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Abstract

This paper presents a sequential semidefinite programming (SDP) approach to maximize
the minimal eigenvalue of the generalized eigenvalue problem, in which the two symmetric
matrices defining the eigenvalue problem are supposed to be the polynomials in terms
of the variables. An important application of this problem is found in the structural
optimization which attempts to maximize the minimal eigenvalue of the free vibration.
It is shown that the maximization of minimal eigenvalue of a structure can be formulated
as the linear optimization over a polynomial matrix inequality (polynomial SDP). We
propose a bisection method for the polynomial SDP, at each iteration of which we solve a
maximization problem of a convex function over a linear matrix inequality. A sequential
SDP method is proposed for the subproblem based on the DC (difference of convex
functions) algorithm. Optimal topologies are computed for various framed structures
to demonstrate that the algorithm presented can converge to optimal solutions with
multiple lowest eigenvalues without any difficulty.

Keywords

Topology optimization, Semidefinite program, Multiple eigenvalue, Interior-point method,
DC algorithm

1 Introduction

This paper discusses a technique for solving a class of nonlinear programming problems, in which
we attempt to minimize a linear function over the constraint such that a symmetric matrix Z(y)
defined as a (matrix-valued) polynomial of the variables y should be positive semidefinite. This
problem class is referred to as the polynomial semidefinite program (polynomial SDP), because it
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includes the semidefinite program (SDP) [13] as a particular case in which Z(y) is an affine function
of y. It is known that the SDP problem is convex, while the polynomial SDP problem is nonconvex
in general.

We have a motivation of studying the polynomial SDP in the design optimization of structures
under the eigenvalue constraints of free vibration, which has been studied widely in structural
engineering [33, 35]. Indeed, it was shown that the design optimization of truss structures under
the frequency constraints can be formulated as an SDP problem [31]. In designing civil, mechanical
and aerospace structures, the eigenvalues of free vibration, as well as the linear buckling load factor,
have been used widely for decades as a performance measure of structures.

Let Sn ⊂ Rn×n denote the set of all n × n real symmetric matrices. The set of all positive
semidefinite matrices is denoted by Sn

+ ⊂ Sn. We write P º O if P ∈ Sn
+. Let c ∈ Rm and

d ∈ R be constant. In this paper, we solve the following polynomial SDP problem in the variables
(y, λ) ∈ Rm × R:

max
y,λ

{
λ : A(y) − λB(y) º O, cTy + d ≤ 0, y ≥ 0

}
. (1)

Here, we suppose that A : Rm → Sn and B : Rm → Sn are the polynomial matrix-valued functions
written as

A(y) =
m∑

i=1

p∑
j=1

A
(j)
i yj

i + A(0), (2)

B(y) =
m∑

i=1

p∑
j=1

B
(j)
i yj

i + B(0), (3)

where A(0), B(0), A
(j)
i , and B

(j)
i ∈ Sn (i = 1, . . . ,m; j = 1, . . . , p) are positive semidefinite constant

matrices. The following problem is relevant to Problem (1) and is formulated in the variables y ∈ Rm

min
y

{
cTy : A(y) − ΛB(y) º O, y ≥ 0

}
, (4)

where Λ ∈ R is constant. Indeed, if Problem (4) is solvable, then Problem (1) can be solved
by applying the bisection method, at each iteration of which Problem (4) is solved. Certainly,
Problem (4) is nonconvex generally. Both Problems (1) and (4) are referred to as the polynomial
SDP problems in this paper.

Suppose that A and B are affine mappings, i.e. p = 1. Then Problem (4) falls into the SDP
problem, which can be solved by using the primal-dual interior-point method within the polynomial
time [6, 13, 25]. Hence, in this case, Problem (1) can be solved efficiently by using the bisection
method; see Remark 3.1 for more details.

Another interesting case seems to be

A(y) =
m∑

i=1

A
(1)
i yi + A(0),

B(y) =
m∑

i=1

B
(2)
i y2

i +
m∑

i=1

B
(1)
i yi + B(0),

for positive semidefinite A
(p)
i and B

(p)
i , because Problem (4) becomes convex. However, for typical

application of our interest, it is the case that A(y) is a nonlinear function and hence Problem (4)
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is nonconvex. See the review paper [28] for various eigenvalue optimization problems and their
application.

We give a brief review of eigenvalue optimization of structures. It is well known that optimum
designs for maximization problem of the fundamental eigenvalue often have multiple (repeated)
eigenvalues. Such an optimal structure was first presented by Olhoff and Rasmussen [32], in which
necessary conditions for optimality are discussed and an optimal column under buckling constraint
is found by using an optimality criteria approach. Cox and Overton [9], however, pointed out that
the existence of two hinges in the optimal shape leads to serious computational difficulties.

It has been shown that the multiple eigenvalues are not differentiable continuously, and only
directional derivatives with respect to the design variables may be calculated [7, 12]. There-
fore, it is very difficult to obtain the optimal design related to eigenvalue optimization by using
a gradient-based nonlinear programming algorithm for a large structure, especially for the topology
optimization in which we allow some elements of the structure to vanish. Several computational
approaches have been developed for sensitivity analysis of multiple eigenvalues of finite dimensional
structures [35]. Khot [20] presented an optimality criteria approach for optimum design of trusses
with multiple frequency constraints. Rodorigues et al. [34] developed necessary conditions for opti-
mality for problems under constraints on the linear buckling load factor based on Clarke’s generalized
gradient. Nakamura and Ohsaki [29] proposed a parametric programming approach for generating
a family of optimal trusses for specified frequency range.

An optimal topology may be obtained based on the conventional ground structure method , in
which the locations of structural elements are fixed and the optimal topology is obtained by removing
the elements with vanishing design variables. In the authors’ previous paper [31], it has been shown
that topology optimization of trusses under frequency constraints can be formulated as SDP, and an
algorithm has been proposed based on the primal-dual interior-point method [25], which is applicable
to cases with any multiplicity of the lowest eigenvalues. As a natural extension, we consider not
only truss structures but general finite-dimensional structures in this paper. We show that the
maximization problem of the minimal eigenvalue of a structure is formulated as a polynomial SDP
problem.

Recently, in continuation of the interest in SDP, several extension models of SDP have been
proposed, which are called nonlinear SDP problems. For distinction, a conventional SDP is some-
times called a linear SDP , in spite of the fact that the linear SDP is a nonlinear optimization. It is
known that the nonlinear SDP has the application in control theory [10, 26, 30] as well as structural
engineering [5, 16, 18, 22]. The structural optimization over the lower bound constraint on the linear
buckling load factor can be formulated as a nonlinear SDP problem [5, 16, 22]. The polynomial
optimization problem on positive semidefinite cones was studied by Kim et al. [21]. The first author
showed that the robust optimal design of a structure subjected to uncertain loads can be formulated
as a nonlinear SDP problem [18].

The interior-point methods for the linear SDP have been extended to the nonlinear SDP [14,
26]. As in the case of the sequential linear programming method for the differentiable nonlinear
optimization, the sequential SDP method were proposed [18, 19], in which a nonlinear SDP problem
is approximated as a linear SDP problem successively. Several algorithms for the nonlinear SDP
have been inspired by the conventional sequential quadratic programming approach [8, 10, 11]. The
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augmented Lagrangian approach has been also applied to the nonlinear SDP [30, 37]. A penalty
method for the convex optimization over the bilinear matrix inequality was proposed [23, 24].

Note that the existing algorithms [8, 10, 11, 18, 19] for the nonlinear SDP are based on an
approximation of the nonlinear matrix inequality constraint into a linear matrix inequality. For
example, such an approximation is realized in Problem (4) by approximating the nonlinear mappings
A and B by affine mappings at the current solution. These algorithms are local methods and are
not guaranteed theoretically to converge to the global solutions. While the algorithm presented in
this paper is also a local approach, our idea differs from a direct linearization of A and B.

Indeed, we have examined a sequential SDP method based on a linearization of A and B to
solve Problem (4). This problem is motivated by the optimization of framed structures over the
lower bound constraint on the fundamental eigenvalue. We have found that such an algorithm often
converges to local solutions that are unreasonable, or unnatural, from the practical view-point of
structural engineering; see section 2.2 for the details and examples of unreasonable local solutions.
As a consequence, we attempt to develop an algorithm that can often find a global (or, at least,
possibly local but reasonable from the practical point of view) solution, by utilizing a methodology
other than a local linearization of A and B. Note again that our algorithm does not guarantee the
convergence to a global optimal solution. However, in numerical experiments reported, it seems that
all solutions obtained are global optimal solutions.

We propose a bisection method for the polynomial SDP (1). At each iteration, we solve a
maximization problem of a convex function over a linear matrix inequality, which can be embedded
into a DC (difference of convex functions) optimization problem. The resulting problem is solved by
using the so-called DC algorithm. For the DC optimization and the DC algorithm, see the review
paper [4]. The DC algorithm is one of a few algorithms based on a local approach which has been
successfully applied to large-scale DC optimization problems, and very often converges to the global
optimal solution [3, 4].

This paper is organized as follows. In section 2.1, in order to make this paper self-contained,
the (linear) SDP problem is briefly introduced. In section 2.2, preliminary numerical experiments
for the polynomial SDP problem (4) are reported in order to explain the necessity of developing an
algorithm which is not based on the linear matrix inequality approximation. Section 3 formulates the
maximization problem of the minimal eigenvalue of a structure as a polynomial SDP problem (1).
We modify Problem (1) slightly so that the feasibility problem becomes well-defined. In section 4,
we present the framework of bisection method for polynomial SDP based on a maximization problem
of a convex function over a linear matrix inequality, for which a sequential SDP method based on
the DC algorithm is presented in section 5. Explicit formulations for framed structures are given
in section 6. Numerical experiments are presented in section 7 for various structures by using the
sequential SDP method, while conclusions are drawn in section 8.

2 Preliminaries

All vectors are assumed to be column vectors in this paper. The (m+n)-dimensional column vector
(uT, vT)T consisting of u ∈ Rm and v ∈ Rn is often written simply as (u, v). For any v ∈ Rn, let ‖v‖
denote the standard Euclidean norm of v, i.e. ‖v‖ = (vTv)1/2. For two sets U ⊆ Rm and V ⊆ Rn,
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their Cartesian product is defined by U × V = {(uT, vT)T ∈ Rm+n|u ∈ U , v ∈ V}. Particularly,
we write Rm+n = Rm × Rn. The cardinality of the set U is denoted by |U|. The empty set is
denoted by ∅. Define the vector 1 with an appropriate size by 1 = (1, . . . , 1)T. We write Diag(p)
for the diagonal matrix with a vector p ∈ Rn on its diagonal. For pl ∈ Rnl (l = 1, . . . , k), we simply
write Diag(p1, . . . , pk) instead of Diag((pT

1 , . . . , pT
k )T). Define Rn

+ ⊂ Rn and Define Rn
++ ⊂ Rn by

Rn
+ = {p ∈ Rn|p ≥ 0} and Rn

++ = {p = (pi) ∈ Rn| pi > 0 (i − 1, . . . , n)}, respectively.

2.1 Introduction of semidefinite program

For any matrix P ∈ Rn×n, tr(P ) denotes the trace of P , i.e. the sum of the diagonal elements of P .
Let Ai ∈ Sn (i = 1, . . . ,m), C ∈ Sn, and b = (bi) ∈ Rm be constant matrices and a constant vector.
The semidefinite programming (SDP) problem refers to the optimization problem having the form
of [13]

min {tr(CX) : tr(AiX) = bi, i = 1, . . . ,m, Sn 3 X º O} , (5)

where X is a variable matrix. The dual of Problem (5) is formulated in the variables y ∈ Rm as

max

{
bTy : C −

m∑
i=1

Aiyi º O

}
, (6)

which is also an SDP problem.
Recently, SDP has received increasing attention for its wide fields of application [6, 17, 31].

The primal-dual interior-point method, which has been first developed for LP, has been naturally
extended to SDP [13, 25]. It is theoretically guaranteed that the primal-dual interior-point method
converges to optimal solutions of the primal-dual pair of SDP problems (5) and (6) within the
number of arithmetic operations bounded by a polynomial of m and n.

The constraint in Problem (6) is referred to as a linear matrix inequality . It is easy to see that
usual linear inequalities can be represented as a linear matrix inequality as a particular case in which
Ai and C are diagonal matrices. This implies that the linear program (LP) is included in SDP as a
particular case.

Let a0 ∈ Rm, A1 ∈ Rm×(n−1), c0 ∈ R, and c1 ∈ Rn−1 be constant. The inequality in the form of

c0 − aT
0 y ≥ ‖c1 − AT

1 y‖

is referred to as a second-order cone (or conic quadratic) inequality in Rn. A minimization problem of
a linear function of y over a direct product of some second-order cone inequalities is called a second-
order cone programming (SOCP) problem [1]. It is known that a second-order cone inequality can
be written as a linear matrix inequality [6], which implies that SOCP is included in SDP as a
particular case. Besides this fact, SOCP itself has also received much attention for its wide fields of
application [1, 6, 15].

2.2 Preliminary numerical experiments

We first report results of preliminary numerical experiments for the polynomial SDP problem (4),
in order to explain the necessity of developing an algorithm which is not based on the linearization
of A and B but is based on the feasibility problem.
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Figure 1: Two local solutions of the example in section 7.2 obtained by using the linear matrix
inequality approximation (8).

A simple method to solve Problem (4) may be based on the sequential approximation of the
nonlinear matrix inequality

A(y) − ΛB(y) º O (7)

as a linear matrix inequality. Roughly speaking, by using the linearization, we obtain a linear SDP
problem as an approximation of Problem (4). More specifically, at y = yk, the nonlinear matrix
inequality (7) can be approximated as[

DA(yk)∆y + A(yk)
]
− Λ

[
DB(yk)∆y + B(yk)

]
º O. (8)

Here, DA(yk) denotes the derivative of the mapping A at yk ∈ Rm defined such that DA(yk)z ∈ Sn

is a linear function of z = (zi) ∈ Rm given by

DA(yk)z =
m∑

i=1

zi
∂A(y)

∂yi

∣∣∣∣
y=yk

.

Similarly, the derivative of B at yk ∈ Rm is denoted by DB(yk). By using the localization (8) we
obtain an SDP approximation of Problem (4) in the variables ∆y ∈ Rm

min
∆y

{
cT∆y :

[
DA(yk)∆y + A(yk)

]
− Λ

[
DB(yk)∆y + B(yk)

]
º O, ∆y + yk ≥ 0

}
. (9)

A sequential SDP method for Problem (4) may be designed, at each iteration of which the SDP
problem (9) is to be solved as a subproblem. We may make further refinements on the subprob-
lem (9), e.g. adding a trust-region constraint [18, 19], a convex quadratic model of the objective
function [10], and a linearization based on the augmented Lagrangian [8, 30].

As a preliminary numerical experiment, we solved a structural optimization problem which
minimizes the total structural volume over the lower bound constraint of the minimal eigenvalue. The
framed structure illustrated in Fig.9 is considered; see section 7.2 for the details. The optimization
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problem is formulated in the form of Problem (4). The optimal solution was found by solving the
approximation problem (9) successively. We added a trust-region constraint to Problem (9), but the
details of the algorithm are omitted.

The typical solutions obtained are illustrated in Fig.1. These two solutions have different optimal
values, and it seems that both solutions are not globally optimal but local optimal solutions. It should
be emphasized that these solutions are not regarded as realistic designs from the practical point of
view, because these solutions have apparently unnecessary members at upper-left and -right corners.
On the contrary, the algorithm presented below converges to the solution illustrated in Fig.10, which
is more natural and thus seems to be globally optimal, in spite of the fact that the algorithm has no
guarantee of the convergence to the global optimal solution. In order to avoid the convergence to
local solutions as Fig.1, we attempt to develop an algorithm that does not use a direct linearization
of A and B.

3 Maximization of minimal eigenvalue of structures

Consider a finitely-discretized structure in the two- or three-dimensional space. Let nd denote the
number of degrees of freedom of displacements. The stiffness matrix is denoted by K ∈ Snd

. In the
free vibration problem of a structure, we consider the inertia forces caused by the masses both of
the structural elements and the concentrated masses supported by the structure. The mass matrices
due to the structural and concentrated nonstructural masses, respectively, are denoted by MS ∈ Snd

and M0 ∈ Snd
. Note that K and MS are the functions of the design variables vector y ∈ Rm

+ , while
M0 is a constant matrix.

The eigenvalue problem of free vibration is formulated as

Kφr = ωr(MS + M0)φr, r = 1, . . . , nd. (10)

Here, ω1, . . . , ωnd ∈ R are the eigenvalues arranged in the non-descending order, i.e.

ω1 ≤ ω2 ≤ · · · ≤ ωnd .

The corresponding eigenvector φr ∈ Rnd
is normalized as

φT
r (MS + M0)φr = 1, r = 1, . . . , nd. (11)

Let v : Rm →]0, +∞[ be the convex polynomial function which represents the structural volume.
The upper bound of the structural volume is denoted by V 0 ∈ R++.

The following is the design problem to find the optimal design at which the minimal eigenvalue
is maximized under the volume constraint:

max
y

ω1(y)

s.t. v(y) ≤ V 0,

y ≥ 0.

 (12)

It is known that optimum solutions of Problem (12) often have multiple (repeated) eigenvalues [29,
31, 32, 35], and multiple eigenvalues are not differentiable continuously. The aim of the paper is to
propose an algorithm solving (12) without using the sensitivity coefficients of ω1 with respect to y.
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By using the Rayleigh principle, Problem (12) is reformulated into the problem

max
y,ω

ω

s.t. K(y) − ω
(
MS(y) + M0

)
º O,

v(y) ≤ V 0,

y ≥ 0,

 (13)

where y ∈ Rm and ω ∈ R are the variables. See Ohsaki et al. [31].
Note that K(y) and MS(y) are matrix-valued polynomial functions of y for various classes of

structures; see section 6 for examples. In sections 3, for simplicity of the presentation, we suppose
that K and MS are written as

K(y) =
m∑

i=1

A
(p)
i yp

i , (14)

MS(y) =
m∑

i=1

B
(1)
i yi, (15)

where A
(p)
i ∈ Snd

and B
(1)
i ∈ Snd

are positive semidefinite constant matrices, and p ≥ 2 is the given
natural number. It is immediate to generalize the results and the algorithm below to the general
case in the forms of (2) and (3); see section 6. By using (14) and (15), Problem (13) is written
explicitly as

max
y,ω

ω

s.t.
m∑

i=1

A
(p)
i yp

i −
m∑

i=1

ωB
(1)
i yi − ωM0 º O,

v(y) ≤ V 0,

y ≥ 0,


(16)

which is a polynomial SDP problem in the form of (1). Note that the optimal value of Problem (16)
is nonnegative, because we have assumed that A

(p)
i and B

(1)
i (i = 1, . . . ,m) are positive semidefinite.

Moreover, for M0 6= O, the optimal value is equal to zero only if the feasible set of Problem (16)
is the singleton {(y, ω) ∈ Rm+1| (y, ω) = 0}. Certainly, we are not interested in this trivial case.
Hence, we assume that the optimal value of Problem (16) is positive in the remainder of the paper.

Remark 3.1. It is of interest to investigate Problem (16) in the particular case of p = 1, which
corresponds to truss structures [31]. In this case, (16) can be solved easily by using the bisection
method with respect to ω. Letting Ω be a current estimate of the optimal value of Problem (16),
consider the feasibility problem

min
y,s

s

s.t.
m∑

i=1

A
(1)
i yi −

m∑
i=1

ΩB
(1)
i yi − ΩM0 + sI º O,

v(y) ≤ V 0,

y ≥ 0,


(17)

where y and s are the variables, and I denotes the identity matrix with an appropriate size. Note
that (17) is a (linear) SDP problem, which can be solved by using the primal-dual interior-point
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method. Hence, we can easily check whether the global optimal value of Problem (17) is positive or
negative. If the optimal value of (17) is negative, then there exists a feasible solution (y′, ω′) of (16)
satisfying ω′ ≥ Ω, which implies that the optimal value of (16) is not less than Ω. Conversely, if the
optimal value of (17) is positive, then we can conclude that the optimal value of (16) is less than
Ω. From this observation it follows that the global optimal solution of (16) with p = 1 is obtained
by using the bisection method, at each iteration of which an SDP problem (17) is to be solved. In
the case of p ≥ 2, unfortunately, the feasibility problem of Problem (16) becomes nonconvex, which
motivates us to reformulate (16) into a tractable form.

We next investigate a reformulation of Problem (16), which prepares the algorithm presented in
section 4. We introduce auxiliary variables t = (ti) ∈ Rm by replacing the nonlinear term of y in
Problem (16) as

ti = yp
i , i = 1, . . . ,m. (18)

We do not possess (18) as the equality constraint conditions directly in the algorithm. Note that
Noll et al. [30] proposed an augmented Lagrangian algorithm for the linear optimization over the
bilinear matrix inequality, in which the equations in (18) are dealt with as the nonlinear equality
constraints. Our idea is not based on the linearization of (18) and quite different from the method
proposed in [30]: roughly speaking, we rewrite the condition (18) into m convex inequalities and
one reverse convex inequality, and we keep only convex inequalities explicitly.

Define the point-to-set mapping F : R → P(Rm × Rm) by

F(ω) =


(y, t) ∈ Rm × Rm

∣∣∣∣∣∣∣∣∣∣∣∣

m∑
i=1

A
(p)
i ti −

m∑
i=1

ωB
(1)
i yi − ωM0 º O,

v(y) ≤ V 0,

y ≥ 0,

ti ≥ yp
i , i = 1, . . . ,m


, (19)

where P(Rm × Rm) denotes the power set of Rm × Rm. The definition (19) of F is motivated by
the fact that the set

{(y, t) ∈ Rm × Rm |y ≥ 0, ti ≥ yp
i , i = 1, . . . ,m} (20)

corresponds to the convex hull of the set

{(y, t) ∈ Rm × Rm |y ≥ 0, (18)} ,

which is a part of the constraints of Problem (16). Moreover, the set (20) can be represented by a
linear matrix inequality in terms of y, t, and (for p ≥ 3) some auxiliary variables. Hence, we prefer
to possess (20) as an explicit constraint.

Define the function g : Rm × Rm → R by

g(y, t) =
m∑

i=1

(yp
i )

+ −
m∑

i=1

ti, (21)

where (yp
i )

+ is defined by

(yp
i )

+ = max {yp
i , 0} , i = 1, . . . ,m.
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y0

t1
t =yp
1 1

1

(I) set (27) defined with g

y0

t

t =yp

(1−µ)t =y1
p

1

1 1

1

1

(II) set (28) defined with gµ

Figure 2: Feasible sets defined with the functions g and gµ in the case of m = 1.

Note that g is a convex smooth function, because we have supposed that p ≥ 2. In Algorithm 5.2 pre-
sented below, (yp

i )
+ can be replaced with yp

i simply, because the subproblem solved in Algorithm 5.2
has the constraint yi ≥ 0.

Consider the following problem in the variables (y, t, ω) ∈ Rm × Rm × R:

max
y,t,ω

{ω | (y, t) ∈ F(ω), g(y, t) ≥ 0} . (22)

Proposition 3.2 (reformulation of Problem (16)). (y, ω) is an optimal solution of Problem (16)
if and only if (y, t, ω) satisfying

ti = yp
i , i = 1, . . . ,m (23)

is an optimal solution of Problem (22).

Proof. Observe that the condition (23) is equivalent to the (m + 1) inequalities

ti − yp
i ≥ 0, i = 1, . . . ,m,

m∑
i=1

(yp
i − ti) ≥ 0.

Hence, the assertion immediately follows from the definitions (19) and (21) of F(ω) and g.

Proposition 3.2 justifies to solve Problem (22) instead of Problem (16). It should be emphasized
that Problem (22) has only one nonconvex inequality g(y, t) ≥ 0 in contrast to m nonconvex
constraints in (18). Moreover, the nonconvex constraint of Problem (22) is the so-called reverse
convex constraint [27]. The idea of the algorithm presented in section 4 is essentially based on the
bisection method exploiting feasibility problems of Problem (22); see also Remark 3.1. However,
another difficulty arises when we employ this approach directly. We first investigate this difficulty
briefly, and then propose a slightly modified version of Problem (22).

Let Ω be an estimate of the optimal value of Problem (22). Consider the following problem in
the variables (y, t) ∈ Rm × Rm:

max
y,t

{g(y, t) | (y, t) ∈ F(Ω)} , (24)
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which can be regarded as a feasibility problem of Problem (22). Indeed, if the optimal value of
Problem (24) is negative, then there exists no feasible solution of Problem (22) satisfying ω ≥ Ω,
which implies that the optimal value of Problem (22) is less than Ω. On the other hand, if the
optimal value of Problem (24) is equal to zero, then there exists a feasible solution (y′, t′, ω′) of
Problem (22) satisfying ω′ = Ω, which implies that the optimal value of Problem (22) is not less
than Ω. Note that any feasible solution of Problem (24) satisfies g(y, t) ≤ 0. Thus, we may perform
the bisection method by checking whether the objective value of Problem (24) is negative or equal to
zero. However, this procedure is not recommended from the view point of numerical computation,
because we cannot expect that a numerically obtained optimal value becomes exactly equal to zero
if the exact value is equal to zero. We prefer to perform the bisection method based on a (slightly
modified, if necessary) feasibility problem, whose objective value becomes strictly positive if the
optimal value of Problem (22) is greater than Ω; see also Remark 4.3. This motivates us to propose
a slightly modified version of Problem (22).

Letting µ ∈ R++ be a sufficiently small constant, define the function gµ : Rm × Rm → R by

gµ(y, t) = g(y, t) + µ
m∑

i=1

ti, (25)

where g has been defined in (21). Consider the optimization problem

ω∗ := max
y,t,ω

{ω | (y, t) ∈ F(ω), gµ(y, t) ≥ 0} , (26)

where y, t, and ω are the variables. We solve Problem (26) instead of Problem (22). For sufficiently
small µ, we may regard that the solution of Problem (26) accurately approximates the solution
of the original problem (22). Theoretically, an arbitrary small µ is acceptable. In the numerical
experiments of section 7, for example, we choose µ = 10−3.

Remark 3.3. We attempt to give an intuitive interpretation of the modification introduced in (25)
and (26). Suppose m = 1 for simplicity. In association with the feasible set of the original problem
(22), consider the set

{(y1, t1) | y1 ≥ 0, t1 ≥ yp
1 , g(y1, t1) ≥ 0} , (27)

by neglecting the positive semidefinite constraint and the volume constraint of Problem (22). The
modified version of (27) defined with gµ is written as

{(y1, t1) | y1 ≥ 0, t1 ≥ yp
1 , gµ(y1, t1) ≥ 0} , (28)

which is related to the feasible set of Problem (26). Fig.2 depicts the sets (27) and (28). It is
observed in Fig.2 (I) that the two inequalities t1 ≥ yp

1 and g(y1, t1) ≥ 0 reduce to the equality
constraint g(y1, t1) = 0. This is the reason why the feasibility problem (24) of Problem (22) cannot
have positive optimal value. On the contrary, the feasible set satisfying gµ(y1, t1) > 0 is not empty in
Fig.2 (II). This allows us to formulate a feasibility problem of Problem (26) which attains a positive
optimal value if the feasibility problem possesses a feasible solution of Problem (26). This assertion
is shown rigorously in Theorem 4.4; see also Remark 4.3.
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4 Framework of bisection method

Define Ωmax ∈ R++ by

Ωmax := max
y,t,ω

{ω | (y, t) ∈ F(ω)} . (29)

For the given Ω ∈]0, Ωmax[, consider the following problem in the variables (y, t, ω) ∈ Rm ×Rm ×R:

g∗µ(Ω) := max
y,t,ω

{gµ(y, t) | (y, t) ∈ F(ω), ω ≥ Ω} , (30)

where F and gµ have been defined in (19) and (25), respectively. Note that Problem (30) is obtained
by exchanging the objective function and the nonconvex constraint of Problem (26), and by intro-
ducing a parameter Ω. From the definition (19) of F it follows that Problem (30) is equivalently
rewritten as

g∗µ(Ω) = max
y,t

{gµ(y, t) | (y, t) ∈ F(Ω)} , (31)

where y and t are the variables. It is of interest to note that Problem (31) is the maximization
problem of the convex function over the convex set. In section 5, we utilize this property to develop
an algorithm for Problem (31).

We next investigate the relation between Problems (26) and (31). The following two lemmas
should be prepared.

Lemma 4.1. For any Ω ∈]0, Ωmax[,

lim
ε→+0

sup
y,t,ω

{ω | (y, t) ∈ F(ω), gµ(y, t) ≥ ε} = ω∗ > −∞, (32)

lim
Ω′→Ω+0

sup
y,t,ω

{
gµ(y, t)

∣∣ (y, t) ∈ F(ω), ω ≥ Ω′} = g∗µ(Ω) > −∞. (33)

Proof. In order to utilize the result of Tuy [38, Lemma 4.1], we first rewrite the assertions (32) and
(33) of the lemma equivalently as

lim
ε→+0

inf
y,t,ω

{−ω | (y, t) ∈ F(ω), gµ(y, t) ≥ ε} = −ω∗ < +∞, (34)

lim
−Ω′→−Ω−0

sup
y,t,ω

{
gµ(y, t)

∣∣ (y, t) ∈ F(ω), −ω ≤ −Ω′} = g∗µ(−Ω) > −∞. (35)

Observing that gµ defined in (25) is a continuous function, we can show (34) with the aid of
Lemma 4.1 in [38], which implies that it suffices to show that (i) ω∗ defined by (26) satisfies
−ω∗ < +∞ and (ii) 0 is not a local maximum of gµ over the constraint (y, t) ∈ F(ω). The defini-
tion (19) of the set F(ω) implies 0 ∈ F(0). Moreover, the definition (25) of gµ implies gµ(0) = 0.
Consequently, (y, t, ω) = 0 is feasible for Problem (26), which guarantees the condition (i). To show
the condition (ii) we start by seeing that there exists î ∈ {1, . . . ,m} such that t′

bi
> y′

bi
if (y′, t′, ω′)

satisfies (y′, t′) ∈ F(ω′), ω′ > 0 and gµ(y′, t′) = 0. Recall that A
(p)
i , B

(1)
i and M0 in (19) are positive

definite. Hence, we can choose ω′′ ∈ [0, ω′[ such that there exists a vector (y′′, t′′) ∈ F(ω′′) satisfying
t′′
bi

< t′
bi
. For example, by letting y′′i = y′i and t′′i = (y′i)

p, we see that (y′′, t′′) satisfies t′′
bi

< t′
bi

and
(y′′, t′′) ∈ F(0). Then we obtain gµ(y′′, t′′) > 0, and thus the condition (ii) is satisfied. Similarly,
the assertion (35) can be proved by showing that (iii) g∗µ(Ω) defined by (30) satisfies g∗µ(ω) > −∞
and (iv) −Ω is not a local minimum of −ω over the constraint (y, t) ∈ F(ω). The conditions (iii)
and (iv) are immediate from the definition (29) of Ωmax and the assumption of Lemma 4.1.
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Lemma 4.2. For any Ω ∈]0, Ωmax[, ω∗ ≤ Ω if and only if g∗µ(Ω) ≤ 0.

Proof. We start by showing the ‘only if’ part. If ω∗ defined by (26) satisfies ω∗ ≤ Ω, then{
(y, t, ω)

∣∣ (y, t) ∈ F(ω), gµ(y, t) ≥ 0, ω > Ω′} = ∅

for any Ω′ satisfying Ω′ > Ω. Hence, for any Ω′ > Ω, we see that the inequality

g∗µ(Ω′) = max
y,t,ω

{
gµ(y, t)

∣∣ (y, t) ∈ F(ω), ω ≥ Ω′} ≤ 0

holds, from which and Lemma 4.1 we obtain g∗µ(Ω) ≤ 0. Similarly, if g∗µ defined by (30) satisfies
g∗µ(Ω) ≤ 0, then

{(y, t, ω) | (y, t) ∈ F(ω), ω ≥ Ω, gµ(y, t) ≥ ε} = ∅

for any ε > 0. Hence, for any ε > 0, the inequality

max
y,t,ω

{ω | (y, t) ∈ F(ω), gµ(y, t) ≥ ε} ≤ ω

holds, from which and Lemma 4.1 we obtain ω∗ ≤ Ω.

Remark 4.3. We give some explanations regarding the motivation of working on the perturbed
problem (26) instead of the original problem (22). In association with the condition (ii) investigated
in the proof of Lemma 4.1, observe that 0 is the global maximum of g under the constraint (y, t) ∈
F(ω). Indeed, we see

−∞ = lim
ε→+0

sup
y,t,ω

{ω | (y, t) ∈ F(ω), g(y, t) ≥ ε} 6= ω∗,

which implies that Problem (22) does not have the property similar to (32). Hence, we cannot show
Theorem 4.4 below, which plays a key role in the bisection method (Algorithm 4.5). In this manner,
the perturbation (or regularization) (25) on g is necessary for the condition (32). Certainly, such
a perturbation is not unique. An intuitive interpretation of gµ defined by (25) has been given in
Remark 3.3. It is important that gµ in (25) inherits the convexity and smoothness properties of g.

The following is a key result providing the optimality condition of Problem (26):

Theorem 4.4. Problems (26) and (31) have the following relations:

(i) ω∗ < Ω if g∗µ(Ω) < 0;

(ii) ω∗ > Ω if g∗µ(Ω) > 0.

Furthermore,

(iii) A feasible solution (ŷ, t̂, ω̂) for Problem (26) is optimal if and only if g∗µ(ω̂) = 0.

Proof. Recall that Problem (31) is equivalent to Problem (30), and hence we show this theorem
with respect to Problem (30). Firstly, observe that the assertion (i) follows (iii) and the ‘if’ part of
Lemma 4.2; the assertion (ii) follows (iii) and the fact that (iv) g∗µ(Ω) ≥ 0 implies ω∗ ≥ Ω. Thus, it
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suffices to show the assertions (iii) and (iv). We start with showing (iv). Observe that g∗µ(Ω) ≥ 0
implies that there exists a feasible solution (y′, t′, ω′) of Problem (30) satisfying

ω′ ≥ Ω (36)

and gµ(y′, t′) ≥ 0. Then, we easily see that (y′, t′, ω′) is also feasible for Problem (26) satisfying
(36), which proves the assertion (iv). We next show the assertion (iii), i.e. show that ω∗ = Ω if and
only if g∗µ(Ω) = 0. Note that the ‘if’ part of (iii) follows (iv) and the ‘if’ part of Lemma 4.2. Hence,
suppose ω∗ = Ω. Then there exists a feasible solution (y′′, t′′, Ω) of Problem (26). Since (y′′, t′′, Ω)
is also feasible for Problem (30), the constraint gµ(y′′, t′′) ≥ 0 of Problem (26) implies g∗(Ω) ≥ 0 in
Problem (30). On the other hand, the ‘only if’ part of Lemma 4.2 and the condition ω∗ = Ω imply
g∗(Ω) ≤ 0. Thus, we obtain g∗(Ω) = 0 if ω∗ = Ω.

Let (y∗, t∗) denote an optimal solution of Problem (31) for a given Ω. Recall that ω∗ has been
defined in (26). If g∗(Ω) ≥ 0, then (y∗, t∗) is a feasible solution of Problem (26), which implies
ω∗ ≥ Ω. On the contrary, if g∗(Ω) < 0, then ω∗ < Ω. As a consequence, we see that the following
bisection method solves Problem (26):

Algorithm 4.5 (prototype of bisection method for Problem (26)).

Step 0: Choose Ω0 and Ω0 satisfying 0 < Ω0 ≤ ω∗ ≤ Ω0
< Ωmax, and the small tolerance

ε > 0. Set l := 0.

Step 1: If Ωl − Ωl ≤ ε, then stop. Otherwise, set Ω := (Ωl + Ωl)/2.

Step 2: Find an optimal solution (y∗, t∗) of Problem (31).

Step 3: If g∗µ(Ω) ≥ 0, then set Ωl+1 := Ω and Ωl+1 := Ωl. Otherwise, set Ωl+1 := Ω and
Ωl+1 := Ωl.

Step 4: Set l := l + 1, and go to Step 1.

We investigate a solution process of Problem (31) in the following section.

5 Sequential SDP algorithm for polynomial SDP

In the previous section, we have seen that a solution of the nonlinear SDP problem (26) is obtained
by Algorithm 4.5, provided that Problem (31) can be solved efficiently at Step 2. The aim of this
section is to propose an algorithm for Problem (31). We pay attention to the special property of
Problem (31), which is a maximization problem of the convex function over the convex constraints
that are represented via a linear matrix inequality. Based on this property, in order to solve Prob-
lem (31) we employ the DC algorithm [4], which has been developed for the DC (difference of convex
functions) programming problems. It has been observed that the DC algorithm quite often converges
to global optimal solutions of various nonconvex optimization problems in practice; see, e.g. [2–4].

For a given Ω ∈ R++, let IF (·; Ω) : Rm × Rm → (−∞, +∞] be the indicator function of the
feasible set of Problem (31), i.e.

IF (y, t; Ω) =

0, if (y, t) ∈ F(Ω),

+∞, otherwise.
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Letting ρ ∈ R++ be constant, define h1 : Rm × Rm → R and h2 : Rm × Rm → (−∞, +∞] by

h1(y, t) =
ρ

2
(
‖y‖2 + ‖t‖2

)
+ gµ(y, t), (37)

h2(y, t; Ω) = IF (y, t; Ω) +
ρ

2
(
‖y‖2 + ‖t‖2

)
. (38)

Note that h1 and h2 are strictly convex. Problem (31) is equivalently rewritten as

max
y,t

{h1(y, t) − h2(y, t; Ω) | (y, t) ∈ Rm × Rm } , (39)

which is a DC programming problem.

Remark 5.1. The choice of the pair of h1 and h2 in (37) and (38) is not unique. Indeed, it is known
that there exist infinitely many pairs of strictly convex functions h1 and h2 such that Problem (39)
becomes equivalent to Problem (31) [4]. Certainly, for example, we may choose any ρ ∈ R++ in
(37) and (38), while the convergence property of the algorithm presented below may depend on the
choice of ρ. In our numerical examples, we choose ρ = 0.1; see section 7.

It is known that the DC programming problem is often solved globally by using the DC algo-
rithm [4]. Indeed, the DC algorithm is one of a few algorithms based on a local approach that
has been successfully applied to large-scale DC programming problems. The DC algorithm for
Problem (39) sequentially solves the convex optimization problem in the form of

max
y,t

{[
〈yk

∗, y − yk〉 + 〈tk
∗, t − tk〉 + h1(yk, tk)

]
− h2(y, t; Ω)

∣∣∣ (y, t) ∈ Rm × Rm
}

, (40)

where (yk, tk) and (yk
∗, t

k
∗) correspond to current solutions for Problem (39) and its dual, respectively.

Particularly, the so-called simplified DC algorithm is designed based on the update scheme [3,
section 2.3] (

yk
∗

tk
∗

)
:= ∂h1(yk, tk). (41)

Then it is known that the generated sequence {h1(yk, tk) − h2(yk, tk; Ω)} of the objective function
of Problem (39) increases monotonically [4]. From the definition (37) of h1, we obtain

∂h1(yk, tk) = ∇h1(yk, tk) =

(
Diag(p(yk

i )p−1)1
(µ − 1)1

)
+ ρ

(
yk

tk

)
(42)

at any point (yk, tk) satisfying h2(yk, tk) < +∞. Substitution of (41) and (42) into Problem (40)
yields

max
y,t

〈
Diag(p(yk

i )p−1)1 + ρyk, y − yk
〉

+
〈
ρtk + (µ − 1)1, t − tk

〉
− ρ

2
(
‖y‖2 + ‖t‖2

)
s.t. (y, t) ∈ F(Ω).

 (43)

Note that Problem (43) can be embedded into the SDP problem. See section 6 for the explicit refor-
mulation. We claim here only the fact that the objective function of Problem (43) is a strictly convex
quadratic function and the constraint condition can be represented as a linear matrix inequality in
terms of y, t, and some auxiliary variables.

The following is the full-description of the algorithm for Problem (26), which solves linear SDP
problems sequentially:
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Algorithm 5.2 (sequential SDP for Problem (26)).

Step 0: Choose Ω0 and Ω0 satisfying 0 < Ω0 ≤ ω∗ ≤ Ω0
< Ωmax, (y0, t0) ∈ Rm

+ ×Rm
+ , ρ > 0,

and the small tolerances ε1 > 0 and ε2 > 0. Set l := 0.

Step 1: If Ωl − Ωl ≤ ε1, then stop. Otherwise, set Ω := (Ωl + Ωl)/2. Set k := 0.

Step 2: Find the unique optimal solution (yk+1, tk+1) of the SDP problem (43).

Step 3: If ‖(yk+1, tk+1) − (yk+1, tk+1)‖ ≤ ε2, then set (y∗, t∗) := (yk+1, tk+1). Otherwise,
set k ← k + 1, and go to Step 2.

Step 4: If gµ(y∗, t∗) ≥ 0, then set Ωl+1 := Ω and Ωl+1 := Ωl. Otherwise, set Ωl+1 := Ωl and
Ωl+1 := Ω.

Step 5: Set l := l + 1, (y0, t0) := (y∗, t∗), and go to Step 1.

The following proposition guarantees that Algorithm 5.2 is well-defined in the sense that the
subproblem (43) solved at each iteration has the unique solution.

Proposition 5.3. Problem (43) has the unique optimal solution.

Proof. We see that the objective function of Problem (43) is strongly convex since ρ > 0. Recall
that Ωmax has been defined by (29). The construction of Ω at Step 1 of Algorithm 5.2 implies that
0 < Ω < Ωmax is satisfied at each iteration, from which it follows that the set F(Ω) is nonempty
and convex. Accordingly, Problem (43) is the minimization of the strongly convex function over the
nonempty bounded convex set, which implies that the optimal solution exists uniquely.

6 Explicit SDP formulations of subproblem for framed structures

In this section, we investigate the stiffness and mass matrices of framed structures with various
cross-sections, and give the explicit formulation of the SDP subproblem (43) for each particular
case.

Consider the framed structures in the two- or three-dimensional space. Let nm denote the
number of members of the frame. For each member, ai and Ii denote the cross-sectional area and
the moment of inertia, respectively. The stiffness matrix is written as

K =
nm∑
i=1

Ka
i ai +

nm∑
i=1

KI
iIi, (44)

where Ka
i and KI

i are constant and positive semidefinite matrices. Note that ai and Ii are generally
supposed to be dependent variables. We define the member stiffness matrix Ka

i ai + KI
i Ii by using

the Euler–Bernoulli beam element. The mass matrix due to the structural mass can be written as

MS =
nm∑
i=1

Miai, (45)

where Mi (i = 1, . . . , nm) are constant and positive semidefinite matrices. Thus, MS is the linear
function of a.
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6.1 Circular solid cross-sections

Suppose that each member of the frame have a circular solid cross-section with the radius ri. The
cross-sectional area and the moment of inertia are written in terms of ri as

ai = πr2
i , Ii =

πr4
i

4
. (46)

Thus, the dimension of each member is determined by any one of the parameters ai, Ii, and ri.
Choosing ai (i = 1, . . . , nm) as the design variables, we put

yi := ai, m := nm

in Problem (12). The structural volume is a linear function of y written as

v(y) = lTy, (47)

where li denotes the length of the ith member, which is a positive constant.
Consequently, from (44)–(47) it follows that the optimization problem (13) which maximizes the

fundamental eigenvalue is formulated explicitly as

max
y,ω

ω

s.t.
nm∑
i=1

(
A

(2)
i y2

i + A
(1)
i yi

)
− ω

(
nm∑
i=1

B
(1)
i yi + M0

)
º O,

lTy ≤ V 0,

y ≥ 0,


(48)

where

A
(2)
i :=

1
4π

KI
i , A

(1)
i := Ka

i , B
(1)
i := Mi,

and M0 denotes the mass matrix for the nonstructural mass. Note that A
(1)
i , A

(2)
i , B

(1)
i , and M0 are

positive semidefinite matrices from their definitions. Thus, for the framed structures with circular
cross-sections, the structural optimization problem (13) is embedded into the form of the polynomial
SDP problem (1).

We next investigate the explicit formulation of the subproblem, which is to be solved in Algo-
rithm 5.2. The new variables t ∈ Rnm

are introduced according to (18) so that

ti = y2
i , i = 1, . . . , nm (49)

should be satisfied at the optimal solution. The subproblem solved at Step 2 of Algorithm 5.2 is
obtained as

max
y,t

〈
(ρ + 2)yk,y − yk

〉
+

〈
ρtk + (µ − 1)1, t − tk

〉
− ρ

2
(
‖y‖2 + ‖t‖2

)
s.t.

nm∑
i=1

A
(2)
i ti +

nm∑
i=1

(
A

(1)
i − ΩB

(1)
i

)
yi − ΩM0 º O,

lTy ≤ V 0,

y ≥ 0,

ti ≥ y2
i , i = 1, . . . , nm.


(50)
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By multiplying a positive constant 2/ρ and eliminating the constant terms, the objective function
of Problem (50) is simplified as

−
∥∥∥∥y −

(
1 +

2
ρ

)
yk

∥∥∥∥2

−
∥∥∥∥t −

(
tk +

µ − 1
ρ

1
)∥∥∥∥2

without changing the optimal solution. Observe that the condition

ξ ≥
∥∥∥∥y −

(
1 +

2
ρ

)
yk

∥∥∥∥2

+
∥∥∥∥t −

(
tk +

µ − 1
ρ

1
)∥∥∥∥2

holds if and only if

ξ +
1
4
≥

∥∥∥∥∥∥∥
 ξ − (1/4)

y − [1 + (2/ρ)]yk

t −
[
tk + (µ − 1)1/ρ

]


∥∥∥∥∥∥∥
is satisfied, which is the second-order cone constraint.

Consequently, by introducing an auxiliary variable ξ ∈ R, Problem (50) can be rewritten without
changing the optimal solution as

min
y,t,ξ

ξ

s.t.
nm∑
i=1

A
(2)
i ti +

nm∑
i=1

(
A

(1)
i − ΩB

(1)
i

)
yi − ΩM0 º O,

V 0 − lTy ≥ 0,

y ≥ 0,

ti + (1/4) ≥

∥∥∥∥∥
(

ti − (1/4)
yi

)∥∥∥∥∥ , i = 1, . . . , nm,

ξ + (1/4) ≥

∥∥∥∥∥∥∥
 ξ − (1/4)

y − [1 + (2/ρ)]yk

t −
[
tk + (µ − 1)1/ρ

]


∥∥∥∥∥∥∥ ,



(51)

which is a linear SDP problem. We can solve Problem (51) by using the primal-dual interior-
point method for SDP. Some of such softwares, e.g. SeDuMi [36], are designed to solve the linear
optimization over the symmetric cone K ⊂ Rn, where K is the direct product of some cones expressed
by linear inequalities, second-order cone constraints, and positive semidefinite constraints. Notice
here that Problem (51) has (i) (2nm + 1) variables; (ii) (nm + 1) linear inequalities; (iii) nm second-
order cone constraints in R3; (iv) one second-order cone constraint in R2nm+2; (v) one linear matrix
inequality constraint in Snd

.

6.2 Rectangular solid cross-sections with fixed widths

Suppose that each member of the frame have a rectangular solid cross-section with the width bi and
the hight hi. The cross-sectional area and the moment of inertia are written in the terms of bi and
hi as

ai = bihi, Ii =
bih

3
i

12
. (52)
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Throughout this section, we assume that bi is fixed. Thus, the dimension of each member is deter-
mined only by hi, and we regard hi (i = 1, . . . , nm) as the design variables by putting

yi := hi, m := nm

in Problem (12). The structural volume is written as

v(y) = lT Diag(b)y, (53)

where li denotes the length of the ith member.
Consequently, from (44), (45), (52), and (53) it follows that the optimization problem (13) which

maximizes the fundamental eigenvalue is formulated explicitly as

max
y,ω

ω

s.t.
nm∑
i=1

(
A

(3)
i y3

i + A
(1)
i yi

)
− ω

(
nm∑
i=1

B
(1)
i yi + M0

)
º O,

lT Diag(b)y ≤ V 0,

y ≥ 0,


(54)

where

A
(3)
i :=

bi

12
KI

i , A
(1)
i := biK

a
i , B

(1)
i := biMi,

and M0 denotes the mass matrix for the nonstructural mass. Note that A
(1)
i , A

(3)
i , B

(1)
i , and

M0 are positive semidefinite matrices from their definitions. Thus, for the framed structures with
rectangular cross-sections, the structural optimization problem (13) is embedded into the form of
the nonlinear SDP problem (1).

The remainder of this section is devoted to an explicit formulation of the subproblem, which is
to be solved in Algorithm 5.2. According to (18), we introduce the auxiliary variables t ∈ Rnm

so
that

ti = y3
i , i = 1, . . . , nm (55)

is satisfied at the optimal solution. The subproblem solved at Step 2 of Algorithm 5.2 is obtained
as

max
y,t

〈
ρyk + 3Diag(yk)yk, y − yk

〉
+

〈
ρtk + (µ − 1)1, t − tk

〉
− ρ

2
(
‖y‖2 + ‖t‖2

)
s.t.

nm∑
i=1

A
(3)
i ti +

nm∑
i=1

(
A

(1)
i − ΩB

(1)
i

)
yi − ΩM0 º O,

V 0 − lT Diag(b)y ≥ 0,

y ≥ 0,

ti ≥ y3
i , i = 1, . . . , nm.


(56)

By multiplying a positive constant 2/ρ and eliminating the constant terms, the objective function
of Problem (56) is simplified as

−
∥∥∥∥y −

(
yk +

3
ρ

Diag(yk)yk

)∥∥∥∥2

−
∥∥∥∥t −

(
tk +

µ − 1
ρ

1
)∥∥∥∥2

without changing the optimal solution.
The following proposition prepares the reformulation of Problem (56) into the SDP formulation:
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Proposition 6.1. (yi, ti) satisfies

ti ≥ y3
i , yi ≥ 0 (57)

if and only if there exists ζi ∈ R satisfying

ζi +
1
4
≥

∥∥∥∥∥
(

ζi − 1/4
yi

)∥∥∥∥∥ , (58)

yi + ti ≥

∥∥∥∥∥
(

yi − ti

2ζi

)∥∥∥∥∥ . (59)

Proof. Observe that the condition (57) is equivalent to

yiti ≥ y4
i , yi ≥ 0,

which holds if and only if there exists ζi such that

ζi ≥ y2
i , (60)

yiti ≥ ζ2
i , yi ≥ 0. (61)

We easily see that the condition (60) is equivalent to (58). Note that (59) implies yi + ti ≥ 0, from
which it follows that (59) is equivalent to (61).

Consequently, by introducing an auxiliary variables ξ ∈ R and ζ ∈ Rnm
, and by using Proposi-

tion 6.1, Problem (56) can be rewritten without changing the optimal solution as

min
y,t,ζ,ξ

ξ

s.t.
nm∑
i=1

A
(3)
i ti +

nm∑
i=1

(
A

(1)
i − ΩB

(1)
i

)
yi − ΩM0 º O,

V 0 − lT Diag(b)y ≥ 0,

ζi + 1/4 ≥

∥∥∥∥∥
(

ζi − 1/4
yi

)∥∥∥∥∥ , i = 1, . . . , nm,

yi + ti ≥

∥∥∥∥∥
(

yi − ti

2ζi

)∥∥∥∥∥ , i = 1, . . . , nm,

ξ + 1/4 ≥

∥∥∥∥∥∥∥
 ξ − 1/4

y − yk − (3/ρ)Diag(yk)yk

t −
[
tk + (µ − 1)1/ρ

]


∥∥∥∥∥∥∥ ,



(62)

which is a linear SDP problem. It should be emphasized that the constraints y ≥ 0 are redundant
in Problem (62), and thus are omitted. Note that Problem (62) has (i) (3nm + 1) variables; (ii) one
linear inequality; (iii) 2nm second-order cone constraints in R3; (iv) one second-order cone constraint
in R2nm+2; (v) one linear matrix inequality constraint in Snd

. Thus, Problem (62) for rectangular
cross-sections with fixed widths has larger numbers of variables and constraints than Problem (51)
formulated for circular solid cross-sections. This is because Problem (54) has cubic terms of yi, while
Problem (48) has quadratic terms.
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Figure 3: 5 × 5 plane grid frame.

Table 1: Problem sizes and upper bounds V 0 for structural volumes of k × k grid frames.

nm nd V 0 (m3)

2 × 2 20 21 2.7976 × 10−2

3 × 3 42 42 5.9347 × 10−2

4 × 4 72 69 1.0231 × 10−1

5 × 5 110 102 1.5685 × 10−1

6 × 6 156 141 2.2299 × 10−1

7 Numerical experiments

Optimal designs are computed for various framed structures by using Algorithm 5.2. At Step 2
we solve the SDP problem (43) by using SeDuMi Ver. 1.05 [36], which implements the primal-dual
interior-point method for the linear programming problems over symmetric cones. Computation has
been carried out on Pentium M (1.2 GHz with 1.0 GB memory) with MATLAB Ver. 7.0.1 [39].

In the following examples, the elastic modulus and the mass density of members are 200.0 GPa
and 7.86 × 10−3 kg/cm2, respectively.

7.1 Plane square grids

Optimal topologies are found for plane frames with 2 × 2, 3 × 3, 4 × 4, 5 × 5, and 6 × 6 grids.
The ground structure for 5 × 5 grid frame is shown in Fig.3, where W = 2.0 m and H = 2.0 m.
The intersecting pair of diagonals are not connected at their center. The nodes (a) and (b) are the
fixed-supports. The nonstructural mass of 2.0 × 104 kg is located at the node (c), i.e. at the the
upper-right corner. The ground structures and nonstructural masses are defined similarly for other
grids. The number nm of members and the number nd of degrees of freedom for each case are listed
in Table 1.
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Table 2: Optimization results of k × k grid frames.

case (I) case (II)
2 × 2 ω0

1 (rad2/s2) 827.3 230.3
ω∗

i (rad2/s2) 1743.8 5228.8 1744.7 8180.0
CPU (sec.) 7.7 22.7
# of SDPs 23 57

3 × 3 ω0
1 (rad2/s2) 633.8 212.5

ω∗
i (rad2/s2) 1638.2 2211.4 1639.7 3988.6
CPU (sec.) 22.7 80.2
# of SDPs 25 80

4 × 4 ω0
1 (rad2/s2) 531.0 201.7

ω∗
i (rad2/s2) 1581.2 1651.6 1583.0 1589.4
CPU (sec.) 67.5 346.4
# of SDPs 27 115

5 × 5 ω0
1 (rad2/s2) 466.4 197.2

ω∗
i (rad2/s2) 1541.8 1541.8 1558.7 1544.7 1604.0 2555.6
CPU (sec.) 188.8 982.1
# of SDPs 27 127

6 × 6 ω0
1 (rad2/s2) 421.5 193.4

ω∗
i (rad2/s2) 1511.6 1511.6 1511.6 1513.4 1514.8 1515.2 1544.5 1655.4
CPU (sec.) 482.2 3085.1
# of SDPs 28 164

For each grid, optimal topologies are computed for circular cross-sections (case (I)) and rect-
angular cross-sections (case (II)) by using the formulations investigated in sections 6.1 and 6.2,
respectively. For the case (I), the initial solution (a0, t0) for Algorithm 5.2 is given as

a0
i = 6.0 × 102 mm2, t0i = (a0

i )
2, i = 1, . . . , nm;

for the case (II), the width of each cross-section is fixed as

bi = 50.0 mm,

while we choose the initial solution as

a0
i = 12.0 mm, t0i =

bi(a0
i )

3

12
, i = 1, . . . , nm.

Note that the initial solutions of both cases share the same structural volume. For each problem, the
upper bound of structural volume listed in Table 1 is equal to the volume at the initial solution. We
set µ = 10−3 in (25), and choose the parameters for Algorithm 5.2 as Ω = ω0

1, ρ = 0.1, ε2 = 10−4,
ε1 = 10−5ω0

1. Note that ω∗
1 −ω0

1 of the case (II) is larger than that of the case (I). Hence, we choose
Ω = 4ω0

1 and Ω = 30ω0
1 for the cases (I) and (II), respectively.

The optimal solutions obtained are shown in Figs. 4–7, where the width of each member is
proportional to its cross-sectional area. Extremely slender member satisfying ai < 10−1 mm2 for
the case (I) and ai < 10−4 mm for the case (II) are removed in Figs. 4–7. However, the optimal

22



(I) circular cross-sections (II) rectangular cross-sections

Figure 4: Optimal solutions of 2 × 2 grid.

(I) circular cross-sections (II) rectangular cross-sections

Figure 5: Optimal solutions of 3 × 3 grid.

(I) circular cross-sections (II) rectangular cross-sections

Figure 6: Optimal solutions of 4 × 4 grid.

(I) circular cross-sections (II) rectangular cross-sections

Figure 7: Optimal solutions of 5 × 5 grid.

solutions still have some slender members supporting stiff members that form a long column and a
diagonal beam.

The results are summarized in Table 2, where ω0
1 denotes the lowest eigenvalue at the initial

solution; ω∗
i are some of the lowest eigenvalues at the optimal solution. The computational time

required by Algorithm 5.2 and the number of SDP problems solved are also listed.
In Table 2, it is of interest to note that the multiplicity of the lowest eigenvalues of the 5×5 frame

(case (I)) is two, and the third eigenvalue is very close to the first two eigenvalues. For the 6 × 6
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(a) 1st mode (b) 2nd mode

(c) 3rd mode (d) 4th mode

Figure 8: Eigenmodes of optimal 6 × 6 grid (case (I)).

frame (case (I)), we see that the multiplicity of the lowest eigenvalues is three, and forth eigenvalue
is also very close to the first three ones. For the 6 × 6 frame (case (II)), the first two eigenvalues
are very close. Thus, a large structure may possibly have large multiplicity of the lowest eigenvalues
at its optimal design. The proposed algorithm converges optimal solutions with the multiple lowest
eigenvalues without any difficulty. This is because the optimal solution of the SDP subproblem (43)
in Algorithm 5.2 can be found by using the primal-dual interior-point method which do not resort
to the derivatives of the minimal eigenvalue at all.

Fig.8 depicts the modes corresponding to the first four eigenvalues of the 6 × 6 grid (case (I)).
In the mode (a), we see that the displacement of the node (c) at which the nonstructural mass is
located is very large, while the local flexural deformations of the diagonal thick members dominate
the mode (b). The local flexural deformations of the slender members dominate the modes (c)
and (d). It is observed that many slender members are necessary at the optimal solution in order to
prevent the mode (b) from having the smaller eigenvalue than that of the mode (a). Consequently,
we may conclude that the algorithm presented successfully finds the global optimal solutions of these
problems, which are regarded to be benchmark problems.
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Figure 9: Plane arch frame.

(I) circular cross-sections

(II) rectangular cross-sections

Figure 10: Optimal solutions of the plane arch frame.

7.2 Plane arch grid

Consider a plane circular arch grid shown in Fig.9, where W = 2.0 m, H = 1.0 m, and R = 2.0 m.
Nonstructural masses of 4.0 × 104 kg are located at the nodes (b)–(j). The nodes (a) and (k) are
pin-supported, i.e. nd = 161 and nm = 174.

Optimal topologies are computed for circular cross-sections (case (I)) and rectangular cross-
sections (case (II)) by using Algorithm 5.2. For the case (I), the initial solution (a0, t0) for Algo-
rithm 5.2 is given as

a0
i = 3.0 × 103 mm2, t0i = (a0

i )
2, i = 1, . . . , nm;

for the case (II), the width of each cross-section is fixed as

bi = 50.0 mm,

25



Table 3: Results.

case (I) case (II)

ω0
1 (rad2/s2) 581.9 581.2

ω∗
i (rad2/s2) 1127.5 1127.5 1874.1 1139.8 1139.8 1792.7

CPU (sec.) 732.1 8898.8
# of SDPs 34 341

(a) symmetric mode

(b) antisymmetric mode

Figure 11: Fundamental eigenmodes of the optimal arch frame (case (I)).

while we choose the initial solution as

a0
i = 60.0 mm, t0i =

bi(a0
i )

3

12
, i = 1, . . . , nm.

Note that the initial solutions of both cases share the same structural volume. The upper bound of
structural volume V 0 = 9.8572×10−1 m3 is equal to the volume at the initial solution. The minimal
eigenvalues at the initial solutions are listed in Table 3. We set µ = 10−3 in (25), and choose the
parameters for Algorithm 5.2 as Ω = ω0

1, ρ = 0.1, ε2 = 10−4, ε1 = 10−5ω0
1. The upper bounds for

ω∗ are chosen as Ω = 4ω0
1 and Ω = 100ω0

1 for the cases (I) and (II), respectively.
The optimal solutions obtained by using Algorithm 5.2 are shown in Fig.10. The eigenvalues

and the computational costs are listed in Table 3. It is observed in Table 3 that the multiplicity of
the fundamental eigenvalues of the optimal truss is two for each case, which is same as the results of
the truss structure reported in [29, 31]. The corresponding fundamental modes (case (I)) are shown
in Fig.11, which are symmetric and antisymmetric with respect to the y-axis in Fig.9. No local
flexural modes are observed to be significant in these cases. Similarly, the two fundamental modes
of case (II) are also symmetric and antisymmetric with respect to the y-axis.
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8 Conclusions

In this paper, we have proposed a numerical technique for solving a class of nonlinear semidefinite
programming problems, which correspond to the maximization problems of the lowest eigenvalues
of structures. A sequential semidefinite programming (SDP) approach is proposed based on the
bisection method. The method presented is applicable to the cases in which the optimal design has
the multiple lowest eigenvalues.

A generalized eigenvalue problem has been formulated for the free vibration of a finitely dis-
cretized structure, in which the two symmetric matrices defining the eigenvalue problem are supposed
to be polynomials in terms of the design variables. The maximization problem of the fundamental
eigenvalue of the structure has been formulated as a polynomial SDP problem, which maximizes a
linear function over a polynomial matrix inequality. We have proposed a bisection method for the
polynomial SDP, at each iteration of which we should solve the maximization problem of a convex
function over a linear matrix inequality.

In order to solve the convex maximization problem over a linear matrix inequality, we have
embedded it into the DC (difference of convex functions) optimization problem, which is solved by
using the so-called DC algorithm. The DC algorithm is one of a few algorithms based on a local
approach which has been successfully applied to large-scale DC optimization problems, and quite
often converges to the global optimal solution. For our problem, the (linear) SDP problem is to be
solved at each iteration of the DC algorithm.

We showed in the numerical examples that the proposed algorithm can find the optimal topologies
of framed structures. The optimal solutions with multiple lowest eigenvalues can be computed
without any difficulty. For benchmarking examples, it seems that the obtained solutions are probably
globally optimal, on the contrary to the fact that the sequential SDP method based on a linear matrix
inequality approximation often converged to local optimal solutions in our preliminary numerical
experiments.
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