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Stable Computation of the Optimal Path
for a Boat on a Water Stream and Its Applications

Kokichi Sugihara and Tetsushi Nishida

Abstract— A stable method for computing the optimal path
for a boat in a water stream is constructed, and is applied to
the estimation of water contamination phenomena. The proposed
method is a modification of a marker-particle method. The
conventional marker-partical method is unstable for our problem
because of singular points in the field of the shortest reachable
time. To circumvent the instability, we modify the way of
estimating the optimal direction of a particle in such a way
that we do not use the locations and the motions of neighbor
particles, and thus construct a robust version of the marker-
particle method, which we call an independent marker-particle
method. This method can also be used to trace the time backward
from the future to the past, and hence can estimate the location
of the contamination source.

. INTRODUCTION

The change of contamination of undesired material such as oil
leaked from a tanker in a ocean and polluted air in a windy sky
can be modeled in a unified manner as a diffusion phenomenon
in a stream. In this paper, we present a method for simulating
this phenomenon, that is, a method for tracing the time-varying
area of the diffusion in a stream.

If there is no stream, the diffusion phenomenon can be modeled
in a manner similar to the light emission on the basis of the
Huygens' principle. That is, the ratio of refraction corresponds to
the speed of diffusion. The light emission in a given field of the
ratio of refraction is characterized by an eikona equation. This
equation can be solved stably by established methods such as
the fast marching method [7], [8] and the marker-particle method
[1], [6]. These methods solve the equation along the time axis
step by step, and consequently can be used in a simulation of
contamination of material.

However, the situation changes drastically if the space behind
has a stream. The material moves in different speeds at differ-
ent points, and hence cause-and-effect relation becomes more
complicate than the light emission. Neither the fast marching
method nor the marker-particle method works; the fast marching
method crashes because sometimes the future phenomena are
computed earlier than the past phenomena, and the marker-
particle method crashes because the estimation of the direction of
the diffusion becomes incorrect due to singular points. Therefore,
the conventional methods for eikonal equations cannot be used for
our problem except for very simple case such as a homogeneous
stream [9].

Recently, we formalized the boat-soil distance in a stream of
water, found an equation called the boat-sail distance equation,
whose solution gives the boat-sail distances, and proposed three
robust methods for solving it. The first method is a variant of
the fast marching method, in which the search directions are
augumented so that the cause-and-effect constraints are always
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satisfied if the maximum speed of the water stream is not too
large [2], [3]. The second method employs the Huygens' principle
directly by approximating the speed of the boat in a stream by
a cone [4]. The third method is a variant of the marker-particle
method, in which the direction of the optima path of a boat
can be computed for each particle independently so that it is
not disturbed by singular points of the solution of the boat-sail
distance equation [5].

In this paper we review the third method and apply it to the
simulation of contamination growth in a stream. We review the
boat-sail distance equation in section I, and the independent
marker-particle method to solve the equation in section Ill. In
section 1V, we present a mathematicall model of diffusion in
a stream, and show that this phenomena can be numerically
simulated by the independent marker-particle method. We show
some examples of computational experiments in section V, and
give concluding remarks in section V1.

I1. BOAT-SAIL DISTANCE EQUATION

Let © ¢ R? be a two-dimensional region. Suppose that we
are given two-dimensional vector f(z,y) € R? at each point
(z,y) € Q. We consider Q as water surface, and f(z,y) as the
velocity of the stream. We assume that f(z,y) is continuously
differentiable. We call f(x,y) the field of a water stream.

We consider a boat that can run at speed F on still water. That
is, the boat can move at speed F in any direction if there is no
flow of water. Suppose that the boat is at point py at time 0. Let
E(t) represent the boundary of the region which the boat can
reach within time ¢ in the flow field f(z,y). We call E(t) the
frontier curve. E(t) forms a closed curve if it does not cross the
boundary of Q. We introduce new parameter s to represent this
curve, and represent each point in E(t) asp(s,t). The point p(s, t)
is the point which is reachable in time ¢ by the boat that starts
po @ time O and follows the shortest path through p(s,t). We
define that the point p(s,¢) moves along E(t) counterclockwise
as s increases.

Suppose that, as shown in Fig. 1, the boat is at point p(s,t)
on E(t) at time ¢, and it is moving along the shortest path. Let
n(s,t) denote the unit normal at point p(s,t) to the curve E(t),
where we choose the orientation of n(s, ) so that it faces toward
the unreached region. In order for the boat to reach a point on
E(t + At) in time ¢t + At, the boat should try to move in the
direction n(s,t). If there were no flow, the boat would move by
Fn(s,t)At, and in this time interval the flow will carry the boat
by f(p(s,t))At. Therefore, in total the boat will reach

p(s,t+ At) = p(s,t) + Fn(s, t)At + f(p(s,t))At. (1
Consequently, we get
op(s,t) - p(s,t + At) — p(s,t)
ot At—0 At
= Fn(s,t) + f(p(s,t)). o)



P(1 + Ar) E(t +Ar)
—_—
Atf(P)
Atfn(P) o

/”P(r)

Fig. 1. Frontier curves at time ¢ and ¢ + At, and the optimal motion of a

boat.

The basic idea to solve the equation (2) by the marker-
particle method is as follows. We consider the start point
po as the circle with radius 0, and represent this circle by
p(s,0). Next, we place many points called marker particles,
along this circle in an equal distance, and represent them by
p(s0,0),p(s1,0),p(s2,0),...,p(sn—1,0). Since the circle is with
radius O, the points p(sg,0),p(s1,0),...,p(sn—1,0) are a the
same location, but their normals are different from each other. As
shown in Fig. 2, we assume that these points have normals that
divide the whole directions by n equal angles.

Fig. 2. Initia infinitesimally small circle and normal vectors at the particles.

Starting with these particles, we augment the time by At step
by step and construct the frontier curves E(At), E(2At),....
Suppose that we have aready obtained the curve E(t). To get
the next frontier curve E(t + At), we compute the location of
a particle p(s,t + At) from p(s,t)’s. For this purpose, we need
the normal n(s,t). It may seem that the normal n(s;,t) a point
p(s;,t) can be obtained from the neighboring points p(s;_1,t)
and p(s;+1,t). However, this does not work well, because the
frontier curve has singular points.

For example, let us assume that, as shown by the arrows in
Fig. 3(a), the water flows from the left to the right in a river,
and that the flow is fast at the middle, and it becomes slower
as we goes near to the river side. Then, the frontier curves for
a boat starting from the point represented by the right upper dot
are as shown by the curves in this figure. We can see that the
frontier curves have non-smooth points; this is because there are
two optimal paths, one going near the upper side and the other
going near the lower side. Around these singular points, we cannot
compute the normal direction stably if we employ the neighboring
points.

Actudly if we estimate the normal directions from the neigh-
boring points, the traced paths of the marker particles are as
shown in Fig. 3(b), which are incorrect around the singular points.
Therefore, in order to trace the particles stably, we need to
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Fig. 3. Singular points of the frontier curves and the resulting instability.

estimate the normal directions without consulting the neighboring
points.

I11. ROBUST METHOD FOR TRACING THE PARTICLES

Here we present a method for estimating the normal n(s,t),
which does not employ the neighboring points.

We denote by ps(s,t) and p.(s, t) the partial derivative of p(s, t)
with respect to s and ¢, respectively. Using these notations, we
can rewrite the equation (2) by

pe(s,t) = Fn(s,t) + f(p(s,1)). ©)

On the other hand, let us choose the parameter s in such a way
that s represents the arc length at some very early time ¢, say at
t = At. We define a(s,t) and 7(s,t) by

1
a(s,t) = (s, )] (4
and
7(s,t) = a(s,t)ps(s,t). 5)

The vector ps(s,t) represents the tangent vector of the frontier
curve E(t) a point p(s,t), and 7(s,t) represents the unit tangent
vector. Let us define 2 x 2 matrix J by

J:<(1’ ‘01>.

J represents the counterclockwise rotation by = /2, and hence we
get

(6)

n(p(s,t)) = J tr(s,t). (7

Therefore, once we get (s, t), we get n(s,t), too. From now on,
let consider how to compute 7(s,t) at each time ¢.
Partially differentiating the equation (5) by ¢, we get

®)

Tt = apst + atPs.



Hence, our god is to compute a, ps, pst and ay.
First, we concentrate on p,:. We denote p(s,¢) and f(p(s,t))
componentwise by

p(s,t) = (z(s,t),y(s,t) ", )

F@,) = (g(2,y), h(z, )" (10)
Furthermore let x(s,t) be the curvature of E(t), that is,
_ YssTs — Tssls
K(s,t) = 7(1‘52—%3/52)3/2. (11
Then, we get
T
_ 0 Ys Ts
ns(Syt) - a ((1’52 T y52)1/2 y T (1’52 + y52)1/2>
T
_ YssTs — LssYs YssTs — LssYs
B ((1’52 + 952)3/2 o (zs2 + ys2)3/2 ys) 12
= ’i(57 t)p5(57 t)
Let us define VT f by
T, gz Gy
Vf_<hw hy>' (13)
Then, we get
Fs(o(s,t)) = (VT Fps(s, t). (14)

Partially differentiating the equation (3) by s, and employing
(12) and (14), we get
pts(svt) = Fns(p(s,t)) + fs(p(sat))

= Fr(s,t)ps(s,t) + (V" fps(s,t).  (15)

Next, we consider how to compute a;. From (4), we get

_ 0 1
at(s,t) = 5% \/ﬁ
TsTts + YsYts
(52 + ys2)3/2
_ _Ps(s:t) pis(sit)
T (@s? +ys2)3/2
= _(FH(Syt) + ((VT)T(S,t)) . T(S,t))a(s,t), (16)

where the last equality comes from eq. (15).
Substituting ps; and a; in eg. (8), we get
Tt = apst + atPs
a[Frps + (V' f)ps] — (Fr + (V1)) - m)aps
= (V'Hr=(((V"Hr)-m)r

= (I -7t (VEfH)r (17)
Noting that = Jn and n = J ', we get from eq. (17)
mi(s,t) = (I —n(s,t)n(s,6) )V ) n(s,t).  (18)

Eqg. (18) implies that the change n: of the normal is determined
by the current normal n(s,t) at p(s,t) and the flow field f. In
other words, we can compute n; even if we do not know the
locations of the neighbor particles.

Thus we have constructed the independent marker particle
method. In this method, given the position p(s,0) and the normal
n(s,0) at time 0, we get the location p(s, At) and the normal
n(s, At) of the particle at time At by egs. (3) and (18), respec-
tively. For this purpose we can employ the Runge-Kutta method.

We repeat the same procedure for time 2At, 3A¢, ..., and thus
can trace the particle for each fixed s independently.

For the flow field and the start point given in Fig. 3(a), we
applied our method and obtained the tragectory of the particles
as shown in Fig. 4.
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Fig. 4. Shortest paths for a boat in a flow field.

IV. CONTAMINATION DIFFUSION MODEL

In this section, we consider the phenomenon in which poluted
material that start leaking from point py at time 0 diffuses in a
flow field.

Assume that if there is no flow of water, the materia diffuses
a the same speed in every direction. Therefore, if we know the
speed F, we can apply our method for finding the frontier curves
to estimate the contaminated region.

We can consider several different patterns of the diffusion speed
F. The following are typical examples.

(a) Diffusion in constant speed

The simplest assumption is that the speed F of diffusion is
constant. This might happen when the amount of the poluted
material is very large, and plenty of material comes out during
the time interval in consideration, and consequently the speed of
diffusion does not decrease.

(b) Density-dependent diffusion

We can assume that the speed is proportional to the density of
the contaminated material. If all the material is at py at time 0 and
it diffuses around, the speed F'(¢) at each time ¢ is proportional
to the inverse of the area of the polluted region. Hence, if we
denote the area surrounded by E(t) by S(t), we can express the
speed F'(t) as

F(t) = ¢/S(), (19)

where ¢ is a constant.

(c) Diffusion of pouring material

In some cases the polluted material comes out from the source
point continuously. This can happen for example when the ail
pours out from an oil tunker. Let Q(¢) be the amount of material
that comes out from the source during a unit time interval, and
let S(t) be the area of the contaminated region. If the diffusion
speed is proportional to be density, we get

fot Q(u)du

O ="5w

(20)

In al the above three cases, the speed F'(t) can be computed
at each time ¢ from the area of the contaminated region. If



the speed F is constant as in the diffuson mode (a), we
can apply our method in Section Ill directly to smulate the
diffusion phenomena. On the other hand, if the speed F' depends
on time t as in the diffusion models (b) and (c), we need a
dlight modification of the boat-sail distance equation. We already
succeeded in this modification, and are preparing another paper
to present it, which can be used to the simulation of the diffusion
phenomena for the models (b) and (c).

V. COMPUTATIONAL EXAMPLES

5.1 Simulation of Contamination Diffusion

We computed the change of the contaminated area on the basis
of the diffusion speed mode (@) for various flow fields. We
assume that the water flows from the left to the right, and the
speed of the flow depends on y but does not depend on z.

Fig. 5 shows the result of the computed contaminated areas
in four different patterns of the flow. The flow patterns are
represented by the arrows at the left; the lengths of the arrows
represent the relative speed of the flow. The source of the diffusion
is shown by the dot. Fig. 5(a) shows the case where the flow is
faster in the middle, and (b) shows a similar pattern with faster
flow; on the other hand (c) shows the case where the flow is
dower in the middle, and (d) shows a similar pattern with faster
flow.

5.2 Estimation of the Source of Contamination

The boat-sail distance equation can be used for going back
to the past from a given current state of the diffusion. This can
be understood in the following manner. We define n(s,t) and
fp(s,t)) by

ﬁ(svt) = _"(svt)v f(p(s,t)) = —f(p(s,t)), (21)
and substitute them in eq. (3). Then, we get
—pi(s,t) = Fa(s,t) + f(p(s,1)). (22)

This equation implies that if we reverse both the orientation
of the flow and the orientation of the normal, we can trace the
particle toward the past by computing —p:(s,t). The equation
(22) has the same form as eg. (3), and hence can be solved by
the same method.

From this property, we can go back to the past from the current
state of the contamination and thus identify the location of the
source of the contamination as well as the time at which the
contamination began.

Fig. 6 shows an example of tracing back to the past. We started
with a state obtained at some time snap of Fig. 5(c), reverse the
flow and the normals, and solve eq. (22). Fig. 6(a) shows the
frontier curves and (b) shows the traced paths to the past. From
this figure we can see that the state of the past, especialy the
location of the source of the contamination, can be recovered
almost correctly.

Since we can trace each particle independently, the tracing back
does not necessarily require al the particles in some time snap.
We can trace back from a subset of particles at the current state.
Fig. 7 shows the paths traced back from a subset of the particles
at the current state in Fig. 6(a). We can see that the location
of the source could be identified correctly from these particle
information.
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Fig. 5. Simulation of the diffusion of polluted material in various patterns
of flow from the left to the right.

Next we added artificial errors in the direction of the normals,
and applied our method. Fig. 8 shows an example of the results. In
this example, the direction of the normals were disturbed within
+20 degrees by uniform random numbers. Fig. 8(a) shows the
case where we used al the particles at the current state of the
frontier, whereas (b) shows the case where only a subset of the
particles were used for tracing. In both cases, the location of
source could be estimated in a certain precision. Thus, we can
see that our method is robust against numerical errors.

We have another idea to trace back to the past, in which the
directions of the normals are not necessary. In this method, we
consider each particle at current position as the source point, and
simulate the diffusion process. We can expect that the frontier
curves generated by this simulation have a common point of
intersection at the actual source of the contamination.

V1. CONCLUDING REMARKS

We applied our independent marker-particle method to the
simulation of contamination diffusion phenomena, and showed
its performance by examples. This method can also be used to
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Fig. 6. Result of tracing back to the past from a frontier curve in Fig. 5(c).
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Fig. 7. Estimation of the source of the contamination from partial data of
the current statel]

trace back to the past, and hence can estimate the past situation,
in particular, the location of the source of the contamination.

We are now planning to evaluate our method for actual data of
ocean streams.
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