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Yusuke KOBAYASHI∗ Kenjiro TAKAZAWA†
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Abstract

A jump system, which is a set of integer lattice points with an exchange property, is an
extended concept of a matroid. Some combinatorial structures such as the degree sequences of
the matchings in an undirected graph are known to form a jump system.

On the other hand, the maximum even factor problem is a generalization of the maximum
matching problem into digraphs. When the given digraph has a certain property called odd-
cycle-symmetry, this problem is polynomially solvable.

The main result of this paper is that the degree sequences of all even factors in a digraph
form a jump system if and only if the digraph is odd-cycle-symmetric. Furthermore, as a gen-
eralization, we show that the weighted even factors induce M-convex (M-concave) functions on
jump systems. These results suggest that even factors are a natural generalization of matchings
and the assumption of odd-cycle-symmetry of digraphs is essential.

1 Introduction

1.1 Previous works

In the study of combinatorial optimization, extensions of matroids are introduced as abstract con-
cepts including many combinatorial objects. A number of optimization problems on matroidal
structures can be solved in polynomial time. One of the extensions of matroids is a jump system
of Bouchet and Cunningham [2]. A jump system is a set of integer lattice points with an exchange
property (to be described in Section 2.1); see also [18, 22]. It is a generalization of a matroid [4],
a delta-matroid [1, 3, 8], and a base polyhedron of an integral polymatroid (or a submodular sys-
tem) [14].

The concept of an M-convex (M-concave) function on a jump system is a quantitative extension
of a jump system, which was introduced by Murota [26] as a common generalization of a valuated
matroid [9,11], a valuated delta-matroid [10], and an M-convex function on a base polyhedron [24,
25]. A separable convex function on the degree sequences of an undirected graph is a typical
example of an M-convex function on a constant-parity jump system. In what follows, we refer
to “M-convex (resp. M-concave) functions on constant-parity jump systems” simply as “M-convex
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(resp. M-concave) functions.” An M-convex function satisfies that global optimality (minimality)
is guaranteed by local optimality in the neighborhood of `1-distance two [26], and several efficient
algorithms minimizing M-convex functions [27, 31] follow from this optimality criterion. A recent
work of Kobayashi, Murota, and Tanaka [20] showed that M-convex functions are closed under
several basic operations including infimal convolution. It is also known that we cannot establish
duality results such as the discrete separation theorems.

On the other hand, as a common generalization of the matching and matroid intersection
problems, Cunningham and Geelen [6] defined the basic path-matching problem in an undirected
graph. The basic path-matching problem with free matroids is said to be the path-matching problem.

As a further generalization of the path-matching problem, Cunningham and Geelen [7] intro-
duced the even factor problem, which is defined in directed graphs (digraphs). An even factor in
a digraph is an arc set that forms a vertex-disjoint collection of dipaths and even-length dicycles.
Recent works on even factors [19,28–30,32] suggest that the even factor problem generalizes the non-
bipartite matching problem in a combinatorially tractable direction. While finding the maximum
even factor in a general digraph is NP-hard, some polynomial algorithms [7,16,28,29] are known for
a certain class of digraphs, called odd-cycle-symmetric (to be defined in Section 2.2). Among them,
Pap’s alternating path algorithm [28, 29] is a combinatorial one that extends Edmonds’ maximum
matching algorithm [12].

A common generalization of the even factors and matroid intersection has been considered [7,17].
Cunningham and Geelen [7] proposed a polynomial reduction of the basic even factor problem to
matroid intersection, in which an even factor algorithm is required for each matroid oracle. Iwata
and Takazawa [17] dealt with the independent even factor problem, which is essentially equivalent
to the basic even factor problem. They devised a combinatorial independent even factor algorithm,
which combines Pap’s even factor algorithm and the matroid intersection algorithm [13, 21], and
exhibited a structure theorem that commonly generalizes the Edmonds-Gallai decomposition for
matchings and the principal partition for matroid intersection. We remark that these works on
basic/independent even factors also need the assumption of the odd-cycle-symmetry of the digraph.

The weighted path-matching problem and the weighted even factor problem are considered as
natural quantitative extensions. Cunningham and Geelen [6] presented a linear inequality sys-
tem describing the weighted basic path-matching problem and proved its total dual integrality.
Cunningham and Geelen [7] clarified the integrality of a polytope associated with the weighted
even factor problem in a certain class called weakly symmetric weighted digraphs and proposed a
combinatorial primal-dual method of finding a maximum weight even factor by solving the un-
weighted problems repeatedly. Király and Makai [19] showed that the integrality also holds in
the class of odd-cycle-symmetric weighted digraphs, a broader class than that of weakly symmetric
weighted digraphs. An odd-cycle-symmetric weighted digraph is an odd-cycle-symmetric digraph
accompanied by a weight vector with a certain property (to be described in Section 2.2). For an odd-
cycle-symmetric weighted digraph, they presented a linear program that describes the maximum
weight even factor problem and proved its dual integrality. They also provided a characterization
of odd-cycle-symmetric digraphs. Based on Király and Makai’s description and Pap’s alternating
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path framework, Takazawa [32] gave a combinatorial weighted even factor algorithm for odd-cycle-
symmetric weighted digraphs.

1.2 Summary of the results

For undirected graphs, it is known that the degree sequences of all subgraphs and those of all
matchings are jump systems. That is, for an undirected graph G with vertex set V and edge set E,
define JSG(G) ⊆ ZV and JM(G) ⊆ {0, 1}V by

JSG(G) = {x | x ∈ ZV , ∃F ⊆ E, x(v) = |{e | e ∈ F , e is incident to v}|},

JM(G) = {x | x ∈ {0, 1}V , ∃matching M ⊆ E, x(v) = |{e | e ∈ M , e is incident to v}|}.

Then, both JSG(G) and JM(G) are jump systems, provided that G has no loops. It is also claimed
by Cunningham [5] that the set of the degree sequences of all path-matchings is a jump system.

In the present paper, we consider whether an analogous statement holds for even factors. To
begin with, let us introduce the degree sequence in digraphs. Let G = (V,A) be a digraph with
vertex set V and arc set A. Make two copies V + and V − of V . The copy of v ∈ V in V + (resp. in
V −) is denoted by v+ (resp. v−).

Definition 1.1 (Degree sequence in digraphs). For a digraph G = (V,A) and its arc set F ⊆ A,
the degree sequence of F is a vector dF ∈ ZV +∪V −

defined by

dF (v+) = |{a | a ∈ F , a leaves v}| , dF (v−) = |{a | a ∈ F , a enters v}| (v ∈ V ).

Let JEF(G) ⊆ ZV +∪V −
be the set of the degree sequences of all even factors in G. That is,

JEF(G) = {dM | M is an even factor in G}.

By the definition of even factors, one would easily see that JEF(G) ⊆ {0, 1}V +∪V −
. The main result

of this paper is the following theorem.

Theorem 1.2. JEF(G) is a jump system if and only if G is odd-cycle-symmetric.

Moreover, this relation is extended to a weighted version. For a digraph G = (V,A) accompanied
by a weighted vector w ∈ RA, define fEF : JEF(G) → R by

fEF(x) = max

{∑
a∈M

w(a)
∣∣∣∣ M is an even factor, dM = x

}

for x ∈ JEF(G). As an extension of Theorem 1.2, we prove that fEF is an M-concave function if
and only if (G, w) is an odd-cycle-symmetric weighted digraph.

Theorem 1.3. The function fEF is M-concave if and only if (G,w) is an odd-cycle-symmetric
weighted digraph.
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Theorems 1.2 and 1.3 exhibit necessary and sufficient conditions for the even factors to have
a matroidal structure. These theorems suggest that the assumption of the odd-cycle-symmetry is
reasonable and essential in dealing with optimization problems on even factors.

This paper is organized as follows. Section 2 introduces the definitions and prior works on jump
systems and even factors. Sections 3 and 4 prove Theorems 1.2 and 1.3, respectively. Finally, in
Section 5, we discuss an undirected version of these results and present a new example of a jump
system which is not a delta-matroid.

2 Technical background

2.1 Jump systems

Let V be a finite set. For x = (x(v)), y = (y(v)) ∈ RV , define

x(U) =
∑
v∈U

x(v) (U ⊆ V ),

[x, y] = {z | z ∈ RV ,min(x(v), y(v)) ≤ z(v) ≤ max(x(v), y(v)),∀v ∈ V }.

For U ⊆ V , we denote by χU the characteristic vector of U , with χU (v) = 1 for v ∈ U and χU (v) = 0
for v ∈ V \ U . For u ∈ V , we denote χ{u} simply by χu. For x, y ∈ ZV , a vector s ∈ ZV is called
an (x, y)-increment if s = χu or s = −χu for some u ∈ V and x + s ∈ [x, y].

Definition 2.1 (Jump system). A nonempty set J ⊆ ZV is said to be a jump system if it satisfies
an exchange axiom, called the 2-step axiom:

For any x, y ∈ J and for any (x, y)-increment s with x+s 6∈ J , there exists an (x+s, y)-
increment t such that x + s + t ∈ J .

A set J ⊆ ZV is a constant-sum system if x(V ) = y(V ) for any x, y ∈ J , and a constant-parity
system if x(V ) − y(V ) is even for any x, y ∈ J . For constant-parity jump systems, J. F. Geelen
pointed out a stronger exchange property:

(EXC) For any x, y ∈ J and for any (x, y)-increment s, there exists an (x + s, y)-increment t such
that x + s + t ∈ J and y − s − t ∈ J .

This property characterizes a constant-parity jump system (see Murota [26] for details).

Theorem 2.2. A nonempty set J is a constant-parity jump system if and only if it satisfies (EXC).

In what follows, we refer to “constant-parity jump systems” simply as “jump systems.”
The index sets of the nonsingular submatrices form a jump system. For a matrix T with row

set V + and column set V −, we denote the submatrix of T with row set U+ ⊆ V + and column
set U− ⊆ V − by T [U+, U−].
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Lemma 2.3 (Cunningham [5]). Let T be a matrix with rows and columns indexed by V + and V −,
respectively. Then, J ⊆ ZV +∪V −

defined by

J = {χU+∪U− | U+ ⊆ V +, U− ⊆ V −, |U+| = |U−|, detT [U+, U−] 6= 0}.

forms a jump system.

One of the most important operations on a jump system is elementary aggregation. For a jump
system J ⊆ ZV , its elementary aggregation J̃ ⊆ ZṼ at v1 ∈ V and v2 ∈ V is defined by

J̃ = {(x0, x(v1) + x(v2)) | (x0, x(v1), x(v2)) ∈ J},

where Ṽ = (V \ {v1, v2}) ∪ {v} and x0 ∈ ZV \{v1,v2}. Then, J̃ also forms a jump system [5,18].

Lemma 2.4. An elementary aggregation of a jump system is a jump system.

An M-concave (M-convex) function on a jump system of Murota [26] is a quantitative extension
of a jump system.

Definition 2.5 (M-concave function). For J ⊆ ZV , we call f : J → R an M-concave function if it
satisfies the following exchange axiom:

(M-EXC) For any x, y ∈ J and for any (x, y)-increment s, there exists an (x + s, y)-increment t

such that x + s + t ∈ J , y − s − t ∈ J , and f(x) + f(y) ≤ f(x + s + t) + f(y − s − t).

It directly follows from (M-EXC) that J satisfies (EXC), and hence J is a jump system. We call
a function f : J → R an M-convex function if −f is an M-concave function. If the domain of an
M-concave function f is required to be ZV , we adopt the convention of f(x) = −∞ for x ∈ ZV \ J .

The definition of an M-concave (M-convex) function is consistent with the previously considered
special cases where (i) J is a constant-sum jump system, and (ii) J is a constant-parity jump system
contained in {0, 1}V . Case (i) is equivalent to J being the set of integer points in the base polyhedron
of an integral submodular system [14], and then M-concave (M-convex) function is the same as the
M-concave (M-convex) function on base polyhedra investigated in [24,25]. Case (ii) is equivalent to
J being an even delta-matroid [33,34], and then an M-concave function is equivalent to a valuated
delta-matroid in the sense of [10].

The operation of elementary aggregation is extended to M-concave functions. For a function
f : ZV → R ∪ {−∞}, the elementary aggregation of f at v1 ∈ V and v2 ∈ V is a function
f̃ : ZṼ → R ∪ {+∞,−∞} defined by

f̃(x0; ξ) = sup{f(x0; x(v1), x(v2)) | ξ = x(v1) + x(v2)},

where Ṽ = (V \ {v1, v2}) ∪ {v} and x0 ∈ ZV \{v1,v2}. It has recently been proved [20] that if f is
M-concave, so is f̃ .

Lemma 2.6 (Kobayashi, Murota, and Tanaka [20]). If f is M-concave, then its elementary aggre-
gation f̃ is M-concave, provided that f̃(x) < +∞ for any x ∈ ZṼ .
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2.2 Even factors

Let G = (V,A) be a digraph with vertex set V and arc set A. Throughout this paper, we assume
that digraphs have neither loops nor multiple arcs. For an arc a, we refer to its initial vertex u

and terminal vertex v as ∂+a and ∂−a, respectively, and denote a = (u, v). The reverse arc of a is
denoted by ā, that is, ā = (v, u). We say that a ∈ A is symmetric if ā ∈ A, and G is symmetric if
every arc in A is symmetric. For an arc set F ⊆ A, we denote ∂+F = {v | v ∈ V , ∃a ∈ F , ∂+a = v}
and ∂−F = {v | v ∈ V , ∃a ∈ F , ∂−a = v}. For a vertex v ∈ V , define δ+v = {a | a ∈ A, ∂+a = v}
and δ−v = {a | a ∈ A, ∂−a = v}.

For v0, v1, . . . , vk ∈ V and a1, . . . , ak ∈ A, a sequence (v0, a1, v1, . . . , vk−1, ak, vk) is said to be
a walk if ai = (vi−1, vi) for i = 1, . . . , k. A walk W = (v0, a1, v1, . . . , vk−1, ak, vk) is said to be a
path if v0, . . . , vk are pairwise distinct, and a cycle if v0, . . . , vk−1 are pairwise distinct and v0 = vk.
The reverse walk of W is denoted by W̄ , that is, W̄ = (vk, āk, vk−1, . . . , v1, ā1, v0). We denote the
vertex set {v0, . . . , vk} = V (W ) and the arc set {a1, . . . , ak} = A(W ). The length of W , denoted
by |W |, is defined by k. A walk W is said to be odd (resp. even) if |W | is odd (resp. even). For
paths P1 = (v0, a1, v1, . . . , ak, vk) and P2 = (vk, ak+1, vk+1, . . . , al, vl), we denote by P1∪P2 the walk
(v0, a1, . . . , ak, vk, ak+1, vk+1, . . . , vl). If P1 and P2 share no common vertices except for vk, P1 ∪P2

is a path.
If a digraph G = (V,A) is accompanied by a weight vector w ∈ RA, we say that (G,w) is a

weighted digraph. For an arc set F ⊆ A, the weight of F is defined by w(F ), the total weight of
the constituent arcs of F .

Definition 2.7 (Even factor). An arc set M ⊆ A is an even factor if it forms a vertex-disjoint
collection of paths and even cycles.

Definition 2.8. For two vertex sets U+, U− ⊆ V , an arc set M ⊆ A is an even (U+, U−)-factor if
M is an even factor with ∂+M = U+ and ∂−M = U−.

One easily sees that |M ∩ δ+v| ≤ 1 and |M ∩ δ−v| ≤ 1 hold for any even factor M and every
v ∈ V , and if an even (U+, U−)-factor M exists, it holds that |M | = |U+| = |U−|.

The even factor problem is to find an even factor with the maximum number of arcs. One
can reduce the maximum matching problem to the even factor problem in the following manner.
Let Ḡ = (V,E) be an undirected graph in which we want to find the maximum matching. Then,
construct a symmetric digraph G = (V,A), where A = {(u, v), (v, u) | u and v are adjacent in Ḡ}.
One easily sees that the maximum even factor M in G is composed of even length cycles. Then
one can take up arcs in M along these cycles alternately to obtain a vertex-disjoint collection of
|M |/2 arcs, which corresponds to a matching in Ḡ. Conversely, given a matching M̄ in Ḡ, one can
replace the edges in M̄ by 2-length cycle to get an even factor of size 2|M̄ | in G.

The maximum even factor problem is known to be NP-hard. Prior works on even factors assume
the digraph to have a certain property, called odd-cycle-symmetric.

Definition 2.9 (Odd-cycle-symmetric digraph). A digraph G = (V,A) is called odd-cycle-symmetric
if every arc in any odd cycle is symmetric.
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Of course, symmetric digraphs are odd-cycle-symmetric, which means that the maximum even
factor problem in the odd-cycle-symmetric digraphs includes the maximum matching problem.
Several polynomial algorithms [7,16,28,29] are proposed that are applicable to odd-cycle-symmetric
digraphs. Among them, Pap’s [28,29] is a combinatorial one that extends the maximum matching
algorithm of Edmonds [12]. His algorithm increases the size of the even factor one by one with the
aid of alternating paths until it attains the maximum.

A weighted version of the maximum even factor problem is also considered. Let G = (V,A) be
a digraph and w : A → R be a weight vector. The maximum weight even factor problem is to find
an even factor M that maximizes w(M) among all even factors in G.

In dealing with the maximum weight even factor problem, Király and Makai [19] defined an
extension of odd-cycle-symmetry to weighted digraphs.

Definition 2.10 (Odd-cycle-symmetric weighted digraph). A weighted digraph (G,w) is odd-cycle-
symmetric if G is odd-cycle-symmetric in the unweighted sense and w(A(C)) = w(A(C̄)) holds for
any odd cycle C.

Király and Makai [19] showed a linear inequality system that describes the maximum weight even
factor problem in odd-cycle-symmetric weighted digraphs and proved its dual integrality. Polyno-
mial algorithms are proposed to solve the problem in odd-cycle-symmetric weighted digraphs [7,32].

In proving the dual integrality, Király and Makai utilized a characterization of odd-cycle-
symmetric digraphs. We say that a digraph is cycle-connected if it is strongly connected and its
underlying graph is biconnected. Note that a digraph can be decomposed into cycle-connected com-
ponents. A digraph is bipartite if its underlying graph is bipartite. Using these notions, Z. Király
characterized odd-cycle-symmetric digraphs (see [19] for details).

Lemma 2.11. Each cycle-connected component of an odd-cycle-symmetric digraph is either bipar-
tite or symmetric.

A characterization of odd-cycle-symmetric weighted digraphs follows from Lemma 2.11. A
potential function π on V is said to be valid if w(a)−w(ā) = π(v)−π(u) holds for each symmetric
arc a = (u, v) ∈ A. The characterization below immediately follows from that of Király and
Makai [19, Lemma 2], which claims that w(A(C)) = w(A(C̄)) holds for every cycle C in a non-
bipartite cycle-connected component of an odd-cycle-symmetric weighted digraph.

Lemma 2.12. Let (G,w) be a weighted digraph such that G is cycle-connected but not bipartite.
Then, (G,w) is an odd-cycle-symmetric weighted digraph if and only if there exists a valid potential
function π.

3 Proof for Theorem 1.2

We devote this section to proving Theorem 1.2. The sufficiency (Proposition 3.1) and the necessity
(Proposition 3.7) are proved separately.

We remark that Theorem 1.2 (and the arguments in this section) could be stated in terms of even
delta-matroids, since JEF(G) consists of {0, 1}-vectors. However, as a consequence of Theorem 1.2,
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we will derive jump systems that are not delta-matroids in Section 5. For this reason, we allow
ourselves to say that JEF(G) is a “jump system,” instead of an “even delta-matroid.”

3.1 Sufficiency of odd-cycle-symmetry

In this subsection, we prove the sufficiency in Theorem 1.2.

Proposition 3.1. JEF(G) is a jump system if G is odd-cycle-symmetric.

This proposition is immediately derived from an algebraic approach in [5, 7]. After proving it
with this approach, we give an alternative combinatorial proof with the aid of an alternating path
algorithm. The latter approach is a natural extension of a constructive proof showing that JSG and
JM of an undirected graph are jump systems.

3.1.1 Algebraic proof

The even factors are related to a certain matrix called Tutte matrix. Let {tuv | (u, v) ∈ A} be a set
of indeterminates associated with A such that tuv = −tvu if (u, v), (v, u) ∈ A. The Tutte matrix
T = (Tu+v−) of G, whose rows and columns are indexed by V + and V −, is defined by

Tu+v− =

{
tuv (if (u, v) ∈ A),
0 (otherwise).

The following theorem represents the relation between the Tutte matrix and the even factors in an
odd-cycle-symmetric digraph.

Theorem 3.2 (Cunningham and Geelen [7]). Let G = (V,A) be an odd-cycle-symmetric digraph
and T = (Tu+v−) be the Tutte matrix of G. For U+, U− ⊆ V with |U+| = |U−|, it holds that
detT [U+, U−] 6= 0 if and only if there exists an even (U+, U−)-factor in G.

Cunningham and Geelen [7] showed that this theorem holds in weakly symmetric digraphs,
which is a subclass of odd-cycle-symmetric digraphs. However, we can prove this theorem for
odd-cycle-symmetric digraphs without any modification to the argument in [7].

A proof for Proposition 3.1 follows from Theorem 3.2.

Algebraic proof for Proposition 3.1. By the definition of JEF(G) and Theorem 3.2, it holds that

JEF(G) = {dM | M is an even factor in G}

= {χU+∪U− | U+ ⊆ V +, U− ⊆ V −, |U+| = |U−|, detT [U+, U−] 6= 0}.

Hence, by Lemma 2.3, JEF(G) is a jump system. ¤

3.1.2 Constructive proof

Here we present an alternative constructive proof for Proposition 3.1 with the aid of alternating
paths. That is, we prove that JEF(G) satisfies (EXC) by presenting an algorithm that finds an
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v0 v1 v2 v3 v4

v0 v1 v2 v3 v4

v0 v1 v2 v3 v4

v0 v1 v2 v3 v4

: arc in K◦ \ L◦, : arc in L◦ \ K◦)(

Figure 1: Four patterns of a (K,L)-alternating walk.

(x + s, y)-increment t for any x, y ∈ JEF(G) and any (x, y)-increment s. We remark here that this
approach is easily extensible to a weighted version discussed in Section 4.

For a digraph G = (V,A), construct an auxiliary bipartite graph G◦ = (V ◦, A◦) as follows. The
vertex set V ◦ = V + ∪ V −, and the arc set A◦ is defined by

A◦ = {(u+, v−) | (u, v) ∈ A}.

For an arc set F ⊆ A, denote its corresponding arc set in A◦ by F ◦, that is, F ◦ = {(u+, v−) |
(u, v) ∈ F}. Where it causes no confusion, for a = (u, v) ∈ A and a◦ = (u+, v−) ∈ A◦, we identify
them and often denote a◦ simply by a or (u, v).

In the auxiliary bipartite graph G◦, we introduce the notion of alternating walk from the view-
point of degree sequence. Let K,L ⊆ A be two arc sets in G. We say that a sequence W =
(v0, a1, v1, a2, v2, . . . , vk−1, ak, vk) in G◦ is a (K,L)-alternating walk if one of the following condi-
tions holds.

• vi ∈

{
V + (for even i),
V − (for odd i),

ai =

{
(vi−1, vi) ∈ K◦ \ L◦ (for odd i),
(vi, vi−1) ∈ L◦ \ K◦ (for even i),

• vi ∈

{
V + (for even i),
V − (for odd i),

ai =

{
(vi−1, vi) ∈ L◦ \ K◦ (for odd i),
(vi, vi−1) ∈ K◦ \ L◦ (for even i),

• vi ∈

{
V − (for even i),
V + (for odd i),

ai =

{
(vi, vi−1) ∈ K◦ \ L◦ (for odd i),
(vi−1, vi) ∈ L◦ \ K◦ (for even i),

• vi ∈

{
V − (for even i),
V + (for odd i),

ai =

{
(vi, vi−1) ∈ L◦ \ K◦ (for odd i),
(vi−1, vi) ∈ K◦ \ L◦ (for even i).

The arc set in W , {a1, . . . , ak}, is denoted by A◦(W ), and its corresponding arc set in G by A(W ).
An illustration of these four patterns of alternating walk is shown in Figure 1. We note that we
are inspired to introduce this notion of (K,L)-alternating walk by the alternating paths in Pap’s
even factor algorithm [28,29].
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Lemma 3.3. Let K and L be arc sets in a digraph G = (V,A). If s is a (dK , dL)-increment, then
there exist a (K,L)-alternating walk (v0, a1, v1, . . . , vk−1, ak−1, vk) and a (dK + s, dL)-increment t

that satisfy the following (i) and (ii):

(i) a1 =


(v0, v1) ∈ K◦ \ L◦ (if s = −χv0 and v0 ∈ V +),
(v0, v1) ∈ L◦ \ K◦ (if s = χv0 and v0 ∈ V +),
(v1, v0) ∈ K◦ \ L◦ (if s = −χv0 and v0 ∈ V −),
(v1, v0) ∈ L◦ \ K◦ (if s = χv0 and v0 ∈ V −),

(ii) ak−1 =


(vk, vk−1) ∈ K◦ \ L◦ (if t = −χvk

and vk ∈ V +),
(vk, vk−1) ∈ L◦ \ K◦ (if t = χvk

and vk ∈ V +),
(vk−1, vk) ∈ K◦ \ L◦ (if t = −χvk

and vk ∈ V −),
(vk−1, vk) ∈ L◦ \ K◦ (if t = χvk

and vk ∈ V −).

Moreover, if dK and dL are {0, 1}-vectors, then such a (K,L)-alternating walk is unique.

Proof. We prove this lemma by induction on |A|. Without loss of generality, we only discuss the
case where s = −χv0 and v0 ∈ V +. Take an arbitrary arc a1 = (v0, v1) ∈ K◦ \ L◦.

The case where −χv1 is a (dK + s, dL)-increment is obvious. So, without loss of generality, we as-
sume that dK(v1) ≤ dL(v1), which implies that there exists an arc a2 ∈ (L◦\K◦)∩δ−v1. Here, elimi-
nate a1 and consider arc sets K◦\{a1} and L◦. It holds that χv1 is a (dK\{a1}, dL)-increment. Hence,
by the induction hypothesis, there exist a (K \ {a1}, L)-alternating walk (v1, a2, v2, . . . , vk−1, ak, vk)
and a (dK\{a1} + s, dL)-increment t such that satisfy Condition (ii) in which K◦ is replaced by
K◦ \ {a1}. Then, (v0, a1, v1, a2, v2, . . . , vk−1, ak, vk) is a (K,L)-alternating walk that satisfies Con-
ditions (i) and (ii).

Moreover, if dK and dL are {0, 1}-vectors, we pick up as a1 the unique arc in K◦ ∩ δ+v0, which
implies the uniqueness of the (K,L)-alternating walk.

For an odd-cycle-symmetric digraph G, let x, y ∈ JEF(G) and s be an (x, y)-increment. Here is
the description of the algorithm for finding a (dK + s, dL)-increment t. We remark that a variable τ

indicates the time step of the algorithm and τ is used only for the analysis of the algorithm.

Algorithm FIND-INCREMENT

Step 1. Set i = 1 and τ = 0, and let u be an element of V + ∪ V − such that s = χu or s = −χu.
Find even factors M and N such that dM = x and dN = y. Then, go to Step 2.

Step 2. Let W = (v0, a1, v1, a2, v2, . . . , vk−1, ak, vk) be the unique (M,N)-alternating walk defined
in Lemma 3.3. If both of M ′ = M∆A(W ) and N ′ = N∆A(W ) do not contain odd cycles, then
the algorithm terminates, and we have that M ′ and N ′ are even factors and χvk

or −χvk
is an

(x + s, y)-increment t such that dM ′ = x + s + t and dN ′ = y − s − t. Otherwise, go to Step 3.

Step 3. Update M and N by

(M,N) :=

{
(M \ {ai}, N ∪ {ai}) (if ai ∈ M),
(M ∪ {ai}, N \ {ai}) (if ai ∈ N).
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If both of M and N do not contain an odd cycle, then go to Step 4. Otherwise, set a∗ = ai and go
to Step 5.

Step 4. If i = k, then the algorithm terminates, and we have that M and N are even factors and
χu or −χu is an (x + s, y)-increment t such that dM = x + s + t and dN = y − s− t. Otherwise, set
τ := τ + 1, u := vi, and i := i + 1 and go to Step 3.

Step 5. Let L, either of M and N , be the even factor which came to contain an odd cycle C in
Step 3. Update L by replacing A(C) with A(C̄). Then, set τ := τ + 1, u := vi, and find a new
(M,N)-alternating walk (v0, a1, v1, . . . , vk−1, ak, vk) with v0 = u, a1 ∈ (A(C̄))◦ \ {ā∗}, and χvk

or
−χvk

is an (x + s, y)-increment. Then, set i = 1 and go to Step 3.

Note that the existence of the (M,N)-alternating in Steps 5 follows from a similar argument to
Lemma 3.3 and that of C̄ in Step 5 follows from the odd-cycle-symmetry of G.

Here, all that is left is to validate Algorithm FIND-INCREMENT, that is, to show that Algo-
rithm FIND-INCREMENT terminates in finite steps. We denote M , N , and u in τ = τ0 by M(τ0),
N(τ0), and u(τ0), respectively.

It is not difficult to see that Algorithm FIND-INCREMENT has the following properties.

Lemma 3.4. After the update of τ and u, it holds that dM(τ)(v) = (x + s)(v) and dN(τ)(v) =
(y − s)(v) for each v ∈ V + ∪ V − \ {u(τ)}.

Lemma 3.5. In Algorithm FIND-INCREMENT, if M or N comes to contain an odd cycle, the
odd cycle contains u.

In order to prove the finiteness, we now assume to the contrary that M(τ1) = M(τ2), N(τ1) =
N(τ2), u(τ1) = u(τ2), and u(τ1 + 1) = u(τ2 + 1) hold for τ1 < τ2. Consider the pair of (τ1, τ2)
with τ1 the smallest in such pairs. Without loss of generality, we assume that we exchanged an arc
from N to M in τ = τ1, and the arc is in the direction of from u(τ1 + 1) to u(τ1) in τ = τ1 + 1.

Claim 3.6. τ1 6= 0.

Proof. Once Algorithm FIND-INCREMENT begins, one of M(τ) and N(τ) is not an even factor
until the termination. If τ1 = 0, then both of M(τ1) and N(τ1) are even factors, and so are M(τ2)
and N(τ2). However, Algorithm FIND-INCREMENT does not terminate in τ = τ2, which is a
contradiction.

Now, consider the transitions of τ1 − 1 to τ1, and τ2 − 1 to τ2 (Claim 3.6 assures the existence
of τ1 − 1). Since we selected the smallest τ1, different arc-exchanges occurred in τ = τ1 − 1 and
τ = τ2 − 1. Observe that one arc-exchange created an odd cycle, while the other did not. That is,
we have two cases:

Case 1. The arc-exchange in τ = τ1 − 1 resulted in an N -arc odd cycle C.

Case 2. The arc-exchange in τ = τ2 − 1 resulted in an N -arc odd cycle C.

We derive a contradiction in both of these two cases.
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: arc in M , : arc in N , •: u(τ))(

u(τ1)

u(τ1 − 1)

u(τ2 − 1)

τ = τ1 − 1 τ = τ1

u(τ1 + 1)

Figure 2: Case 1 in τ = τ1 − 1 and τ = τ1.

u(τ2 − 1)

u(τ1 − 1)u(τ1) u(τ1 + 1)

: arc in M , : arc in N , •: u(τ))(

τ = τ2 − 1 τ = τ2

Figure 3: Case 2 in τ = τ2 − 1 and τ = τ2.

Case 1 (see Figure 2). In this case, in τ = τ1 − 1 an N -arc odd cycle C appeared, which
resulted in C̄ contained in N(τ1), hence also in N(τ2). Now consider the arc-exchange in τ2 − 1.
Here, an arc connecting u(τ2−1) and u(τ2) was exchanged from M to N , which did not resulted in
an appearance of an odd cycle. Then, we have that u(τ2 − 1) 6∈ V (C) by Lemma 3.4 and N(τ2 − 1)
also contains C̄, which contradicts Lemma 3.5.

Case 2 (see Figure 3). In this case, in τ = τ2 − 1 an N -arc odd cycle C appeared, which
resulted in C̄ contained in N(τ2), hence also in N(τ1). Now consider the arc-exchange in τ1 − 1.
Here, an arc connecting u(τ1−1) and u(τ1) was exchanged from M to N , which did not resulted in
an appearance of an odd cycle. Then, we have that u(τ1 − 1) 6∈ V (C) by Lemma 3.4 and N(τ1 − 1)
also contains C̄, which contradicts Lemma 3.5.

Therefore, Algorithm FIND-INCREMENT terminates in finite steps, which completes the proof
for Proposition 3.1.

3.2 Necessity of odd-cycle-symmetry

The objective of this subsection is to prove the necessity in Theorem 1.2.

Proposition 3.7. For a digraph G, if JEF(G) is a jump system then G is odd-cycle-symmetric.
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Assume to the contrary that a digraph G = (V,A) is not odd-cycle-symmetric but JEF(G) is
a jump system, and we will derive a contradiction. Let C = (vk, a1, v1, . . . , vk−1, ak, vk) be the
shortest odd cycle which does not have the reverse cycle C̄. Without loss of generality, we assume
that (v1, vk) 6∈ A. Now we begin with the following lemma.

Lemma 3.8. For each vertex v ∈ V (C), the following two properties hold.

• There exists an arc a ∈ A \ A(C) such that ∂+a = v, ∂−a ∈ V (C).

• There exists an arc a ∈ A \ A(C) such that ∂−a = v, ∂+a ∈ V (C).

Proof. Suppose that v ∈ V (C) and a = (v, u) ∈ A(C). Define x, y ∈ JEF(G) by x = d{a}, y =
dA(C)\{a}. By applying (EXC) to x, y and an (x, y)-increment s = −χu− , we have that there exists
an (x + s, y)-increment t such that x + s + t ∈ JEF(G) and y − s − t ∈ JEF(G). Then, it holds
that t = χu−

0
for some u0 ∈ V (C) \ {u} or t = −χv+ , because dF (V +) = dF (V −) = |F | holds

for any F ⊆ A. On the other hand, if an arc set F ⊆ A satisfies dF = dA(C), then F forms a
collection of disjoint cycles which covers V (C), and hence F contains an odd cycle, which implies
that dA(C) 6∈ JEF(G). For t = −χv+ , it holds that y − s − t = dA(C), thus t = −χv+ is not an
(x + s, y)-increment that satisfies (EXC). Therefore, there exists a vertex u0 ∈ V (C) \ {u} such
that x+ s+ t = d{(v,u0)} ∈ JEF(G) for t = χu−

0
, which means that (v, u0) ∈ A\A(C). We can prove

the second property by a similar argument.

Let G[C] = (V [C], A[C]) be the subgraph of G induced by V (C) = V [C]. Then, Lemma 3.8
means that for every vertex v ∈ V [C] at least two arcs in A[C] leave (enter) v. In what follows in
this section, we use these properties in stead of using (EXC) directly.

We say that an arc a = (vi, vj) ∈ A[C] is regular if i 6≡ j (mod 2), and it is irregular if i ≡ j

(mod 2). The following is an easy but useful observation.

Lemma 3.9. A cycle C ′ in G[C] is odd if and only if the number of irregular arcs in C ′ is odd.

Proof. Suppose that C ′ = (vi0 , a
′
1, vi1 , a

′
2, vi2 , . . . , a

′
l, vil) is a cycle in G[C], where i0 = il. Let γ be

the number of irregular arcs in C ′. By the definition of irregular arcs, an arc (vij−1 , vij ) is irregular
if and only if ij − ij−1 + 1 ≡ 1 (mod 2). Hence, l =

∑l
j=1(ij − ij−1 + 1) ≡ γ (mod 2), which

completes the proof.

For 1 ≤ i < j ≤ k, we denote by Pi,j the path from vi to vj along C, that is, Pi,j =
(vi, ai+1, vi+1, . . . , vj). We say that an arc a = (vi, vj) ∈ A[C] is forward if i < j, and it is
backward if i > j. Let AF and AB be sets of arcs defined as

AF = {a | a ∈ A[C] \ A(C), a is a forward arc},

AB = {a | a ∈ A[C] \ A(C), a is a backward arc}.

Now we prove that arcs in AF satisfy the following conditions by using the minimality of |C|.

Claim 3.10. Every arc in AF is irregular.
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Proof. Suppose that a = (vi, vj) ∈ AF is a regular arc. Since i + 2 ≤ j, a cycle C ′ which consists
of P1,i, a, Pj,k, and a1 is shorter than C. Furthermore, a1 is the only irregular arc in C ′, and hence
C ′ is odd by Lemma 3.9. The existence of such a cycle C ′ contradicts the minimality of |C|.

Claim 3.11. For every pair of arcs (vi1 , vj1), (vi2 , vj2) ∈ AF, it holds that vj1 > vi2 and vj2 > vi1.

Proof. Suppose that vi2 ≥ vj1 holds. Then, a cycle C ′ which consists of P1,i1 , (vi1 , vj1), Pj1,i2 ,
(vi2 , vj2), Pj2,k, and a1 is shorter than C. On the other hand, by Claim 3.10, (vi1 , vj1) and (vi2 , vj2)
are irregular arcs and so is a1, but not the other arcs in C ′. Hence C ′ is odd by Lemma 3.9, which
contradicts the minimality of |C|. We can prove vj2 > vi1 in the same way.

Let m = max{i | 1 ≤ i ≤ k, ∃a ∈ AF, ∂+a = vi}. Note that such m always exists, since
Lemma 3.8 suggests that there exists an arc in AF leaving v1. Then we can prove the following
claim.

Claim 3.12. For any integer i with 1 ≤ i ≤ m, there exists an arc in AB which enters vi, and for
any integer i with m < i ≤ k there exists an arc in AB which leaves vi.

Proof. First, by Claim 3.11, no arcs in AF enter vi for 1 ≤ i ≤ m. Hence, by Lemma 3.8, there
exists an arc in AB which enters vi for each 1 ≤ i ≤ m. Second, by the definition of m, no arcs in
AF leave vi for m < i ≤ k. Hence, by Lemma 3.8, there exists an arc in AB which leaves vi for each
m < i ≤ k.

Let p and q be integers such that (v1, vp) ∈ AF and (vq, vk) ∈ AF. Note that Lemma 3.8 assures
the existence of p and q. Since (v1, vp) and (vq, vk) are irregular by Claim 3.10, we have 3 ≤ q and
p ≤ k − 2. Furthermore, by Claim 3.11, we have 3 ≤ q ≤ m < p ≤ k − 2.

Now we consider two sequences p1, p2, . . . , pα and q1, q2, . . . , qβ of integers satisfying the following
conditions:

• p = p1 > p2 > · · · > pα−1 > m ≥ pα such that (vpi , vpi+1) ∈ AB for any 1 ≤ i ≤ α − 1, and

• q = q1 < q2 < · · · < qβ−1 < pα ≤ qβ such that (vqi+1 , vqi) ∈ AB for any 1 ≤ i ≤ β − 1.

Note that Claim 3.12 assures the existence of these sequences. An example of such sequences is
shown in Figure 4. Then the following claim holds for these sequences.

Claim 3.13. For any integer i with pα ≤ i ≤ p, there exists a path P from vp to vi such that
contains only regular arcs and that V (P ) ⊆ {vj | pα ≤ j ≤ p}.

Proof. First, we show that such a path exists for i with p2 ≤ i ≤ p. If (vp, vp2) is regular, a
path which consists of (vp, vp2) and Pp2,i is a desired path. Otherwise, since (vp, vp2) is irregular,
a cycle C ′ which consists of (vp, vp2) and Pp2,p is odd by Lemma 3.9. Hence, by the minimality of
|C|, every arc in C ′ has the reverse arc and P̄i,p is a desired path. Note that the path P found
above satisfies that V (P ) ⊆ {vj | p2 ≤ j ≤ p}.

Similarly, for any α′ with 1 ≤ α′ ≤ α− 1 and for any i with pα′+1 ≤ i ≤ pα′ , there exists a path
from vpα′ to vi which is composed of only regular arcs and satisfies that if vj belongs to the path
then pα′+1 ≤ j ≤ pα′ . Denote such a path from vpα′ to vpα′+1

by Pα′ .
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v1vk
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vp = vp1

vq = vq1
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vp2

vpα

vqβ

a1
a2

Figure 4: Two sequences.

Then, for any i and α′ satisfying pα′+1 ≤ i ≤ pα′ , a path which consists of P1, P2, . . . , Pα′−1 and
the path from vpα′ to vi is a desired path.

In the same way as Claim 3.13, we obtain the following claim.

Claim 3.14. For any integer i with q ≤ i ≤ qβ, there exists a path P from vi to vq which contains
only regular arcs and satisfies that V (P ) ⊆ {vj | q ≤ j ≤ qβ}.

Next we claim the following.

Claim 3.15. pα 6= 1 and qβ 6= k.

Proof. Suppose that pα = 1. Then, by Claim 3.13, there exists a path P from vp to vpα = v1

containing only regular arcs. Since a cycle which consists of (v1, vp) and P is odd and shorter than
C, this cycle has the reverse cycle. Hence, there exists an irregular arc (vp, v1) in A[C]. Then, since
a cycle which consists of (vp, v1) and P1,p is odd, this cycle has the reverse cycle. In particular,
a path Pq,p has the reverse path P̄q,p. Then, a cycle C ′ which consists of (v1, vp), P̄q,p, (vq, vk),
and a1 is odd, because C ′ has three irregular arcs (v1, vp), (vq, vk), and a1. As we have 3 ≤ q and
p ≤ k − 2, C ′ is shorter than C, which contradicts the minimality of |C|. We can prove qβ 6= k by
a similar argument using Claim 3.14.

Now we are ready to prove Proposition 3.7.

Proof for Proposition 3.7. By Claim 3.13, there exists a path P from vp to vpα containing only
regular arcs. On the other hand, by Claim 3.14, there exists a path P ′ from vpα to vq that contains
only regular arcs. Note that if pα < q then Ppα,q is a path from vpα to vq that contains only regular
arcs.

Thus, P ∪ P ′ forms a walk W from vp to vq, hence we obtain a path P ′′ from vp to vq by
canceling cycles in W if necessary. Since P ′′ contains only regular arcs, a cycle C ′ which consists
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of a1, (v1, vp), P ′′, and (vq, vk) is odd. Note that C ′ does not visit any vertices more than once,
because P ′′ passes through neither v1 nor vk by Claim 3.15. Furthermore, since C ′ passes through
at most one of v2 and vk−1, C ′ is shorter than C, which contradicts the minimality of |C|.

4 Proof for Theorem 1.3

In this section, we prove Theorem 1.3, which is a weighted generalization of Theorem 1.2. As we
proved Theorem 1.2, we prove the sufficiency (Proposition 4.1) and the necessity (Proposition 4.5)
of odd-cycle-symmetry separately.

For the same reason as Theorem 1.2, we refer to fEF as an “M-concave function,” instead of a
“valuated delta-matroid.”

4.1 Sufficiency

This subsection is devoted to proving the sufficiency in Theorem 1.3.

Proposition 4.1. The function fEF is M-concave if (G,w) is an odd-cycle-symmetric weighted
digraph.

We present two proofs for fEF’s M-concavity which extends those for Proposition 3.1. One is
an algebraic proof utilizing valuated matroids; and the other is constructive.

4.1.1 Algebraic Proof

Let us consider a weighted version of the Tutte matrix. For a weighted digraph (G, w) with
G = (V,A) and w ∈ RA, let {tuv | (u, v) ∈ A} be a set of indeterminates associated with a ∈ A

such that tuv = −tvu if (u, v), (v, u) ∈ A and let z be another indeterminate. We define the
weighted Tutte matrix T = (Tu+v−(z)) of (G, w), whose rows and columns are indexed by V + and
V −, respectively, by

Tu+v−(z) =

{
tuvz

w(a) (if a = (u, v) ∈ A),
0 (otherwise).

The degree of determinant of the weighted Tutte matrix relates to the weight of the corresponding
even factors.

Theorem 4.2 (Cunningham and Geelen [7]). Let (G,w) be an odd-cycle-symmetric weighted di-
graph with G = (V,A) and w ∈ RA, and let T be the weighted Tutte matrix of (G, w). If U+ and
U− are subsets of V such that admit an even (U+, U−)-factor, then

degz(detT [U+, U−]) = max{w(M) | M is an even (U+, U−)-factor}.

The lemma below, which implies the relation between the weighted Tutte matrix and M-concave
functions, directly follows from Murota [23] (see also Cunningham and Geelen [7]).
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Lemma 4.3. Let T = (Tu+v−(z)) be a matrix whose components are polynomials in z, and whose
rows and columns are indexed by V + and V −, respectively. Then, a function f : {0, 1}V +∪V − →
R ∪ {−∞} defined by

f(χU+∪U−) =

{
−∞ (if |V + \ U+| 6= |U−| or detT [V + \ U+, U−] = 0),
degz(detT [V + \ U+, U−]) (otherwise)

for U+ ⊆ V +, U− ⊆ V − is a valuated matroid.

Note that since a valuated matroid is a special case of M-concave functions, f is an M-concave
function, and hence f ′ : {0, 1}V +∪V − → R ∪ {−∞} defined by

f ′(χU+∪U−) =

{
−∞ (if |U+| 6= |U−| or detT [U+, U−] = 0),
degz(detT [U+, U−]) (otherwise)

for U+ ⊆ V +, U− ⊆ V − is also an M-concave function.
We now prove Proposition 4.1 using the weighted Tutte matrix.

Algebraic Proof for Proposition 4.1. Let T be the weighted Tutte matrix of (G,w). By the defini-
tion of fEF and Theorem 4.2,

fEF(χU+∪U−) = max{w(M) | M is an even (U+, U−)-factor},

= degz(detT [U+, U−])

for each U+ ⊆ V + and U− ⊆ V − satisfying χU+∪U− ∈ JEF. Thus, by Lemma 4.3, fEF is an
M-concave function.

4.1.2 Constructive Proof

Next we give another proof for Proposition 4.1 based on our constructive proof for Proposition 3.1.

Lemma 4.4. Let (G,w) be an odd-cycle-symmetric digraph, M,N be even factors in G and s be
a (dM , dN )-increment. If we execute Algorithm FIND-INCREMENT to obtain new even factors
M ′, N ′ and a (dM + s, dN )-increment t such that dM ′ = dM + s + t and dN ′ = dN − s − t, then it
holds that w(M) + w(N) = w(M ′) + w(N ′).

Proof. An arc-exchange in Step 3 does not change w(M) + w(N). Moreover, w(M) + w(N) does
not change in Step 5, since w(A(C)) = w(A(C̄)) follows from the odd-cycle-symmetry of (G,w).
Therefore, w(M) + w(N) stays constant through the algorithm.

Constructive Proof for Proposition 4.1. For x, y ∈ JEF(G) and an (x, y)-increment s, let M and N

be even factors such that dM = x, dN = y, w(M) = fEF(x), and w(N) = fEF(y).
Then, execute Algorithm FIND-INCREMENT to find new even factors M ′ and N ′ and an

(x + s, y)-increment t that satisfy dM ′ = x + s + t and dN ′ = y − s − t. By Lemma 4.4, we have
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fEF(x) + fEF(y) = w(M) + w(N)

= w(M ′) + w(N ′)

≤ fEF(x + s + t) + fEF(y − s − t).

Hence fEF is M-concave. ¤

4.2 Necessity

The necessity of odd-cycle-symmetry in Theorem 1.3 is proved in this subsection.

Proposition 4.5. For a weighted digraph (G,w), if fEF(G) is M-concave then (G,w) is an odd-
cycle-symmetric weighted digraph.

If fEF is M-concave, it holds that JEF(G) is a jump system. Hence, Proposition 3.7 suggests
that G is odd-cycle-symmetric in the unweighted sense. In order to prove that (G,w) is odd-
cycle-symmetric in the weighted sense, it suffices to consider each non-bipartite cycle-connected
component of G. Hence, in the rest of this section, we assume that G is cycle-connected but not
bipartite, which is symmetric by Lemma 2.11.

We prove Proposition 4.5 by giving a valid potential function π on V . First, we observe that
w(A(C)) = w(A(C̄)) holds for an odd cycle C without “chords.” For a cycle C, an arc a is said
to be a chord of C if a ∈ A[C] \ (A(C) ∪ A(C̄)). Recall that A[C] is the set of all arcs whose end
vertices are both in V (C).

Lemma 4.6. Suppose that (G,w) is a weighted digraph such that fEF(G) is M-concave. If an odd
cycle C has no chords, it holds that w(A(C)) = w(A(C̄)).

Proof. Denote C = (v0, a1, v1, . . . , vk−1, ak, v0). Then, consider even factors M = {a1}, N = A(C)\
{a1} and their degree sequence x = dM , y = dN . Since C has no chords, N is the unique even factor
that achieves y. Hence, we have fEF(x) = w(M) and fEF(y) = w(N). Then, pick up an (x, y)-
increment s = −χv+

0
and consider to apply (M-EXC). Since C has no chords, we have that t = χ+

v2

is the unique (x + s, y)-increment such that x+s+t, y−s−t ∈ JEF(G), and x+s+t (resp. y−s−t)
is achieved only by M ′ = {ā2} (resp. N ′ = A(C̄)\{ā2}). Hence, we have fEF(x+s+t) = w(M ′) and
fEF(y−s−t) = w(N ′). Then, (M-EXC) suggests that fEF(x)+fEF(y) ≤ fEF(x+s+t)+fEF(y−s−t),
that is, w(A(C)) ≤ w(A(C̄)).

The inequation w(A(C)) ≥ w(A(C̄)) can be proved by a similar argument.

By Lemma 4.6, we can define a valid potential function on V (C). Beginning with G0 = C ∪ C̄,
we add “ears” until we obtain the original digraph G. For a subgraph G′ of G, a path P =
(v0, a1, v1, . . . , vk−1, ak, vk) is said to be a proper ear of G′ if the distinct two vertices v0 and vk

belong to G′ but the other vertices in V (P ) do not. The following lemma assures that G can be
obtained by addition of proper ears.

Lemma 4.7 (Grötschel [15]). Let G be a cycle-connected digraph, and G′ a subgraph of G with at
least two vertices. If G′ 6= G, then G′ has a proper ear.
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The following lemma implies a method to compose G by adding proper ears, which defines a
valid potential function in each step of addition of a proper ear. We remark that this composition
of G refers to that of an odd-cycle-symmetric digraph in [19].

Lemma 4.8. Let (G,w) be a weighted digraph such that G is cycle-connected but not bipartite, and
fEF(G) is M-concave. There exists a sequence G0, G1, . . . , Gm = G of subgraphs such that satisfies
the following (i)–(iv).

(i) G0 consists of an odd cycle C without chords and its reverse cycle C̄.

(ii) Gi+1 is obtained from Gi by adding Pi and P̄i, where Pi is a proper ear of Gi, for i =
0, 1, . . . ,m − 1.

(iii) There exist both an even path and an odd path from u to v in Gi = (Vi, Ai) for every vertex
pair u, v ∈ Vi.

(iv) Gi has a valid potential function for i = 0, 1, . . . ,m.

Proof. By Proposition 3.7 and Lemma 2.11, we have that G is symmetric. In a non-bipartite
symmetric digraph G, there exists an odd cycle without chords. For, if an odd cycle C has a
chord a, the symmetry of G implies a shorter odd cycle that contains a. Take an arbitrary odd
cycle C without chords and define G0 = C∪ C̄. It directly follows from Lemma 4.6 that G0 satisfies
Conditions (i), (iii), and (iv).

Next, we show the existence of {Gi | i = 1, . . . ,m} that satisfy Conditions (ii), (iii), and
(iv) by induction on i. Suppose that Gi satisfies (iii) and (iv). Let k be the minimum length
of a proper ear of Gi, the existence of which is assured by Lemma 4.7. Consider an odd cy-
cle C = (v0, a1, v1, . . . , vk−1, ak, vk, . . . , vl−1, al, v0) such that P = (v0, a1, v1, . . . , vk−1, ak, vk) is a
proper ear of Gi and Q = (vk, ak+1, . . . , vl−1, al, v0) is a path in Gi. Among such cycles, we
take an odd cycle C∗ with minimum length l∗. We remark here that, by Condition (iii) in Gi,
for any proper ear P ′ of Gi there exists a path Q′ in Gi such that P ′ ∪ Q′ forms an odd cycle.
Denote C∗ = (v0, a1, v1, . . . , vk−1, ak, vk, . . . , vl∗−1, al∗ , v0), P ∗ = (v0, a1, v1, . . . , vk−1, ak, vk), and
Q∗ = (vk, ak+1, . . . , vl∗−1, al∗ , v0), where P ∗ is a proper ear of Gi and Q∗ is a path in Gi. If there
exist more than one path in Gi from vk to v0 with length l∗ − k, let Q∗ be a path with maximum
weight among them. We prove that Gi+1 = Gi ∪ P ∗ ∪ P̄ ∗ satisfies (iii) and (iv).

First, we consider Condition (iii).

Case 1. Suppose u, v ∈ Vi. Then it follows from the induction hypothesis that there exist both
an even path and an odd path from u to v in Gi+1.

Case 2. Suppose u ∈ Vi and v ∈ Vi+1 \ Vi. Let P ′ be a path from v0 to v along P ∗. Since there
exist both an even path Pe and an odd path Po from u to v0 in Gi, one of Pe ∪P ′ and Po ∪P ′ is an
even path, and the other is an odd path. In the case where v ∈ Vi and u ∈ Vi+1 \ Vi, we can prove
that there exist both an even path and an odd path from u to v in a similar way.
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Case 3. Suppose u, v ∈ Vi+1 \ Vi. Without loss of generality we assume v0, v, u, and vk appear
on P ∗ in this order. Let P ′ be a path from u to vk along P ∗, and P ′′ a path from v0 to v along P ∗.
Since there exist both an even path Pe and an odd path Po from vk to v0 in Gi, one of P ′ ∪Pe ∪P ′′

and P ′ ∪ Po ∪ P ′′ is an even path, and the other is an odd path.
Thus there exist both an even path and an odd path from u to v in Gi+1 for every vertex pair

u, v ∈ Vi+1.
Next, we prove that Gi+1 satisfies (iv).

Case A (k ≥ 2). P ∗ has a vertex vj ∈ Vi+1 \ Vi. Consider even factors M = {aj} and N =
A(C∗)\{aj}. Obviously, M is the unique even factor that achieves the degree sequence x = dM , and
fEF(x) = w(M). The minimality of |P ∗| and |C∗| implies that y = dN is achieved by even factors
that consist of (A(P ∗) \ {aj}) ∪A(Q), where Q is a path from vk to v0 with V (Q) = V (Q∗). Since
Q∗ maximizes w(A(Q)) among such paths, we have that fEF(y) = w(N). Then, pick up an (x, y)-
increment −χv+

j−1
and consider to apply (M-EXC). By the minimality of |P ∗| and |C∗|, there does

not exist an chord of C∗ that is incident to vj , which implies that t = χv+
j+1

is the unique (x + s, y)-
increment such that x+ s+ t, y− s− t ∈ JEF(G). The degree sequence x+ s+ t is achieved only by
M ′ = {āj+1}, whereas y− s− t is achieved by even factors that consist of (A(P̄ ∗) \ {āj+1})∪A(Q̄),
where Q is a path from vk to v0 with V (Q) = V (Q∗). Since Gi has a valid potential π, it holds
that w(A(Q̄)) = w(A(Q)) + π(vk) − π(v0) for each path Q from vk to v0. Hence, the maximality
of w(A(Q∗)) implies that N ′ = (A(P̄ ∗) \ {āj+1}) ∪ A(Q̄∗) = A(C̄∗) \ {āj+1} maximizes the weight
among the even factors that achieve y− s− t. Therefore, we have that fEF(x+ s+ t) = w(M ′) and
fEF(y−s−t) = w(N ′). Then, (M-EXC) suggests that fEF(x)+fEF(y) ≤ fEF(x+s+t)+fEF(y−s−t),
that is, w(A(C∗)) ≤ w(A(C̄∗)).

A similar argument shows w(A(C∗)) ≥ w(A(C̄∗)), and hence w(A(C∗)) = w(A(C̄∗)). Therefore,
we can assign a value π(vj) to vj for j = 1, . . . , k − 1 so that the potential function π is valid in
Gi+1.

Case B (k = 1). We have P ∗ = (v0, a1, v1), where both v0 and v1 are in Gi. In this case,
either v0 or v1 has no incident chord of C∗. For, if both v0 and v1 have an incident chord, we
have an odd cycle such that contains P ∗ and has less number of arcs than |C∗|. Without loss
of generality, we assume that v1 has no incident chords. Then, consider even factors M = {a1}
and N = A(C∗) \ {a1}. Applying (M-EXC) to degree sequences x = dM , y = dN and an (x, y)-
increment −χv+

0
, we obtain an inequation of w(A(C∗)) ≤ w(A(C̄∗)) by a similar argument to that

in Case A. An inequation w(A(C∗)) ≥ w(A(C̄∗)) also follows from an analogous argument. Hence,
we have w(A(C∗)) = w(A(C̄∗)), which implies that the potential function π in Gi is also valid in
Gi+1.

By Lemma 4.8, G has a valid potential function, which proves Proposition 4.5.

5 Degree sequences of underlying graphs

In this section, we discuss the degree sequence of the underlying edge set of even factors.
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5.1 Undirected degree sequences

In this paper, we introduced Definition 1.1 for the degree sequence in digraphs. One would naturally
come up with another kind of degree sequences in digraphs.

Definition 5.1 (Undirected degree sequence). For a digraph G = (V,A) and its arc set F ⊆ A,
the undirected degree sequence of F is a vector d̄F ∈ ZV defined by

d̄F (v) =
∣∣F ∩ δ−v

∣∣ +
∣∣F ∩ δ−v

∣∣ (v ∈ V ).

The undirected degree sequences focus on the number of incident arcs, and do not consider their
directions. In other words, the undirected degree sequence is exactly the degree sequence (in the
usual manner) of the underlying graph.

Let J̄EF(G) ⊆ ZV be the set of the undirected degree sequences of all even factors in G. If
JEF(G) is a jump system, one can see that J̄EF(G) is also a jump system by Lemma 2.4 as follows.
For a jump system JEF(G), consider an elementary aggregation at v+ and v− that correspond to the
same vertex v ∈ V . Applying such elementary aggregations for every v ∈ V , one obtains J̄EF(G),
which is a jump system by Lemma 2.4. Therefore, the corollary below follows from Proposition 3.1.

Corollary 5.2. J̄EF(G) is a jump system if G is odd-cycle-symmetric.

Observe that in general J̄EF(G) ∈ {0, 1, 2}V . Hence, J̄EF(G) of an odd-cycle-symmetric di-
graph G is a new example of a jump system that is not a delta-matroid.

Let us consider a weighted generalization. Let (G,w) be a weighted digraph. Define f̄EF :
J̄EF(G) → R by

f̄EF(x) = max{w(M) | M is an even factor, d̄M = x} (x ∈ J̄EF(G)).

Similarly to the argument above, provided that fEF is M-concave, f̄EF is shown to be M-
concave by the operation of elementary aggregation on fEF. For fEF, apply elementary aggregation
at v+ ∈ V + and v− ∈ V − for every v ∈ V to obtain f̄EF. If fEF is M-concave, Lemma 2.6 tells that
f̄EF is also M-concave. Therefore, by Proposition 4.1, we have the following corollary.

Corollary 5.3. For a weighted digraph (G,w), f̄EF is M-concave if (G,w) is odd-cycle-symmetric.

Remark 5.4. Corresponding to Propositions 3.1 and 4.1, Corollaries 5.2 and 5.3 claim that odd-
cycle-symmetry of the digraph is sufficient for the undirected degree sequences to have a ma-
troidal structure. One would expect that the necessity of odd-cycle-symmetry is also obtained
from Propositions 3.7 and 4.5. However, odd-cycle-symmetry is not necessary for J̄EF(G) (resp.
f̄EF) to be a jump system (resp. an M-concave function). A digraph G = (V,A) defined by
V = {v1, v2, v3}, A = {(v1, v2), (v2, v3), (v3, v1)} is a counter-example. In fact,

J̄EF(G) = {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1), (2, 1, 1), (1, 2, 1), (1, 1, 2)}

is a jump system, while G is not odd-cycle-symmetric.
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5.2 Degree sequences of path-matchings

This subsection deals with the degree sequences of path-matchings, which can be viewed as a special
case of the undirected degree sequences of even factors in odd-cycle-symmetric digraphs.

The path-matching problem is defined as follows. Let Ḡ = (V,E; S+, S−) be an undirected
graph with a pair of disjoint stable sets S+, S− ⊆ V of the same size. We denote V \ (S+ ∪ S−)
by R. An arc set M ⊆ E is a path-matching in Ḡ if it consists of a vertex-disjoint collection of
paths from S+ ∪ R to S− ∪ R with their internal vertices in R. For a path-matching M , an edge
that forms a 1-length path with both ends in R is said to be a matching-edge. We denote the set of
matching-edges in M by N(M), and that of the other edges in M by P (M). A distinct feature of
path-matchings is that the matching-edges can be counted twice, that is, the size of M is defined
by |P (M)| + 2|N(M)|.

In the case where the undirected graph is accompanied with a weight vector w̄ ∈ RE , we can
consider the weighted path-matching problem, where the weight of a path-matching M is defined
by w̄(P (M)) + 2w̄(N(M)).

As we mentioned in Section 1, we can reduce the path-matching problem to the even factor
problem. In order to deal with the path-matching problem in Ḡ = (V,E; S+, S−), it suffices to
consider the even factor problem in a digraph ~G = (V,A), where A = {(u, v) | u ∈ S+ ∪ R,
v ∈ S− ∪ R, (u, v) ∈ E}. In the weighted case (Ḡ, w̄), consider ~G together with the weight
vector w ∈ RA with w(a) = w̄(u, v) for a = (u, v) ∈ A. Note that ~G is an odd-cycle-symmetric
digraph and (~G,w) is an odd-cycle-symmetric weighted digraph.

As for the degree sequences, Cunningham [5] claimed that the set of the degree sequences of all
path-matchings is a jump system. This statement, however, needs to be rectified by modifying the
definition of the degree sequence in [5].

Definition 5.5 (Degree sequence of a path-matching). For a path-matching M and a set of
matching-edges H ⊆ N(M), the degree sequence dM,H is a vector in ZV defined by

dM,H(v) = |{a | a ∈ M \ H, a is incident to v }| + 2|{a | a ∈ H, a is incident to v }|,

for v ∈ V .

This definition means that matching-edges can be counted either once or twice. Remark that it
was not needed to count the matching-edges once in optimizing the size/weight of path-matchings.

For an instance of the path-matching problem Ḡ = (V,E; S+, S−), define JPM(Ḡ) ⊆ {0, 1, 2}V

by

JPM(Ḡ) = {dM,H | M is a path-matching in Ḡ, H ⊆ N(M)}.

Then, JPM(Ḡ) forms a jump system.

Corollary 5.6. For Ḡ, JPM(Ḡ) is a jump system.

Proof. We show JPM(Ḡ) = J̄EF(~G) by proving that JPM(Ḡ) ⊆ J̄EF(~G) and J̄EF(~G) ⊆ JPM(Ḡ).
For x ∈ JPM(Ḡ), there exists a path-matching M and its matching-edges H ⊆ N(M) such that
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dM,H = x. Associated with M and H, define an even factor M◦ in ~G as follows: replace P (M) with
corresponding paths in ~G; replace an edge (u, v) ∈ H with a 2-length cycle that consists of (u, v)
and (v, u); and replace an edge (u, v) ∈ N(M) \ H with (u, v). Then, it holds that d̄M◦ = dM,H ,
and hence x ∈ J̄EF(~G). Conversely, for y ∈ J̄EF(~G), take an even factor M◦ such that d̄M◦ = y.
Associated with M◦, define a path-matching M in Ḡ as follows: for a cycle C in M◦, pick up
arcs in A(C) along C alternately to obtain a matching H in Ḡ; and for a path in M◦, take the
corresponding path in Ḡ. Then, it holds that dM,H = d̄M◦ = y, which implies y ∈ JPM(Ḡ).

Therefore, we have JPM(Ḡ) = J̄EF(~G). Since ~G is odd-cycle-symmetric, J̄EF(~G) is a jump
system by Corollary 5.2, and hence so is JPM(Ḡ).

As a quantitative extension, for (Ḡ, w̄), define fPM : JPM(Ḡ) → R by

fPM(x) = max{w̄(M \ H) + 2w̄(H) | M is a path-matching in Ḡ

and H ⊆ N(M) with dM,H = x}

for x ∈ JPM(Ḡ). Then, we have that fPM is an M-concave function.

Corollary 5.7. For (Ḡ, w̄), fPM is M-concave.

Proof. We can show that fPM of (Ḡ, w̄) is exactly the same function as f̄EF of the weighted even
factor problem in (~G,w) in the same way as the proof for Corollary 5.6. Since (~G, w) is an odd-
cycle-symmetric weighted digraph, we have f̄EF is M-concave by Corollary 5.3, which completes
the proof.
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