sufficiently small
ε(> 0) let f+

v , f−
v : R+ → R+ (v ∈ X0) be monotone concave functions

such that f+
v (k) = η+ε

v (k) and f−
v (k) = η−ε

v (k). Since |S| is finite and g0 is
strictly concave, f+

v and f−
v are well-defined.

For the instance I and any S ⊆ RV
+ with |S| ≤ n

2 (n
2 +1)−1, we define two

instances I±, each of which has a laminar family F and a demand function
d as given in (35), but has a cost function F ± different from F defined by

F+ =
∑

v∈X0

f+
v +

∑

v∈V \X0

fv,

F− =
∑

v∈X0

f−
v +

∑

v∈V \X0

fv.

Let

C = {(v∗, k∗) | ϕv∗(k
∗) = max{ϕv(k) | v ∈ X0, k ∈ {1, 2, · · · , n

2 }}.

Then it follows from (37) that if (v, k) 6∈ C, then x(v,k) given by (36) is not
an optimal solution of I− and otherwise ((v, k) ∈ C), x(v,k) is not an optimal
solution of I+.

15

Now, let y be an optimal solution of I obtained by Algorithm A. Since
g0 is strictly concave, we have y = x(v,k) for some (v, k). Note that

F (x) = F−(x) = F +(x) (x ∈ S).

Hence we cannot distinguish any of the three functions F , F +, and F− from
the others based on the function values on S, so that y should also be an
optimal solution of problem instances I+ and I−. However, y cannot be an
optimal solution of both I+ and I− as shown above, which is a contradiction.

Summing up the arguments, we get

Lemma 7 There exists a problem instance of (P1) in (20) that requires at

least n
2 (n

2 + 1) calls to the oracle for F even if F is a separable monotone

concave function (i.e., F =
∑

v∈V fv with monotone concave functions fv :
R+ → R+ (v ∈ V)).

This implies the following theorem.

Theorem 8 If F is given by an oracle, then Problem (20) requires Ω(n2q)
time.

We can easily see that Lemma7 still holds even if each fv is given by an
oracle.

Theorem 9 Let F be a separable monotone concave function (i.e., F =
∑

v∈V fv with monotone concave functions fv : R+ → R+ (v ∈ V)). If each

fv is given by an oracle, then Problem (20) requires Ω(n2q) time.

Notice that Algorithm DP given in Section 4.2 is optimal, due to this
theorem.

Theorem 10 If the cost function F =
∑

X∈F f∆X is given by an oracle,

then Problem (20) requires Θ(n2q) time.

5 The Linear Cost Case

In this section we consider the problem whose cost function is given as F3,
i.e.,

(P3) Minimize
∑

v∈V :x(v)>0

(avx(v) + bv)

subject to x(X) ≥ d(X) (X ∈ F), (38)

x(v) ≥ 0 (v ∈ V),

where av and bv are nonnegative constants. Namely, the cost function F is
the sum of fv (v ∈ V) represented by

fv(x) =

{

avx + bv (x > 0)
0 (x = 0).

16

Note that Problem (P3) in (38) can be solved in O(n2q) time by using
Algorithm DP in Section 4.2. We shall show that it admits an O(n log2 n)
time algorithm. We remark that our problem requires O(n2q) time even if
F is separable.

5.1 An Algorithm Based on Lower Envelope Computation

For i = 1, 2, · · · , k, let fi : R+ → R+ be given by

fi(x) =

{

aix + bi (x > 0)
0 (x = 0).

The lower envelope of f1, · · · , fk is given as f(x) = mini fi(x), and note that
it is piecewise linear for x > 0, and hence it can be represented as

f(x) =







0 (x = 0)
gj(x) (Pj < x ≤ Pj+1, j = 0, · · · , l − 1),
gl(x) (Pl < x)

where P0(= 0) < P1 < · · · < Pl, each gj is one of the fis, and for the slopes
αj of gjs we have α0 > α1 > · · · > αl. We say that gj attains f at x if either
(Pj < x ≤ Pj+1 and j ∈ {0, · · · , l − 1}) or (Pj < x and j = l).

It is well known that the lower envelope of f1, · · · , fj+1 can be computed
from that of f1, · · · , fj and fj+1 in O(log j) time. Hence the lower envelope
of f1, · · · , fk can be constructed in O(k log k) time.

Our algorithm is similar to Algorithm DP in Section 4.2, but, for each
Y ∈ F , it constructs the lower envelope corresponding to α(Y, k) (k =
0, · · · , h(Y)−1). This implicit computation of α(Y, k) (k = 0, · · · , h(Y)−1)
makes the algorithm faster.

Algorithm ENVELOPE

Step 0. T̃ (= (W̃ , Ã)) := T.

Step 1. (Make the lower envelopes) While W̃ 6= {wi0} do
Choose an arbitrary leaf w ∈ W̃ of T [W̃].

/∗ Let Y be the set in F corresponding to w ∗/

(1-I) If w is a leaf of T , then compute the lower envelope fY of fv(x+
d(Y)) (v ∈ Y). Otherwise, compute the lower envelope of

fX(x + ∆d(Y)) +
∑

Z∈S(Y):
Z 6=X

fZ(0) (X ∈ S(Y)),

fv(x + ∆d(Y)) +
∑

Z∈S(Y)

fZ(0) (v ∈ ∆Y).

17

(1-II) W̃ := W̃ \ {w}.

Step 2. W̃ := W \ {wi0}, and x∗(v) := 0 for all v ∈ V .

Step 3. (Compute an optimal solution x∗) While W̃ 6= ∅ do

Choose an arbitrary node w of T [W̃] having no leaving arc.

/∗ Let Y be the set in F corresponding to w. Assume that fY is
attained at 0 by a function obtained from fv. Let wj0 be the node in
W̃ corresponding to Xj0 such that v ∈ ∆Xj0 , and let wj0 → wj1 →
· · · → wjl

(= w) be a directed path in T [W̃]. ∗/

(3-I) x∗(v) :=
∑l

i=0 ∆d(Xji
).

(3-II) W̃ := W̃ \ {wj0 , · · · , wjl
}.

Step 4. Output x∗ and halt. �

Let us consider more precisely Step 1 for computing the lower envelope
fY . If w is a leaf of T , then it follows from the above discussion that fY can
be computed in O(|Y | log |Y |) time. On the other hand, if w is not a leaf of
T , then let X∗ be a set in S(Y) with the maximum |X∗|. Then we construct
fY by successively adding all lines appearing in fX(x + ∆d(Y))(x ≥ 0) for
X ∈ S(Y) \ {X∗} or fv(x + ∆d(Y))(x ≥ 0) for v ∈ ∆Y to fX∗(x + ∆d(Y)).
Since |Y | ≥ 2|X| for any X ∈ S(Y) \ {X∗}, we have O(n log n) additions
in total. Since each addition can be done in O(log n) time, Step 1 can be
executed in O(n log2 n) time.

Lemma 11 Algorithm ENVELOPE correctly computes an optimal solution

in O(n log2 n) time if all the values of av and bv are given.

Proof. Since the correctness can be proved similarly as for Algorithm DP,
it suffices to analyze the running time.

Clearly, Steps 0, 2, 3, and 4 can be executed in O(n) time. Moreover, the
above argument shows that Step 1 can be carried out in O(n log2 n) time.
Hence the total running time of Algorithm ENVELOPE is O(n log2 n). �

Theorem 12 Problem (P3) in (38) can be solved in O(n log2 n) time if F
is given explicitly in a functional form, and in O(n(q + log2 n)) time if F is

given implicitly by an oracle.

Proof. The former statement follows from Lemma 11. The latter follows
from Lemma 11 and the fact that all av and bv (v ∈ V) can be computed in
O(nq) time by invoking the oracle. �

18

6 The General Cost Case

In this section we consider Problem (P) in (6) ∼(8) whose cost function F
is general monotone concave. We show that it requires Ω(2

n
2 q) time to solve

the problem if F is given implicitly by an oracle, and that it is NP-hard if
F is given explicitly in a functional form.

6.1 A Lower Bound When F is Given by an Oracle

Now we consider Problem (P) whose cost function F is given by an oracle.
To get a lower bound we consider the following problem instance I. Let V =
{v1, · · · , vn}, where n is even. Suppose F = {{v2i−1, v2i} | i = 1, · · · , n

2 },
d(X) = 1 for all X ∈ F , and F (x) =

∑

σ∈Π gσ(x), where Π is the set of all
permutations of {1, 2, · · · , n} and

gσ(x) = g(x(vσ1) · 2
n−1 + x(vσ2) · 2

n−2 + · · · + x(vσn−1) · 2 + x(vσn))

where g : R+ → R+ is a strictly concave and monotone function, and σ =
(σ1, σ2, · · · , σn) is a permutation of order n. Clearly gσ and F are strictly
concave and monotone as g is.

We can easily see that all the optimal solutions x satisfy

{x(v2i−1), x(v2i)} = {0, 1} for i = 1, · · · ,
n

2
(39)

and we thus have 2
n
2 optimal solutions.

For an S ⊆ RV
+ with |S| ≤ 2

n
2 −1, we construct two problem instances I−

and I+ as follows. I− and I+ both have F and d defined as above, but they
have different cost functions F− and F+. For y ∈ RV

+ let yσ =
∑n

i=1 y(vσi
) ·

2n−i. Then, for any permutation σ∗ ∈ Π, we have |{yσ∗ | y ∈ S}| ≤ 2
n
2 − 1.

In addition, since yσ∗ 6= zσ∗ holds for two distinct vectors y and z in RV
+

satisfying (39), there is a vector x∗ of form (39) such that x∗
σ∗ 6= yσ∗ for

all y ∈ S. Choosing any such vector x∗, we define two monotone concave
functions g− and g+ by

g±(α) =

{

g(α) α ∈ {yσ∗ | y ∈ S}
g(α) ± ε α = x∗

σ∗ ,

where ε is a sufficiently small positive number. Since g is strictly concave,
|S| is finite, and ε (> 0) is sufficiently small, g− and g+ are well-defined.
Then we define F− and F+ by

F± = g±σ∗ +
∑

σ∈Π:σ 6=σ∗

gσ ,

where g±σ∗(x) = g±(xσ∗).

19

Let x− and x+ be any optimal solutions of I− and I+, respectively. Then
we can see that

x− = x∗, x+ 6= x∗. (40)

Hence we have

Theorem 13 Problem (P) requires at least 2
n
2 calls to the oracle in the

worst case when the cost function is given by an oracle.

Proof. Assume to the contrary that Algorithm A computes an optimal
solution y by invoking the oracle for the values of x ∈ S with |S| ≤ 2

n
2 − 1.

For this S, we construct I− and I+ defined as above. Then we have F (x) =
F−(x) = F +(x) for all x ∈ S. Hence y must be an optimal solution to all I,
I− and I+. However, this contradicts (40). �

Corollary 14 It takes Ω(2
n
2) time to solve Problem (P) if F is given by an

oracle.

6.2 NP-Hardness when F is Given in a Functional Form

We now consider Problem (P) when the cost function is given explicitly in
a functional form, We show that the problem is NP-hard, by reducing to it
the following 3 SAT, which is known to be NP-hard.

3 SAT

Input: A 3-CNF ϕ =
∧

cj∈C
cj , where cj = (lj1 ∨ lj2 ∨ lj3).

Question: Is ϕ satisfiable, i.e., does there exist an assignment y∗ ∈
{0, 1}N such that ϕ(y∗) = 1 ?

Here cj is a clause containing three literals lj1 , lj2 and lj3 in {y1, · · · , yN , ȳ1, · · · , ȳN}.
Given a problem instance I of 3 SAT, we construct the corresponding

instance J of Problem (P) as follows.
Let V = {v1, · · · , v2N} and F = {Xi = {v2i−1, v2i} | i = 1, 2, · · · , N}.

Let d be a demand function defined by d(Xi) = 1 for each Xi ∈ F , and let
F be a cost function given by

F (x) = α





N
∑

i=1

min{x(v2i−1), x(v2i)}+
∑

cj∈C

min
{

x(v(j1)), x(v(j2)), x(v(j3))
}



 (41)

where α > 0, and v(jk) = v2i−1 if ljk
= ȳi and v(jk) = v2i if ljk

= yi. Note that
F is a monotone concave function, and hence F , d, and F defined above give
a problem instance of (P). Intuitively, v2i−1 and v2i correspond to literals
yi and ȳi, respectively, min{x(v2i−1), x(v2i)} in F produces an assignment
of yi, and min{x(v(j1)), x(v(j2)), x(v(j3))} in F imposes cj(y) = 1. More
formally, we have the following lemma.

20

Lemma 15 Let J denote the problem instance of (P) constructed as above

from a problem instance I of 3SAT. Let OPT (J) denote the optimal value of

J. Then I is satisfiable if and only if OPT (J) = 0, and unsatisfiable if and

only if OPT (J) ≥ α (> 0).

Proof. Let us first show the first statement, i.e., I is satisfiable if and only if
OPT (J) = 0. Let y∗ be a satisfying assignment of I, i.e., ϕ(y∗) = 1. Then we
define x∗ ∈ RV

+ by x∗(v2i−1) = 1 and x∗(v2i) = 0 if y∗i = 1, and x∗(v2i−1) = 0
and x∗(v2i) = 1 otherwise. Clearly, x∗ is a feasible solution of J, and we have
F (x∗) = 0. Since F (x) ≥ 0 for all x ∈ RV

+, OPT (J) = 0. If OPT (J) = 0,
then any optimal solution x∗ of J satisfies {x∗(v2i−1), x

∗(v2i)} = {0, 1} for
all i and at least one of x∗(v(j1)), x∗(v(j2)) and x∗(v(j3)) is 0. Thus by letting
y∗i = 1 if x∗(v2i−1) = 1 and 0 otherwise, we have a satisfying assignment y∗

of ϕ.
Let us finally show that the unsatisfiability of I implies OPT (J) ≥ α.

Since OPT (J) 6= 0 implies the unsatisfiability of I from the equivalence
shown above, this completes the proof. Since F is concave monotone and
the constraints are x(v2i−1)+x(v2i) ≥ 1 for all i, we restrict optimal solutions
x∗ of J to those satisfying {x∗(v2i−1), x

∗(v2i)} = {0, 1} for all i. This implies
F (x∗) ≥ α, since I is not satisfiable. �

Note that the value of α in (41) can be arbitrarily large. This means
that our problem cannot be approximated unless P=NP.

Theorem 16 It is NP-hard to approximate Problem (P) within any con-

stant α. In particular, Problem (P) is NP-hard.

7 Concluding Remarks

We have considered the problem of minimizing monotone concave functions
with laminar covering constraints. We have shown an O(n2q) algorithm
when the objective function F can be decomposed into monotone concave
functions by the partition of V that is induced by the laminar family F .
Our algorithm is optimal when F is given by an oracle. We have also given
a faster algorithm when F is the sum of linear cost functions with fixed
setup costs. We have further shown that in general our problem requires
Ω(2

n
2 q) time when F is given implicitly by an oracle, and that it is NP-hard

in general if F is given explicitly in a functional form.
In this paper we have assumed that the objective function F is monotone

nondecreasing. It should be noted that this monotonicity assumption can
be removed if we impose that the sum x(V) be equal to a constant, since the
monotonicity is only used to have an optimal solution x with the minimum
x(V).

Acknowledgments: The present work is supported by a Grant-in-Aid from
Ministry of Education, Culture, Sports, Science and Technology of Japan.

21

The authors would like to express their appreciation to Hiro Ito (Kyoto
Univ.), Hiroshi Nagamochi (Kyoto Univ.), András Frank (Eötvös Univ.),
and Tibor Jordán (Eötvös Univ.) for their valuable comments.

References

[1] P. K. Ahuja, T. L. Magnanti and J. B. Orlin: Network Flows: Theory,

Algorithms, and Applications, Prentice Hall, (1993).

[2] K.Arata, S. Iwata, K. Makino, and S. Fujishige: Locating sources to
meet flow demands in undirected networks, J. Algorithms, 42 (2002),
54–68.

[3] A.A. Benczúr and D. R.Karger: Augmenting undirected edge connec-
tivity in Õ(n2) time, J. Algorithms, 37 (2000), 2–36.

[4] G.-R. Cai and Y.-G. Sun: The minimum augmentation of any graph to
k-edge-connected graph, Networks, 19 (1989), 151–172.

[5] A. Frank: Augmenting graphs to meet edge-connectivity requirements,
SIAM J. Discrete Mathematics, 5 (1992), 25-53.

[6] S. Fujishige: Submodular Functions and Optimization: Second Edition,
Annals of Discrete Mathematics, 58, Elsevier (2005).

[7] H. Ito and M. Yokoyama: Edge connectivity between nodes and node-
subsets, Networks, 31 (1998), 157–164.

[8] H. Ito, K.Makino, K.Arata, S.Honami, Y. Itatsu, and S. Fujishige:
Source location problem with flow requirements in directed net-
works, Optimization Methods and Software, 18 (2003), 427–435.

[9] L. Lovász: Combinatorial Problems and Exercises, North-Holland
(1979).

[10] W. Mader: A reduction method for edge-connectivity in graphs, Ann.

Discrete Mathematics, 3 (1978), 145–164.

[11] W. Mader: Konstruktion aller n-fach kantenzusammenhangenden Di-
graphen, European J. Combin., 3 (1982), 63–67.

[12] H.Nagamochi: Computing extreme sets in graphs and its applications,
Proc. of the 3rd Hungarian-Japanese Symposium on Discrete Mathe-

matics and Its Applications (January 21–24, 2003, Tokyo, Japan) 349–
357.

[13] H.Nagamochi and T. Ibaraki: A note on minimizing submodular func-
tions, Information Processing Letters, 67 (1998), 239–244,

22

[14] H.Nagamochi and T. Ibaraki: Augmenting edge-connectivity over the
entire range in Õ(nm) time, J. Algorithms, 30 (1999), 253–301.

[15] D. Naor, D. Gusfield and C.Martel: A fast algorithm for optimally in-
creasing the edge connectivity, SIAM J. Computing, 26 (1997), 1139–
1165.

[16] M. Sakashita, K. Makino, and S. Fujishige: Minimizing a monotone
concave function with laminar covering constraints, ISAAC2005, LNCS
3827 (2005), 71–81.

[17] H.Tamura, M. Sengoku, S. Shinoda, and T.Abe: Some covering prob-
lems in location theory on flow networks, IEICE Transactions on Fun-

damentals of Electronics, Communications and Computer Sciences,
E75-A (1992), 678–683.

[18] H.Tamura, H. Sugawara, M. Sengoku, and S. Shinoda: Plural cover
problem on undirected flow networks, IEICE Trans., J81-A (1998),
863–869 (in Japanese).

[19] T. Watanabe and A. Nakamura: Edge-connectivity augmentation prob-
lems, Computer and System Sciences 35 (1987) 96–144.

23

