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Abstract

In this paper, we consider source location problems and their gen-
eralizations with three connectivity requirements (arc-connectivity re-
quirements λ and two kinds of vertex-connectivity requirements κ and
κ̂), where the source location problems are to find a minimum-cost
set S ⊆ V in a given graph G = (V,A) with a capacity function
u : A → R+ such that for each vertex v ∈ V , the connectivity from S
to v (resp., from v to S) is at least a given demand d−(v) (resp., d+(v)).
We show that the source location problem with edge-connectivity re-
quirements in undirected networks is strongly NP-hard, which solves
an open problem posed by Arata et al. [2]. Moreover, we show that
the source location problems with three connectivity requirements are
inapproximable within a ratio of c lnD for some constant c, unless ev-
ery problem in NP has an O(N log log N )-time deterministic algorithm.
Here D denotes the sum of given demands. We also devise (1 + lnD)-
approximation algorithms for all the extended source location prob-
lems if we have the integral capacity and demand functions. By the
inapproximable results above, this implies that all the source location
problems are Θ(ln

∑

v∈V
(d+(v) + d−(v)))-approximable.

1 Introduction

There is vast literature on location problems in the fields of operations re-
search, computer science, etc. (see, e.g., [13]). Location problems in net-
works are often formulated as optimization problems to determine the best
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location of facilities such as industrial plants or warehouses in given net-
works to satisfy a certain property. Location problems based on flow (i.e.,
connectivity) requirements, called source location problems, were introduced
by Tamura et al. [18, 19], and have recently received much attention from
many authors (e.g., [1, 2, 3, 8, 11, 12, 15]).

Connectivity is one of the most important factors in applications to
control and design of multimedia networks. Suppose that we are asked to
locate a set S of servers which can provide a certain service in a multimedia
network N . A user at vertex v can receive a service by connecting to a
server in S through a path in N . To ensure the quality of the service to v
even if certain number d of links and/or vertices become out of order, we
should select S so that the arc- and/or vertex-connectivity between S and
v is at least d + 1. Therefore, these kinds of fault-tolerant settings can be
formulated as source location problems.

Formally, source location problems can be described as follows. Let
N = (G = (V,A), u) be a network with a vertex set V of cardinality n,
an arc set A of cardinality m, and a capacity function u : A → R+, where
R+ denotes the set of all nonnegative reals. It has two demand functions
d−, d+ : V → R+, and a cost function c : V → R+. Then the problem is
given as follows.

Minimize
∑

v∈S

c(v)

subject to ψ−(S, v) ≥ d−(v) and ψ+(v, S) ≥ d+(v) (v ∈ V ), (1.1)

S ⊆ V.

Here ψ−(X,Y ) and ψ+(X,Y ) denote certain measurements based on the
connectivity from vertex set X to vertex set Y in N . For any v ∈ V , we
simply write ψ−(S, v) and ψ+(v, S) instead of ψ−(S, {v}) and ψ+({v}, S), re-
spectively. As such measurements ψ±, this paper studies three basic connec-
tivity requirements: arc-connectivity λ, and two kinds of vertex-connectivity
κ and κ̂. Note that Problem (1.1) sometimes adopts a single measurement ψ
(= ψ− = ψ+). Let us further note that in a more general problem setting we
consider multiple constraints in (1.1) as ψ−

i (S, v) ≥ d−i (v), ψ+
i (v, S) ≥ d+

i (v)
for all v ∈ V and i = 1, 2, · · · , `. For example, we can consider the arc- and
vertex-connectivity simultaneously.

Tamura et al. [18] first considered the source location problem with edge-
connectivity (i.e., arc-connectivity) requirements ψ (= ψ− = ψ+) = λ, when
N is undirected, and both the cost c and demand d are uniform (i.e., c(v) = 1
and d(v) = k for all v ∈ V ), and gave a polynomial time algorithm for it.
Since then, Tamura et al. [19, 20], Ito et al. [11] and Arata et al. [2] have in-
vestigated the source location problem with edge-connectivity requirements
in undirected networks. They provided polynomial time algorithms when
the cost function or the demand function is uniform. On the other hand,
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it was shown that the problem is in general weakly NP-hard [2]. But, it
remained open to prove the NP-hardness in the strong sense or to devise
a pseudo-polynomial time algorithm. For directed networks, Ito et al. [12]
showed that the problem is strongly NP-hard, even if either the cost function
c or the demand functions d− and d+ are uniform, and Bárász et al. [3] and
Heuvel et al. [8] provided a polynomial time algorithm if c, d− and d+ are all
uniform. Tables (a) and (b) in Figure 1 summarize the best known bounds
for the source location problems with the arc-connectivity requirements.

The source location problem with vertex-connectivity requirements (i.e.,
ψ− = ψ+ = κ) was investigated by Ito et al. [11]. They considered the case
in which G is undirected, and the cost and the demand functions c and
d (= d− = d+) are both uniform (i.e., c(v) = 1 and d(v) = k for all v ∈ V ).
They showed that the problem is polynomially solvable for k ≤ 2, but NP-
hard for k ≥ 3. It is easy to see that the negative result also follows, even
if G is directed. They also showed that the positive result for k ≤ 2 can be
extended to the case in which the edge-connectivity λ(S, v) ≥ ` is required
simultaneously.

Let us note that the vertex-connectivity requirements, say, κ(S, v) en-
sures that there exist at least κ(S, v) internally vertex-disjoint paths from S
to v. This implicitly means that any source in S never has a breakdown. To
take possible breakdowns of sources into consideration, Nagamochi et al. [15]
introduced another kinds of vertex-connectivity requirements κ̂−(S, v) and
κ̂+(v, S), where κ̂−(S, v) (resp., κ̂+(v, S)) is the maximum number of paths
from S to v (resp., from v to S) which are vertex-disjoint except at v. They
presented a polynomial time algorithm for the source location problem when
d− and d+ are uniform and ψ± = κ̂±. Ishii et al. [9, 10] considered the prob-
lem with a non-uniform demand function in undirected networks, gave a
polynomial time algorithm if d(v) (= d−(v) = d+(v)) ≤ 3, and showed that
the problem is NP-hard in general. Tables (c) ∼ (f) in Figure 1 summarize
the best known bounds for the source location problems with the vertex-
connectivity requirements.

Some other types of source location problems were also studied [1, 11, 18,
19]. For example, the single cover problem [18, 19] computes a minimum set
S such that each vertex v has sources s1, s2 ∈ S such that ψ−(s1, v) ≥ d−(v)
and ψ+(v, s2) ≥ d+(v).

Let us next direct our attention to the extended source location problems.
We note that the cost function of the source location problem depends

only on the fixed setup cost of the facilities at vertices. It is natural to
consider the cost functions which depend not only on the setup cost, but
also on the supply values. We consider this kind of generalization, called the
extended source location problems, which was introduced in [16], Namely,
we deal with source location problems with supply values x(v) of facilities
at v ∈ V , whose cost functions cv (v ∈ V ) are the sum of opening cost and
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c :uniform c :arbitrary

d :uniform O(n(m+ n log n)) Arata et al.[2] O(n(m+ n log n)) Arata et al.[2]

d :arbitraryO(nM(n,m))∗ Arata et al.[2] weakly NP-hard Arata et al.[2]

∗M(n,m) : the time complexity of computing a maximum flow in undirected

networks with n vertices and m arcs.

(a) Edge-connectivity requirements in undirected networks

c :uniform c :arbitrary

d :uniform O(n3m log(n2/m)) Bárász et al. [3] NP-hard Ito et al. [12]

d :arbitrary NP-hard Ito et al. [12] NP-hard Ito et al. [12]

(b) Arc-connectivity requirements in directed networks

c :uniform c :arbitrary

d :uniform NP-hard∗ Ito et al. [11] NP-hard Ito et al. [11]

d :arbitrary NP-hard Ito et al. [11] NP-hard Ito et al. [11]

∗ linearly solvable if d(v) ≤ 2 for all v ∈ V [11].

(c) Vertex-connectivity requirements κ in undirected networks

c :uniform c :arbitrary

d :uniform NP-hard∗ Ito et al. [11] NP-hard Ito et al. [11]

d :arbitrary NP-hard Ito et al. [11] NP-hard Ito et al. [11]

∗ polynomially solvable if d(v) ≤ 1 for all v ∈ V [12].

(d) Vertex-connectivity requirements κ in directed networks

c :uniform c :arbitrary

d :uniform O(min{k,√n}kn2) O(min{k,√n}kn2)

(d ≡ k) Nagamochi et al. [15] Nagamochi et al. [15]

d :arbitrary NP-hard∗ Ishii et al. [9] NP-hard∗∗ Ishii et al. [9]

∗ linearly solvable if d(v) ≤ 3 for all v ∈ V [9].
∗∗ solvable in O(n4(log n)2) time if d(v) ≤ 3 for all v ∈ V [10].

(e) Vertex-connectivity requirements κ̂ in undirected networks

c :uniform c :arbitrary

d :uniform O(min{k,√n}mn) O(min{k,√n}mn)

(d ≡ k) Nagamochi et al. [15] Nagamochi et al. [15]

d :arbitrary NP-hard Ishii et al. [9] NP-hard Ishii et al. [9]

(f) Vertex-connectivity requirements κ̂± in directed networks

Figure 1: Current best results for the source location problem
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monotone concave running cost for facility at v. We remark that monotonic-
ity and concavity are natural assumptions on the cost, and are required in
many network design problems (see, e.g., [6]). The extended source location
problems were investigated in [16] for uniform edge-connectivity require-
ments in undirected networks. By modeling the problem as a laminar cover
problem, it can be shown that it is solvable in O(nm+ n2(q + log n)) time,
where q is the time required to compute cv(x) for each x ∈ R+ and v ∈ V .

In this paper we investigate the (extended) source location problems. We
show that the source location problem with edge-connectivity requirements
in undirected networks is strongly NP-hard. This solves an open problem
posed in [2], and gives us a complete picture of the time complexity of the
source location problems (see Figure 1). Moreover, we show that the source
location problems with three connectivity requirements are inapproximable
within a ratio of c ln

∑

v∈V d(v) for some constant c, unless every problem in
NP has an O(N log log N )-time deterministic algorithm. We also devise a (1+
ln

∑

v∈V (d+(v) + d−(v)))-approximation algorithm for the extended source
location problems if we have the integral capacity and demand functions. We
remark that our approximation algorithm is applicable for all connectivity
requirements. By the inapproximable result above, we can say that our
algorithm is optimal for all the extended source location problems, i.e., they
are Θ(ln

∑

v∈V (d+(v) + d−(v)))-approximable.

The rest of the paper is organized as follows. Section 2 introduces some
notation and definitions of the source location problems, Section 3 shows
the intractability of the source location problems, and Section 4 defines the
extended source location problems and discuss their basic properties. Sec-
tion 5 presents approximation algorithms for the (extended) source location
problems. Finally, Section 6 concludes the paper.

2 Definitions and Preliminaries

Let N = (G = (V,A), u) be a directed network (or an undirected network)
with a set V of n vertices, a set A of m arcs, and a capacity function
u : A → R+. We sometimes write A as E for an undirected network, if no
confusion arises. A singleton set {x} may simply be written as x. For a
W ⊆ V , N [W ] denotes the subnetwork of N induced by W .

For any X,Y ⊆ V , we denote A(X,Y ) = {(x, y) ∈ A | x ∈ X, y ∈ Y }.
For X ⊆ V , let u−(X) (resp., u+(X)) denote the capacity sum of arcs
entering (resp., leaving) X, i.e.,

u−(X) =
∑

a∈A(V \X,X)

u(a), u+(X) =
∑

a∈A(X,V \X)

u(a),

and, for an undirected network, let us define u(X) by u(X) = u−(X) +
u+(X), where we note that u(X) = u(V \X). For every X ⊆ V , a vertex
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v ∈ V \X is called an in-neighbor (resp., out-neighbor) of X if there is an
arc (v, x) ∈ A (resp., (x, v) ∈ A) for some x ∈ X, and v is simply called
a neighbor of X if at least one of these two conditions holds. The set of
all in-neighbors (resp., out-neighbors) of X is denoted by N−(X) (resp.,
N+(X)).

Let us now define three connectivities λ, κ, and κ̂. For vertex subsets
X,Y ⊆ V , we say that X is k-arc-connected to Y if there exists a feasible
flow ϕ from X to Y whose value is at least k, where a flow ϕ : A→ R+ is a
feasible flow from X to Y if it satisfies the following conditions:

∂ϕ(v)
def
=

∑

(v,w)∈A

ϕ(v, w) −
∑

(w,v)∈A

ϕ(w, v) = 0 (v ∈ V − (X ∪ Y )), (2.1)

0 ≤ ϕ(a) ≤ u(a) (a ∈ A), (2.2)

and the value of ϕ is defined by
∑

v∈X ∂ϕ(v). The arc-connectivity from
X to Y , denoted by λ(X,Y ), is the maximum number k such that X is
k-arc-connected to Y . Here we define λ(X,Y ) = +∞ if X ∩ Y 6= ∅. For
an undirected network, we use the term “edge” instead of “arc”, e.g., arc-
connectivity is called edge-connectivity if N is undirected.

For two sets X,Y ⊆ V , we say that X is k-vertex-connected to Y if
there exists k internally vertex-disjoint paths from X to Y . The vertex-
connectivity from X to Y , denoted by κ(X,Y ), is the maximum number
k such that X is k-vertex-connected to Y . We define κ(X,Y ) = +∞ if
X ∩ Y 6= ∅ or E(X,Y ) 6= ∅.

For two sets X,Y ⊆ V , κ̂−(X,Y ) (resp., κ̂+(X,Y )) denotes the maxi-
mum number of paths from X to Y such that no pair of paths contains a
common vertex in V \ Y (resp., V \ X). We define κ̂−(X,Y ) = +∞ and
κ̂+(X,Y ) = +∞, if X ∩ Y 6= ∅.

From the max-flow min-cut theorem, the connectivity conditions can be
restated as follows.

Lemma 2.1 Let X and Y be two subsets of V .

(i) λ(X,Y ) ≥ k holds if and only if u+(W ) ≥ k holds for every vertex set
W with X ⊆W ⊆ V \ Y .

(ii) κ(X,Y ) ≥ k if and only if |N+(W )| ≥ k holds for every vertex set W
with X ⊆W and W ∪N+(W ) ⊆ V \ Y .

(iii) κ̂+(X,Y ) ≥ k (resp., κ̂−(X,Y ) ≥ k) holds if and only if |N+(W )| ≥ k
(resp., |N−(W )| ≥ k) holds for every vertex set W with X ⊆ W ⊆
V \ Y (resp., Y ⊆W ⊆ V \X). �

This paper studies the source location problems given by (1.1) with three
basic connectivity requirements λ, κ and κ̂. Formally, we consider three cases
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in which the constraints ψ−(S, v) ≥ d−(v) and ψ+(S, v) ≥ d+(v) are given
as follows.

λ(S, v) ≥ d−(v) and λ(v, S) ≥ d+(v), (2.3)

κ(S, v) ≥ d−(v) and κ(v, S) ≥ d+(v), (2.4)

κ̂−(S, v) ≥ d−(v) and κ̂+(v, S) ≥ d+(v). (2.5)

Let us rewrite conditions (2.3), (2.4) and (2.5) in terms of deficient sets,
which will be defined as follows.

For a vertex set X ⊆ V , d−(X) (resp., d+(X)) denotes the maximum
in-demand (resp., out-demand) among all vertices in X, i.e.,

d−(X) = max
v∈X

d−(v) (resp., d+(X) = max
v∈X

d+(v)).

A set W ⊆ V is deficient with respect to λ if u−(W ) < d−(W ) or
u+(W ) < d+(W ). A deficient set W is called minimal if no other nonempty
subset X ( W is deficient. Let Wλ be a family of all minimal deficient sets
with respect to λ. By Lemma 2.1 (i), the constraint is equivalent to

u−(X) ≥ d−(v) and u+(X) ≥ d+(v) (v ∈ X ⊆ V \ S), (2.6)

and hence the following lemma holds.

Lemma 2.2 ([20]) A set S ⊆ V is a feasible solution of the source location
problem with arc-connectivity requirements λ if and only if S ∩W 6= ∅ holds
for every W ∈ Wλ. �

We next consider vertex-connectivity requirements κ. From Lemma
2.1 (ii), (2.4) can be restated as

|N−(X)| ≥ d−(v) and |N+(Y )| ≥ d+(v) (2.7)

for all X with v ∈ X and X ∪N−(X) ⊆ V \S, and for all Y with v ∈ Y and
Y ∪ N+(Y ) ⊆ V \ S. Therefore, we define the deficiency in the following
way. A set W ⊆ V is deficient with respect to κ if W can be represented
by W = X ∪ N−(X) with |N−(X)| < d−(X) or W = X ∪ N+(X) with
|N+(X)| < d+(X). Let Wκ denote a family of all minimal deficient sets
with respect to κ. Then we have the following lemma.

Lemma 2.3 A set S ⊆ V is feasible for the source location problem with
vertex-connectivity requirements κ if and only if S ∩W 6= ∅ holds for every
W ∈ Wκ. �

Finally, we define deficient sets with respect to κ̂. A set W ⊆ V is
deficient with respect to κ̂ if |N−(W )| < d−(W ) or |N+(W )| < d+(W )
holds. Let Wκ̂ be a family of all minimal deficient sets with respect to κ̂.
By Lemma 2.1 (iii), constraint (2.5) is equivalent to

|N−(X)| ≥ d−(v) and |N+(X)| ≥ d+(v) (v ∈ X ⊆ V \ S), (2.8)

and we thus have the following lemma.
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Lemma 2.4 ([9]) A set S ⊆ V is feasible for the source location problem
with vertex-connectivity requirements κ̂ if and only if S ∩W 6= ∅ holds for
every W ∈ Wκ̂. �

In the subsequent sections, we frequently make use of the constraints
based on deficient sets.

3 Intractability of the Source Location Problems

In this section, we show the hardness results for all the source location prob-
lems. Let us first show that the problem with edge-connectivity requirements
in undirected networks is strongly NP-hard. Recall that the problem can be
written as follows. Given an undirected network N = (G = (V,E), u) with
a capacity function u : E → Z+, a demand function d : V → R+, and a cost
function c : V → R+, consider

Minimize
∑

{c(v) | v ∈ S} (3.1)

subject to λ(S, v) ≥ d(v) (v ∈ V ),

S ⊆ V,

where λ(S, v) denotes the edge-connectivity between S and v.

Theorem 3.1 Problem (3.1) is strongly NP-hard.

Proof . We show this by reducing to Problem (3.1) the set cover problem,
which is known to be strongly NP-hard [7].

Problem SetCover

Input. A set U={1, 2, · · · , p} and a family S = {S1, · · · , Sq} ⊆ 2U .
Output. A subfamily X ⊆ S such that

⋃

Si∈X
Si = U and |X | is

minimum.

Let `i = |Si| and kj = |{Si | Si 3 j}|. Given a problem instance I of
SetCover, we construct the corresponding instance J of Problem (3.1) as
follows.

V = {t1, t2} ∪ {s1, · · · , sq} ∪ {x1, · · · , xp},
E = {(t1, si) | i = 1, · · · , q} ∪ {(si, xj) | j ∈ Si, i = 1, · · · , q}

∪ {(xj , t2) | j = 1, · · · , p},

u(v, w) =







`i if v = t1 and w = si (i = 1, · · · , q),
1 if v = si, w = xj and j ∈ Si (i = 1, · · · , q),
kj − 1 if v = xj (j = 1, · · · , p) and w = t2,
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d(v) =

{ ∑q
i=1 `i if v = t1, t2,

0 otherwise,

c(v) =







0 if v = t2,

1 if v ∈ {s1, · · · , sq},
q + 1 otherwise.

We denote S = {si, · · · , sq} andX = {x1, · · · , xp}. Figure 2 gives an example
of our reduction. Intuitively, si and xj correspond to the set Si ∈ S and the
element j of U , respectively. We note that

∑q
i=1 `i =

∑p
j=1 kj .

s1 s2 s3 s4

t1

t2

x1 x2 x3
x4 x5

Figure 2: Reduction from SetCover (U = {1, · · · , 5}, S = {{1, 2}, {2, 4},
{1, 3, 4}, {1, 3, 5}}).

For j = 1, · · · , p, let Wj = {t1, xj} ∪ {si | Si 3 j}. Then we claim that
the family Wλ of all minimal deficient sets in J can be represented by

Wλ = {{t2}} ∪ {Wj | j = 1, · · · , p}. (3.2)

It is clear that {t2} is a minimal deficient set and Wj (j = 1, · · · , p) are
deficient. Let W be an arbitrary deficient set with W 63 t2. This W satisfies
W 3 t1. Moreover, we have W∩S, W∩X 6= ∅, since otherwise u(W ) ≥ d(t1)
holds, a contradiction. Then we have

u(W ) =
∑

{u(t1, w) | w ∈ S \W}

+
∑

{u(v, w) | (v, w) ∈ E(S ∩W,X \W )}

+
∑

{u(v, w) | (v, w) ∈ E(S \W,X ∩W )}

+
∑

{u(v, t2) | v ∈ X ∩W}

= d(t1) −
∑

{u(v, w) | (v, w) ∈ E(S ∩W,X ∩W )}

+
∑

{u(v, w) | (v, w) ∈ E(S \W,X ∩W )}

+
∑

{u(v, t2) | v ∈ X ∩W}.

Let xj be a vertex in X ∩W such that {v ∈ S | (v, xj) ∈ E} (= {si | Si 3
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j}) 6⊆W . Then we have
∑

{u(v, xj) | (v, xj) ∈ E(S \W,xj)} + u(xj , t2)

≥
∑

{u(v, xj) | (v, xj) ∈ E(S ∩W,xj)}.

Hence, if all xj ∈ X ∩W satisfies {v ∈ S | (v, xj) ∈ E} 6⊆W , we have

∑

{u(v, w) | (v, w) ∈ E(S \W,X ∩W )} +
∑

{u(v, t2) | v ∈ X ∩W}

≥
∑

{u(v, w) | (v, w) ∈ E(S ∩W,X ∩W )},

which implies u(W ) ≥ d(t1) from the equation shown above. This contra-
dicts the deficiency of W . Thus there exists a vertex xj∗ ∈ X ∩W such that
{v ∈ S | (v, xj∗) ∈ E} ⊆ W . This means that W contains Wj∗ . Therefore
all Wj are deficient and there exists no other minimal deficient set W such
that W 63 t2. This proves (3.2).

We then claim that any optimal solution Y of J can be represented by

Y = {t2} ∪ {si | Si ∈ X} (3.3)

for an optimal solution X of I, which completes the proof. Let Y be an
optimal solution of J . It follows from (3.2) that Y ∩W 6= ∅ holds for all
W ∈ Wλ. In particular, Y must contain t2. Note that S ∪ {t2} is a feasible
solution of J whose cost is q. Since c(v) = q + 1 for v ∈ X, Y ∩Wj 6= ∅
implies Y ∩ {si | Si 3 j} 6= ∅. This means that X = {Si | si ∈ Y ∩ S} is a
feasible solution of I, and the optimality of Y implies that X is an optimal
solution of I. �

We remark that the reduction given above is gap-preserving in the fol-
lowing sense. If there exists a ρ-approximation algorithm for problem (3.1),
then it can be turned into a ρ-approximation algorithm for Set Cover.
This is due to the fact that any feasible solution X of I yields a feasible
solution Y of J , given by (3.3), with the same cost. Moreover, any feasible
solution Y of J yields a feasible solution X of I whose cost is not greater
than the one of Y . For, if Y is not given by (3.3), it has a cost greater than
q and we can replace Y by {t2} ∪ {s1, s2, . . . , sq}. It is known [14, 4] that
problem Set Cover is not approximable within a ratio of c ln p for some
constant c, unless every problem in NP has an O(N log log N ) time determin-
istic algorithm. Here we can assume that q is bounded by a polynomial in
p. Since we have

∑{d(v) | v ∈ V } ≤ 2pq, which is polynomial in p, we have
the following inapproximability result.

Theorem 3.2 There exists a constant c such that the source location prob-
lem with arc-connectivity requirements in undirected/directed networks is
not approximable within a ratio of c ln

∑

v∈V d(v), unless every problem in
NP has an O(N log log N ) time deterministic algorithm.

10



Next, let us consider the problems with requirements κ and κ̂.

Theorem 3.3 There exists a constant c such that the source location prob-
lems with requirements κ and κ̂ in undirected/directed networks is not ap-
proximable within a ratio of c ln

∑

v∈V d(v), unless every problem in NP has
an O(N log log N ) time deterministic algorithm.

Proof . We only show the hardness results for the source location problems
in undirected networks, since they can easily be transformed to the ones in
directed networks.

(i) κ: We show this by reducing SetCover to the source location prob-
lem with vertex-connectivity requirement κ.

Let U = {1, 2, · · · , p} and S = {S1, · · · , Sq} ⊆ 2U be a problem instance
of SetCover. We construct the corresponding instance of the source loca-
tion problem as follows.

V = {s1, · · · , sq} ∪ {x1, · · · , xp},
E = {(si, xj) | j ∈ Si, i = 1, · · · , q},

d(v) =

{

kj + 1 if v ∈ {x1, · · · , xp},
0 otherwise,

c(v) =

{

1 if v ∈ {s1, · · · , sq},
q + 1 otherwise,

where kj = |{Si | Si 3 j}|. We denote S = {s1, · · · , sq} andX = {x1, · · · , xp}.
Figure 3 gives an example of our reduction.

s1 s2 s3 s4

x1 x2 x3
x4 x5

Figure 3: Reduction from SetCover (U = {1, · · · , 5}, S = {{1, 2}, {2, 4},
{1, 3, 4}, {1, 3, 5}}).

For a j ∈ U , let Wj = {xj} ∪ {si | j ∈ Si}. Then the family Wκ of all
minimal deficient sets can be represented by

Wκ = {Wj | j ∈ U}, (3.4)

since |N({xj})| = kj < d(xj). By Lemma 2.3, it is not difficult to see that
Y is feasible for the instance of the source location problem whose cost is at
most q if and only if X = {Si | si ∈ Y } is feasible for the one of SetCover,
since c(v) = q + 1 for v ∈ X. This completes the proof.

11



(ii) κ̂: We show this by reducing SetCover to the source location
problem with vertex-connectivity requirement κ̂.

Let U = {1, 2, · · · , p} and S = {S1, · · · , Sq} ⊆ 2U be a problem instance
of SetCover. We construct the corresponding instance of the source loca-
tion problem as follows.

V =

q
⋃

i=1

S(i) ∪X ∪
p

⋃

j=1

X(j),

S(i) = {s(i)1 , · · · , s(i)p } (i = 1, · · · , q),
X = {x1, · · · , xp},

X(j) = {x(j)
1 , · · · , x(j)

p } (j = 1, · · · , p),
E = {(s, xj) | s ∈ S(i), j ∈ Si, j = 1, · · · , p}

∪ {(xj , x) | x ∈ X(j), j = 1, · · · , p},

d(v) =







|N(N(xj))| + p if v = xj (∈ X),

2 if v ∈ X(1) ∪ · · · ∪X(q),

0 otherwise,

c(v) =







1 if v ∈ S(1) ∪ · · · ∪ S(p),

q + 1 if v ∈ X,
0 otherwise.

Figure 4 gives an example of our reduction.

S(1) S(2) S(3)

X(1) X(2) X(3) X(4)

x1 x2 x3 x4

Figure 4: Reduction from SetCover (U = {1, 2, 3, 4}, S = {{1, 2}, {2, 3},
{1, 4}}).

For a j ∈ U , let Wj = {xj} ∪
⋃

Si3j S
(i), and let

F = {{x} | x ∈ X(j), j = 1, · · · , p} ∪ {Wj | j ∈ U}. (3.5)

We then claim that F is the family Wκ̂ of all the minimal deficient sets.
Let us first show that F ⊆ Wκ̂. Let x be a vertex such that x ∈ ⋃

j X
(j).

Since d(x) = 2 and |N(x)| = 1, {x} is a minimal deficient set. For Wj given
in (3.5), since N(Wj) = (N(N(xj)) \ {xj}) ∪X(j), we have

|N(Wj)| = (|N(N(xj))| + p) − 1 = d(xj) − 1,

12



which implies that Wj is deficient. Since no proper subset of Wj is deficient,
Wj is a minimal deficient set. This completes the proof of F ⊆ Wκ̂.

Let F be a set such that F ∈ Wκ̂ \ F . Then it is easy to see that
F ∩X 6= ∅ and F ∩X(j) = ∅ for j = 1, · · · , p. If F ∩X = {xj}, then F does
not contain a vertex in Wj , since otherwise F ⊇ Wj . However, this implies
that |N(F )| ≥ d(xj), which contradicts the deficiency of F . On the other
hand, if |F ∩X| ≥ 2, then we have |N(F )| ≥ 2p, since X (j) ∪X(j′) ⊆ N(F )
for some j and j ′ with j 6= j′. This, together with |N(N(xj))| ≤ p, implies
that F is not deficient, which proves that F ⊇ Wκ̂.

Let Y be a subset of V whose cost is at most q. Then by Lemma 2.4, it
is not difficult to see that Y is feasible for the instance of the source location
problem if and only if X = {Si | S(i) ∩ Y 6= ∅} is feasible for the one of
SetCover, since c(v) = q + 1 for v ∈ X. This completes the proof. �

Before concluding this section, we remark that the bounds shown in
Theorems 3.2 and 3.3 are tight. This will be shown in the next section by
constructing (1+lnD)-approximation algorithms for all the extended source
location problems, where D denotes the sum of given demands.

4 The Extended Source Location Problems

This section generalizes the source location problems to the ones with supply
values of source vertices. As mentioned in Section 1, we investigate the
monotone concave cost cv : R+ → R+ (v ∈ V ) which models the cost
depending not only on the setup cost but also on the supply value. Here a
function f : R → R is called monotone if f(x) ≤ f(y) holds for arbitrary two
reals x, y ∈ R with x ≤ y, concave if f(αx+(1−α)y) ≥ αf(x)+(1−α)f(y)
for arbitrary two reals x, y ∈ R and α with 0 ≤ α ≤ 1. Let us first generalizes
the arc-connectivity requirements.

Recall that ∂ϕ(v) is the net out-flow at vertex v ∈ V for a flow ϕ : A→
R+, i.e.,

∂ϕ(v) =
∑

(v,w)∈A

ϕ(v, w) −
∑

(w,v)∈A

ϕ(w, v).

A flow ϕ : A → R+ is feasible with a supply x : V → R+ if it satisfies the
following conditions:

−x(v) ≤ ∂ϕ(v) ≤ x(v) (v ∈ V ), (4.1)

0 ≤ ϕ(a) ≤ u(a) (a ∈ A). (4.2)

Here (4.1) means that the net out-flow ∂ϕ(v) and the net in-flow −∂ϕ(v)
at v is at most the supply at v. For a vertex v ∈ V and a supply x ∈ RV

+,
let λ−(x; v) (resp., λ+(x; v)) denote the sum of the supply x(v) and the

13



maximum net in-flow −∂ϕ(v) (resp., net out-flow ∂ϕ(v)) at v among all
feasible flows with a supply x. In other words, λ−(x; v) (resp., λ+(x; v))
denotes the maximum (s, v)-flow (resp., (v, s)-flow) value in the augmented
network N ∗ = (G∗ = (V ∗, E∗), u∗) defined by

V ∗ = V ∪ {s},
A∗ = A ∪ {(s, v), (v, s) | v ∈ V }, (4.3)

u∗(a) =

{

u(a) if a ∈ A,

x(v) if a = (s, v), (v, s).

The extended source location problem with arc-connectivity require-
ments asks for a minimum-cost supply x ∈ RV

+, i.e.,

Minimize
∑

v∈V

cv(x(v))

subject to λ−(x; v) ≥ d−(v) and λ+(x; v) ≥ d+(v) (v ∈ V ), (4.4)

x(v) ≥ 0 (v ∈ V ).

Here we assume that the cost cv : R+ → R+ is monotone and concave.
Note that the flows ϕ−

v and ϕ+
v that respectively attain λ−(x; v) ≥ d−(v)

and λ+(x; v) ≥ d+(v) in (4.4) may depend on v. It is not difficult to see
that (4.4) is a generalization of the source location problem. In fact, for all
v ∈ V , let

cv(x(v)) =

{

0 if x(v) = 0,

c(v) otherwise,

then we can see that (4.4) represents the source location problem.
By Lemma 2.1, we have the following lemma.

Lemma 4.1 Problem (4.4) can be represented by

Minimize
∑

v∈V

cv(x(v))

subject to u−(W ) + x(W ) ≥ d−(W ) (W ⊆ V ), (4.5)

u+(W ) + x(W ) ≥ d+(W ) (W ⊆ V ),

x(v) ≥ 0 (v ∈ V ).

Proof . Note that for a set X ⊆ V (= V ∗\{s}), the capacity of arcs entering
and leaving X in N ∗ given by (4.3) is described by

u−(X) + x(X) and u+(X) + x(X),

respectively. By the max-flow min-cut theorem in N ∗, we have

λ−(x; v) = min{u−(W ) + x(W ) | v ∈W ⊆ V }
λ+(x; v) = min{u+(W ) + x(W ) | v ∈W ⊆ V } (4.6)
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for each v ∈ V . This immediately implies that the first two constraints of
Problem (4.5) is equivalent to (4.4). �

Let us next extend the source location problem with vertex-connectivity
requirements κ by introducing a supply x : V → R+. We first define the inte-
gral version of the extension (i.e., for integral supplies x ∈ ZV

+). Let κ−(x; v)
(resp., κ+(x; v)) denotes the maximum number of internally vertex-disjoint
paths to v (resp., from v) such that for each w ∈ V at most x(w) paths start
(resp., end) at w, where we say that paths P1 and P2 are internally vertex-
disjoint if the sets of internal vertices (i.e., the vertices that are neither the
starting vertex nor the end vertex) in P1 and P2 are disjoint. In other words,
κ−(x; v) (resp., κ+(x; v)) denotes the value of a maximum flow from s to v ′

(resp., v′′ to s) in the augmented network N ∗ = (G∗ = (V ∗, A∗), u∗) given
by

V ∗ = {v′, v′′ | v ∈ V } ∪ {s},
A∗ = {(v′, v′′), (v′′, v′) | v ∈ V } ∪ {(v′′, w′) | (v, w) ∈ A}

∪ {(s, v′′), (v′, s) | v ∈ V }, (4.7)

u∗(a) =



















1 if a = (v′, v′′) for v ∈ V,

+∞ if a = (v′′, v′) for v ∈ V,

+∞ if a = (v′′, w′) for (v, w) ∈ A,
x(v) if a = (s, v′′), (v′, s) for v ∈ V.

For the real version let κ−(x; v) denote the sum of the supply x(v) and
the maximum net in-flow −∂ϕ(v) at v among all feasible flows in N with a
supply x such that

∑

(w1,w2)∈A: w2=t

ϕ(w1, w2) ≤ 1 (4.8)

holds for all t (6= v), where we assume without loss of generality that u(a) =
+∞ for all a ∈ A. Similarly, let κ+(x; v) denote the sum of the supply x(v)
and the maximum net out-flow ∂ϕ(v) at v among all feasible flows with a
supply x such that

∑

(w1,w2)∈A: w1=t

ϕ(w1, w2) ≤ 1 (4.9)

holds for all t (6= v). Similarly to the integral version, these correspond
to the maximum flows in N ∗. Here we remark that (4.8) and (4.9) can
naturally be extended to

∑

(w1,w2)∈A: w2=t

ϕ(w1, w2) ≤ u(t),
∑

(w1,w2)∈A: w1=t

ϕ(w1, w2) ≤ u(t)

15



for a given vertex capacity u : V → R+.
The extended source location problem with vertex-connectivity require-

ments κ can be formulated by

Minimize
∑

v∈V

cv(x(v))

subject to κ−(x; v) ≥ d−(v) and κ+(x; v) ≥ d+(v) (v ∈ V ), (4.10)

x(v) ≥ 0 (v ∈ V ).

Similarly to (4.4), this extension also takes supply values (or capacities) of
sources into account.

As can be imagined, Problem (4.10) is also represented by

Minimize
∑

v∈V

cv(x(v))

subject to |N−(W )| + x(W ∪N−(W )) ≥ d−(W ) (W ⊆ V ), (4.11)

|N+(W )| + x(W ∪N+(W )) ≥ d+(W ) (W ⊆ V ),

x(v) ≥ 0 (v ∈ V ).

Lemma 4.2 Problem (4.10) can be represented by Problem (4.11).

Proof . Since κ−(x; v) (resp., κ+(x; v)) denotes the value of a maximum
flow from s to v′ (resp., from v′′ to s) in the augmented network N ∗ =
(G∗ = (V ∗, A∗), u∗) given by (4.7),

κ−(x; v) ≥ d−(v) and κ+(x; v) ≥ d+(v)

are respectively equivalent to

(u∗)−(W ∗) ≥ d−(v) (v′ ∈W ∗ ⊆ V ∗ \ {s}), (4.12)

(u∗)+(W ∗) ≥ d+(v) (v′′ ∈W ∗ ⊆ V ∗ \ {s}). (4.13)

We only show that (4.12) can be represented by

|N−(W )| + x(W ∪N−(W )) ≥ d−(W ),

since it can similarly be shown that (4.13) can be represented by |N+(W )|+
x(W ∪N+(W )) ≥ d+(W ).

Let W ∗ be a set such that v′ ∈ W ∗ ⊆ V ∗ \ {s}. If W ∗ has a finite
(u∗)−(W ∗), then we have

(i) w′ ∈W ∗ implies w′′ ∈W ∗,

(ii) w′ ∈W ∗ implies {z′′ ∈ V ∗ | (z, w) ∈ A} ⊆W ∗,
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and hence (u∗)−(W ∗) is finite and given by

(u∗)−(W ∗) =
∣

∣{v ∈ V | v′ 6∈W ∗, v′′ ∈W ∗}
∣

∣ +
∑

{x(v) | v′′ ∈W ∗}. (4.14)

Moreover, any W ∗ with minimum (u∗)−(W ∗) satisfies

(iii) w′′ ∈W ∗ implies w′ ∈W ∗ or z′ ∈W ∗ for some (w, z) ∈ A.

For, if there exists a vertex w ∈ V satisfying w′ 6∈ W ∗, w′′ ∈ W ∗, and
z′ 6∈ W ∗ for any (w, z) ∈ A, then we have (u∗)−(W ∗ \ {w′′}) < (u∗)−(W ∗),
which contradicts the minimality of (u∗)−(W ∗). From (i),(ii) and (iii) there
exists W ⊆ V such that

W ∗ = {v′, v′′ ∈ V ∗ | v ∈W} ∪ {v′′ ∈ V ∗ | v ∈ N−(W )}.

By (4.14), this implies that a minimum (u∗)−(W ∗) can be represented by

(u∗)−(W ∗) = |N−(W )| + x(W ∪N−(W )).

This completes the proof. �

We remark that the generalization of the source location problem with κ̂
does not make much sense, since a supply of each vertex is already bounded
by 1. Hence we do not deal with the generalization.

5 Approximation Algorithms for the Extended

Source Location Problems

In this section, we introduce the submodular cover problem as a natural
common generalization of set cover problem [4, 14] and submodular set
cover problem [5, 21], and show that the extended source location problems
can be regarded as the submodular cover problem. We then show that the
extended source location problems are all approximable within a ratio of
(1 + ln

∑

v∈V (d−(v) + d+(v))) by producing a simple greedy algorithm for
the submodular cover problem.

5.1 The Submodular Cover Problem

Before defining the submodular cover problem, let us first recall the sub-
modular set cover problem.

Let V be a finite set. A set function f : 2V → R is monotone nonde-
creasing (simply monotone) if f(X) ≤ f(Y ) holds for arbitrary two subsets
X ⊆ Y ⊆ V , and submodular if

f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ) (5.1)
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holds for arbitrary two subsets X,Y ⊆ V . A monotone submodular function
with f(∅) = 0 is called a polymatroid function. A set S ⊆ V is called span-
ning if f(S) = f(V ). Given a cost function c : V → R+ and a polymatroid
function f : 2V → R, the submodular set cover problem is to compute a
spanning set of minimum cost, i.e.,

Minimize
∑

i∈S

c(i)

subject to f(S) = f(V ), (5.2)

S ⊆ V.

It is known [5, 21] that the problem contains the matroid base problem, the
set cover problem, the partial cover problem, and so on, and it admits a
simple greedy algorithm whose approximation ratio is 1+ lnmaxj∈V f({j}).

We now extend the submodular set cover problem.
A function f : RV

+ → R is submodular if

f(x) + f(y) ≥ f(x ∧ y) + f(x ∨ y) (5.3)

holds for arbitrary two vectors x, y ∈ RV
+. Here (x∧y)(v) = min{x(v), y(v)}

and (x ∨ y)(v) = max{x(v), y(v)}.
The submodular cover problem to be considered in this paper can be

described as follows. Given a finite set V , monotone concave cost functions
cv : R+ → R+ (v ∈ V ), a monotone submodular function f : RV

+ → R+ and
a real M , the problem asks for a minimum-cost vector x ∈ RV

+ that satisfies
f(x) ≥M , i.e.,

(SC) Minimize
∑

v∈V

cv(x(v))

subject to f(x) ≥M, (5.4)

x ∈ RV
+.

Here we can assume without loss of generality that f(0) = 0 and f(x) ≤M
for all x ∈ RV

+, since we can modify f and M by

f(x) := min{f(x) − f(0),M − f(0)}

and M := M − f(0), respectively, so that f(0) = 0, f(x) ≤ M (x ∈ RV
+),

and f is still monotone submodular. This paper also considers its integral
version, which is obtained from (5.4) by replacing x ∈ RV

+ with x ∈ ZV
+,

where Z+ denotes the set of all nonnegative integers.
We remark that Wolsey [21] considered a similar generalization, but he

assumed that the cost function c is linear and f is piecewise linear and
concave as well as monotone and submodular.
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5.2 SC Formulation of the Extended Source Location Prob-

lems

We show that all the extended source location problems can be formulated
as the submodular cover problems. Let us first consider the extended source
location problem (4.4) with arc-connectivity requirements λ.

Given a directed network N = (G = (V,A), u) and two demand functions
d−, d+, we define a function f and a real M by

f(x) =
∑

v∈V

(

min{λ−(x; v), d−(v)} + min{λ+(x; v), d+(v)}
)

, (5.5)

M =
∑

v∈V

(d−(v) + d+(v)). (5.6)

Then we note that the extended source location problem can be formulated
as (5.4). Moreover, we can see that f is monotone and submodular, which
proves that the problem can be formulated as a submodular cover problem.

Lemma 5.1 A function f defined by (5.5) is monotone and submodular.

Proof . Recall that λ−(x; v) and λ+(x; v) can be expressed as

λ−(x; v) = min{u−(W ) + x(W ) | v ∈W ⊆ V }, (5.7)

λ+(x; v) = min{u+(W ) + x(W ) | v ∈W ⊆ V } (5.8)

for x ∈ RV
+ and v ∈ V (see (4.6)). This immediately implies that f is

monotone. We next show that f is submodular. Note first that the sum of
submodular functions is also submodular, and for a constant h,

h(x) = min{g(x), h}

is submodular if g is monotone submodular. Since the submodularity of
λ+(x; v) can be proved similarly, we only show the submodularity of λ−(x; v),
i.e.,

λ−(x; v) + λ−(y; v) ≥ λ−(x ∧ y; v) + λ−(x ∨ y; v) (5.9)

holds for arbitrary two vectors x, y ∈ RV .
For two vectors x, y ∈ RV and a vertex v ∈ V , let W1 and W2 be

sets that contain v and satisfy λ−(x; v) = u−(W1) + x(W1) and λ−(y; v) =
u−(W2) + y(W2). Since u− is submodular and x ∧ y is modular, we have

u−(W1) + (x ∧ y)(W1) + u−(W2) + (x ∧ y)(W2)

≥ u−(W1 ∩W2) + (x ∧ y)(W1 ∩W2)

+u−(W1 ∪W2) + (x ∧ y)(W1 ∪W2). (5.10)
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Moreover, from W1 ∩W2 ⊆W1,W2, it holds that

x(W1) − (x ∧ y)(W1) + y(W2) − (x ∧ y)(W2)

≥ (x ∨ y)(W1 ∩W2) − (x ∧ y)(W1 ∩W2). (5.11)

By summing (5.10) and (5.11) up, we have

λ−(x; v) + λ−(y; v) = u−(W1) + x(W1) + u−(W2) + y(W2)

≥ u−(W1 ∩W2) + (x ∨ y)(W1 ∩W2)

+ u−(W1 ∪W2) + (x ∧ y)(W1 ∪W2)

≥ λ−(x ∨ y; v) + λ−(x ∧ y; v),

where the last inequality follows from W1 ∩W2, W1 ∪W2 3 v. �

We next consider the problem with vertex-connectivity requirements κ.
Let

f(x) =
∑

v∈V

(

min{κ−(x; v), d−(v)} + min{κ+(x; v), d+(v)}
)

, (5.12)

M =
∑

v∈V

(d−(v) + d+(v)).

Then similarly to the case of arc-connectivity requirements λ, problem (4.10)
can be formulated as (5.4). Thus it remains to show that f is monotone
submodular.

Lemma 5.2 A function f defined by (5.12) is monotone and submodular.

Proof . Recall that κ−(x; v) and κ+(x; v) can be represented by

κ−(x; v) = min{|N−(W )| + x(W ) + x(N−(W )) | v ∈W ⊆ V },
κ+(x; v) = min{|N+(W )| + x(W ) + x(N+(W )) | v ∈W ⊆ V }

for x ∈ RV
+ and v ∈ V (see Lemma 4.2). This immediately implies that f is

monotone. We next show that κ−(x; v) (v ∈ V ) is submodular in x. This
completes the proof, since the submodularity of κ+(x; v) is similarly shown.

For two nonnegative vectors x, y ∈ RV
+ and a vertex v ∈ V , let W1 and

W2 be sets that contain v and κ−(x; v) = |N−(W1)|+ x(W1) + x(N−(W1)),
κ−(y; v) = |N−(W2)| + y(W2) + y(N−(W2)). By the modularity of x∧ y, it
holds that

(x ∧ y)(W1) + (x ∧ y)(W2) = (x ∧ y)(W1 ∩W2) + (x ∧ y)(W1 ∪W2). (5.13)

From the definition of in-neighbor N−, we have

N−(X ∩ Y ) ⊆ (N−(X) ∩ Y ) ∪ (N−(Y ) ∩X) ∪ (N−(X) ∩N−(Y )), (5.14)

N−(X ∪ Y ) = (N−(X) \ Y ) ∪ (N−(Y ) \X) (5.15)
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for two subsets X,Y ⊆ V . Note that N−(X)∩Y , N−(Y )∩X and N−(X)∩
N−(Y ) are pairwise disjoint, and (N−(X) \ Y ) ∩ (N−(Y ) \X) = N−(X) ∩
N−(Y ). Therefore, from (5.14) and (5.15), we have

z(N−(X)) + z(N−(Y )) ≥ z(N−(X ∩ Y )) + z(N−(X ∪ Y ))

for any two subsets X,Y ⊆ V and any nonnegative z ∈ RV
+. In particular,

this shows the submodularity of |N−(·)|, i.e.,

|N−(X)| + |N−(Y )| ≥ |N−(X ∩ Y )| + |N−(X ∪ Y )|. (5.16)

Therefore we have the following two inequalities:

|N−(W1)| + |N−(W2)| ≥ |N−(W1 ∩W2)| + |N−(W1 ∪W2)|, (5.17)

(x ∧ y)(N−(W1)) + (x ∧ y)(N−(W2))

≥ (x ∧ y)(N−(W1 ∩W2)) + (x ∧ y)(N−(W1 ∪W2)). (5.18)

Moreover, we can see that

(x− x ∧ y)(W1 \N−(W2)) + (y − x ∧ y)(W2 \N−(W1))

≥ (x− x ∧ y)(W1 ∩W2) + (y − x ∧ y)(W1 ∩W2)

= (x ∨ y − x ∧ y)(W1 ∩W2), (5.19)

where the inequality follows from W1 ∩W2 ⊆W1 \N−(W2),W2 \N−(W1),
and

(x− x ∧ y)(N−(W1)) + (x− x ∧ y)(N−(W2) ∩W1)

+ (y − x ∧ y)(N−(W2)) + (y − x ∧ y)(N−(W1) ∩W2)

≥ (x− x ∧ y)
(

(N−(W1) ∩W2) ∪ (N−(W2) ∩W1) ∪ (N−(W1) ∩N−(W2))
)

+ (y − x ∧ y)
(

(N−(W1) ∩W2) ∪ (N−(W2) ∩W1) ∪ (N−(W1) ∩N−(W2))
)

= (x ∨ y − x ∧ y)
(

(N−(W1) ∩W2) ∪ (N−(W2) ∩W1) ∪ (N−(W1) ∩N−(W2))
)

≥ (x ∨ y − x ∧ y)(N−(W1 ∩W2)). (5.20)

Here the last inequality follows from (5.14). By summing (5.13) and (5.17)–
(5.20) up, we have

κ−(x; v) + κ−(y; v)

= |N−(W1)| + x(W1) + x(N−(W1)) + |N−(W2)| + y(W2) + y(N−(W2))

≥ |N−(W1 ∩W2)| + (x ∨ y)(W1 ∩W2) + (x ∨ y)(N−(W1 ∩W2))

+|N−(W1 ∪W2)| + (x ∧ y)(W1 ∪W2) + (x ∧ y)(N−(W1 ∪W2))

≥ κ−(x ∨ y; v) + κ−(x ∧ y; v).

This proves the lemma. �
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Finally, we show that the source location problem with vertex-connectivity
requirements κ̂ can be formulated as the submodular set cover problem (5.2).

Let

f(S) =
∑

v∈V

(

min{κ̂−(S, v), d−(v)} + min{κ̂+(S, v), d+(v)}
)

, (5.21)

M =
∑

v∈V

(d−(v) + d+(v)).

Then similarly to the cases above, the source location problem with vertex-
connectivity requirements κ̂ can be formulated as (5.2). Thus it remains to
show that f : 2V → R+ is monotone submodular.

Lemma 5.3 A function f defined by (5.21) is monotone and submodular.

Proof . Recall that κ̂−(S, v) and κ̂+(v, S) can be represented by

κ̂−(S, v) = min{|N−(W )| | v ∈W ⊆ V \ S},
κ̂+(v, S) = min{|N+(W )| | v ∈W ⊆ V \ S}

for S ⊆ V and v ∈ V (see Lemma 2.1 (iii)). This immediately implies that f
is monotone. We next show that κ̂−(S, v) (v ∈ V ) is submodular in S, i.e.,

κ̂−(S1, v) + κ̂−(S2, v) ≥ κ̂−(S1 ∩ S2, v) + κ̂−(S1 ∪ S2, v)

holds for any two sets S1, S2 ⊆ V .
For two sets S1, S2 ⊆ V and a vertex v ∈ V , let Wi, i = 1, 2 be sets that

satisfy
v ∈Wi ⊆ V \ Si and κ̂−(Si, v) = |N−(Wi)|.

Since |N−(·)| is submodular, we have

κ̂−(S1, v) + κ̂−(S2, v) = |N−(W1)| + |N−(W2)|
≥ |N−(W1 ∩W2)| + |N−(W2 ∪W2)|
≥ κ̂−(S1 ∪ S2, v) + κ̂−(S1 ∩ S2, v),

where the last inequality follows from W1 ∩W2 ⊆ V \ (S1 ∪S2), W1 ∪W2 ⊆
V \ (S1 ∩ S2), and W1 ∩W2, W1 ∪W2 3 v.

Similarly, we can prove the submodularity of κ̂+(S, v). This completes
the proof. �

By Lemmas 5.1, 5.2 and 5.3, it is proved that the (extended) source
location problems can be formulated as the submodular cover problems.
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5.3 An Approximation Algorithm for Submodular Cover

Problem

In this section, we propose a simple greedy algorithm for the submodular
cover problem defined in Section 5.1.

The algorithm starts with x = 0 and repeatedly increases x until it
becomes a feasible solution for the problem. For x ∈ RV , v ∈ V , and
δ (> 0), let

gx(v; δ) =
cv(x(v) + δ) − cv(x(v))

f(x+ δχv) − f(x)
, (5.22)

where χv is the vth unit vector, i.e., χv(w) = 1 if w = v, and 0 otherwise.
Note that each x with f(x) < M has v ∈ V and δ (> 0) such that the
denominator in (5.22) is positive, if f(y) ≥ M for some y, which follows
from the monotonicity and the submodularity of f . In each iteration, it
finds an element v∗ ∈ V and positive real δ∗ > 0 that is the most cost-
effective, i.e., that attains

gx(v∗; δ∗) = min
v∈V,δ>0

{gx(v; δ)}, (5.23)

where we assume the existence of the minimum in (5.23).
This algorithm is formally described as follows.

Algorithm Greedy SC

Input: A finite set V , a monotone submodular function f : RV
+ → R+,

monotone concave cost functions cv : R+ → R+ (v ∈ V ), and a real
M (> 0).

/* Let us assume that f(0) = 0 and f(x) ≤M for all x ∈ RV
+ */

Output: A feasible solution x ∈ RV
+ for Problem SC.

Step 0. x(v) := 0 for all v ∈ V .

Step 1. While f(x) < M do

(I) Find an element v∗ ∈ V and a real δ∗ > 0 that satisfies (5.23).

(II) x(v∗) := x(v∗) + δ∗.

Step 2. Output x and halt. �

We remark that, even if v∗ ∈ V and δ∗ > 0 always exist in Step 1, the
algorithm might not halt in general since for v∗ and δ∗ in Step 1, f(x +
δ∗χv∗) − f(x) might be f(x + δ∗χv∗) − f(x) → +0, and hence infinitely
many iterations are necessary to attain f(x) = M .

However, this does not occur for many problem instances, including the
ones constructed from the (extended) source location problems. As for the
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integral version of the problem, we modify algorithm Greedy SC by re-
placing “ a real δ∗ > 0 ” in Step 1 with “ an integer δ∗ > 0 ”.

We show that the algorithm given above computes a feasible solution
of problem SC with a ratio of (1 + ln(M/ε)) if v∗ and δ∗ in Step 1 always
satisfy f(x+ δ∗χv∗) − f(x) ≥ ε for some positive real ε > 0.

For a given instance of the submodular cover problem, let OPT be the
minimum cost and let x(p) denote the vector obtained by the pth iteration of
Greedy SC (e.g., x(0) = 0). Suppose that Greedy SC chooses an element
v(p) ∈ V and a real δ(p) > 0 at the tth iteration (i.e., x(p+1) = x(p)+δ(p)χv(p)).
Let price(k) = gx(p)(v; δ) for every real k > 0 with f(x(p)) < k ≤ f(x(p+1)).

Note that, by the definition of price(k),
∫ M

0 price(k)dk is equal to the cost
of the solution which Greedy SC outputs. Then we have the following
lemma.

Lemma 5.4 price(k) < OPT
M−k

holds for any k with 0 < k ≤M .

Proof . Let us arbitrarily take an optimal solution x∗. We denote {v1, · · · , v`}
= {v ∈ V | x(p)(v) < x∗(v)}. Let δi = x∗(vi)−x(p)(vi) and xi = xi−1 + δiχvi

(i = 1, · · · , `) with x0 = x(p). We remark that x` is a feasible solution for
the problem instance. Since cv (v ∈ V ) is nonnegative, we have

OPT

≥
∑̀

i=1

cvi
(x∗(vi))

≥
∑̀

i=1

(

cvi
(xi−1(vi) + δi) − cvi

(xi−1(vi))
)

=
∑̀

i=1

(

cvi
(xi−1(vi) + δi) − cvi

(xi−1(vi))

f(xi−1 + δiχvi
) − f(xi−1)

(

f(xi−1 + δiχvi
) − f(xi−1)

)

)

.(5.24)

It clearly holds that

xi−1 ∧ (x0 + δiχvi
) = x0 and xi−1 ∨ (x0 + δiχvi

) = xi−1 + δiχvi

for all i = 1, · · · , `. Hence, by the submodularity of f , we have

f(x0 + δiχvi
) − f(x0) ≥ f(xi−1 + δiχvi

) − f(xi−1). (5.25)

From (5.24) and (5.25),

OPT ≥
∑̀

i=1

(

cvi
(xi−1(vi) + δi) − cvi

(xi−1(vi))

f(x0 + δiχvi
) − f(x0)

(

f(xi−1 + δiχvi
) − f(xi−1)

)

)

=
∑̀

i=1

gx(p)(vi; δi)
(

f(xi−1 + δiχvi
) − f(xi−1)

)

≥ gx(p)(v(p); δ(p))
(

M − f(x(p))
)

, (5.26)
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where the equality follows from x(p)(vi) = xi−1(vi) and x(p) = x0, and the
last inequality follows from the optimal choice of algorithm Greedy SC,
and

∑̀

i=1

(

f(xi−1 + δiχvi
) − f(xi−1)

)

= f(x`) − f(x0).

Hence price(k) (= gx(p)(v(p); δ(p))) < OPT
M−k

holds, since M −f(x(p)) > M −k
holds for any k with f(x(p)) < k ≤ f(x(p+1)). �

We are now ready to show the following theorem for the approximation
ratio of Greedy SC.

Theorem 5.5 Let ε be a nonnegative real such that v∗ and δ∗ in Step 1
always satisfy f(x + δ∗χv∗) − f(x) ≥ ε. Then Greedy SC computes a
solution whose cost is at most

(

1 + ln M
ε

)

times OPT . Moreover, it is poly-
nomial if

(i) v∗ and δ∗ in Step 1 can be computed in polynomial time, and

(ii) the number of iterations is bounded by a polynomial in the input size.

Proof . Since the second statement is easily shown, we only prove the first
statement. From the discussion before Lemma 5.4, the cost of a solution
computed by Greedy SC is equal to

∫ M

0 price(k) dk. By Lemma 5.4, we

have price(k) < OPT
M−k

for k ≤ M − ε. Moreover, since v∗ and δ∗ in Step 1
always satisfy f(x+ δ∗χv∗) − f(x) ≥ ε, (5.26) implies

price(k) = price(M − ε) <
OPT

ε

for any k > M − ε. Hence, we have

∫ M

0
price(k)dk < ε · OPT

ε
+

∫ M−ε

0

OPT

M − k
dk =

(

1 + ln
M

ε

)

OPT.

�

As for the integral version, we have the following theorem. Here H(k) =
∑k

i=1 1/k is the kth harmonic number, which is bounded by 1 + ln k.

Theorem 5.6 Greedy SC computes a solution whose cost is at most H
(M) times OPT . Moreover, it is polynomial if

(i) v∗ and δ∗ in Step 1 can be computed in polynomial time, and

(ii) the number of iterations is bounded by a polynomial in the input size.
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Proof . This follows from ε ≥ 1. �

In the next section, we show the conditions in Theorems 5.5 and 5.6
hold for the extended source location problems. Namely, we show that
the extended source location problems are (1 + ln

∑

v∈V (d−(v) + d+(v)))-
approximable in polynomial time.

5.4 Applying a Greedy Algorithm to the Source Location

Problems

This section applies algorithm Greedy SC to the extended source location
problems. Let us first consider the problem with arc-connectivity require-
ments λ.

Recall that the denominator of gx(v; δ) is given by

f(x+ δχv)−f(x)

=
∑

w∈V

(

min{λ−(x+ δχv ;w), d−(w)} + min{λ+(x+ δχv ;w), d+(w)}
)

−
∑

w∈V

(

min{λ−(x;w), d−(w)} + min{λ+(x;w), d+(w)}
)

=
∑

w∈V

(

min{λ−(x+ δχv ;w), d−(w)} − min{λ−(x;w), d−(w)}
)

+
∑

w∈V

(

min{λ+(x+ δχv ;w), d+(w)} − min{λ+(x;w), d+(w)}
)

.

We first show that this denominator has the following properties.

Lemma 5.7 For a vector x ∈ RV
+, f(x+δχv)−f(x) is concave and piecewise

linear in δ. Moreover, the number of line segments is at most 2n+ 1.

Proof . For a vertex w ∈ V , let

λ−w(δ) = min{λ−(x+ δχv;w), d−(w)} − min{λ−(x;w), d−(w)}, (5.27)

µw = min{min{u−(W )+x(W ) |w∈W ⊆ V \ {v}}, d−(w)}
−min{λ−(x;w), d−(w)}.

Then since λ−(x;w) = min{u−(W ) + x(W ) | w ∈ W ⊆ V }, λ−w(δ) is given
by

λ−w(δ) =

{

δ if δ ≤ µw,

µw otherwise.
(5.28)

Similarly, if we define

λ+
w(δ) = min{λ+(x+ δχv ;w), d+(w)}− min{λ+(x;w), d+(w)},
νw = min{min{u+(W )+x(W ) |w∈W ⊆V \ {v}}, d+(w)}

−min{λ+(x;w), d+(w)},
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we have

λ+
w(δ) =

{

δ if δ ≤ νw,

νw otherwise.
(5.29)

Note that each λ±w is concave and consists of at most two linear segments.
Since f(x+ δχv)−f(x) =

∑

w∈V (λ−w(δ) + λ+
w(δ)), it is concave and consists

of at most 2n+ 1 line segments. �

Lemma 5.8 For a vector x ∈ RV
+, f(x + δχv) − f(x) can be computed in

polynomial time.

Proof . From (5.28) and (5.29), we can see that the set of breakpoints in
f(x+δχv)−f(x) is {µw, νw | w ∈ V }. Moreover, µw and νw can be obtained
by computing maximum (s, w)- and (w, s)-flow in the network obtained from
N ∗ given in (4.3) by identifying s with v. This completes the proof. �

Lemma 5.9 For a vertex v ∈ V and a real x ∈ RV
+,

min
δ>0

gx(v; δ) = min{gx(v;µw), gx(v; νw) | µw, νw > 0, w ∈ V }. (5.30)

Proof . Recall that

gx(v; δ) =
cv(x(v) + δ) − cv(x(v))

f(x+ δχv) − f(x)
.

Since cv is monotone and concave, so is the numerator of gx(v; δ). Moreover
the denominator is piecewise linear and concave. Thus the lemma follows.
More precisely, let δi, i = 1, · · · , ` be positive reals such that δi < δi+1,
i = 1, · · · , ` − 1 and {δi | i = 1, · · · , `} = {µw, νw > 0 | w ∈ V }. Then from
Lemma 5.8, we can assume that f(x+ δχv) − f(x) can be described by

f(x+ δχv) − f(x) =

{

αiδ + βi if δi−1 < δ ≤ δi, i = 1, · · · , `,
α`+1δ + β`+1 if δ` < δ,

where δ0 = 0, α1 > · · · > α`+1 (= 0), β1 (= 0) < · · · < β`+1 and αiδi +
βi = αi+1δi + βi+1 for i = 1, · · · , `. It is easy to see that gx(v; δ`) =
minδ≥δ`

gx(v; δ), since α`+1 = 0 and cv(x(v) + δ) − cv(x(v)) is monotone.
We show that

gx(v; δ1) = min
0≤δ≤δ1

gx(v; δ) and

min{gx(v; δi−1), gx(v; δi)} = min
δi−1≤δ≤δi

gx(v; δ) (i = 2, · · · , `).
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Let

hi =
cv(x(v) + δi) − cv(x(v) + δi−1)

δi − δi−1
(≥ 0)

ki =

(

cv(x(v) + δi−1) − cv(x(v))
)

δi −
(

cv(x(v) + δi) − cv(x(v))
)

δi−1

δi − δi−1
,

where we note that k1 = 0. Then we have

hi δ + ki ≤ cv(x(v) + δ) − cv(x(v)) if δi−1 < δ < δi,

hi δ + ki = cv(x(v) + δ) − cv(x(v)) if δ = δi−1, δi,
(5.31)

since cv is concave. Hence it holds that

cv(x(v) + δ) − cv(x(v))

f(x+ δχv) − f(x)
≥ hi δ + ki

αiδ + βi

=
hi

αi
+

αiki − hiβi

αi(αiδ + βi)
(5.32)

for δi−1 ≤ δ ≤ δi. Since αi > 0 and βi ≥ 0 for i = 1, · · · , `, δi−1 attains the
minimum of (5.32) for a real δ such that δi−1 ≤ δ ≤ δi if αiki − hiβi < 0,
and δi attains the minimum if αiki − hiβi ≥ 0. This, together with (5.31),
implies that δi−1 or δi attains the minimum of gx(v; δ) for δi−1 ≤ δ ≤ δi
(i = 2, · · · , `), and δ1 attains a minimum of gx(v; δ) for 0 ≤ δ ≤ δ1, where
the second sentence follows from k1 = 0. This proves the lemma. �

Lemmas 5.8 and 5.9 imply the following result.

Lemma 5.10 For the extended source location problem with arc-connectivity
requirements λ, each iteration of Step 1 in Greedy SC computes an ele-
ment v∗ ∈ V and a real δ∗ > 0 that satisfy (5.23) in polynomial time.

Let us assume that v∗ and δ∗ are chosen in some iteration of Step 1 in
Greedy SC. Then the number of line segments of f(x + δχv) − f(x)
decreases at least one. Since we have at most 2n + 1 line segments of
f(x+ δχv) − f(x), v ∈ V , the following lemma follows.

Lemma 5.11 For the extended source location problem with arc-connectivity
requirements λ, Greedy SC requires at most n(2n+ 1) iterations.

Theorem 5.12 For the extended source location problem with arc-connectivity
requirements λ, Greedy SC computes in polynomial time a feasible solu-
tion whose cost is at most 1 + ln

∑

v∈V (d−(v) + d+(v)) times the optimal
cost if d−, d+ and u are integral.

Proof . The polynomiality of Greedy SC follows from Theorem 5.5 and
Lemmas 5.10 and 5.11. Since µw and νw are integers if d−, d+ and u are
integral, we have ε ≥ 1 in Theorem 5.5, and hence the approximation ratio
is at most 1 + ln

∑

v∈V (d−(v) + d+(v)). �
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It follows from the discussion above that the integral version of the ex-
tended source location problem is also solvable.

Theorem 5.13 For the integral version of the extended source location prob-
lem with arc-connectivity requirements λ, Greedy SC computes in polyno-
mial time a feasible solution whose cost is at most 1+ln

∑

v∈V (d−(v) + d+(v))
times the optimal cost if d−, d+ and u are integral.

Let us move to the problem with vertex-connectivity requirements κ.
Let

µw = min{min{|N−(W )| + x(W ∪N−(W )) | w ∈W ⊆ V,

v 6∈W ∪N−(W )}, d−(w)} − min{κ−(x;w), d−(w)}
νw = min{min{|N+(W )| + x(W ∪N+(W )) | w ∈W ⊆ V,

v 6∈W ∪N+(W )}, d+(w)} − min{κ+(x;w), d+(w)}.

Then for vertex-connectivity requirements κ, we have results similar to the
ones in Lemmas 5.7 ∼ 5.11. For example, µw and νw can respectively be
obtained in polynomial time by computing maximum (s, w ′)- and (w′′, s)-
flows in the network obtained from N ∗ given in (4.7) by identifying s with
v.

Theorem 5.14 For (the integral version of ) the extended source location
problem with vertex-connectivity requirements κ, Greedy SC computes in
polynomial time a feasible solution whose cost is at most 1+ln

∑

v∈V (d−(v)+
d+(v)) times the optimal cost if d− and d+ are integral.

Similarly, the extended source location problem with κ̂ is approximable.
As a corollary, we have the following result, where it can also be obtained
by formulating the problems as submodular set cover problems.

Corollary 5.15 For the source location problems with vertex-connectivity
requirements κ and κ̂, Greedy SC computes in polynomial time a feasible
solution whose cost is at most k + 2 lnn times the optimal cost, where k =
1 + ln 2.

Proof . This follows from d−(v), d+(v) ≤ n. �

6 Conclusion

In this paper, we have considered the source location problems and their
generalizations. We have showed that the source location problem with
edge-connectivity requirements in undirected networks is strongly NP-hard,
which solves an open problem posed by Arata et al. [2], and that there exists
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a constant c such that no source location problems with three connectivity
requirements in undirected/directed networks are approximable within a
ratio of c lnD, unless every problem in NP has an O(N log log N )-time deter-
ministic algorithm. Here D denotes the sum of given demands. We have also
proposed (1 + lnD)-approximation algorithms for all the extended source
location problems if we have the integral capacity and demand functions.
By combining our negative results, this shows that our approximation algo-
rithms for all the problems are optimal.

Acknowledgments

The authors greatly appreciate the comments of the anonymous reviewers,
which improved the readability of this paper.

References

[1] K. Andreev, C. Garrod, and B. Maggs: Simultaneous source location,
SCS Technical Report CMU-CS-03-162, Carnegie Mellon University,
Pittsburgh.

[2] K. Arata, S. Iwata, K. Makino, and S. Fujishige: Locating sources to
meet flow demands in undirected networks, J. Algorithms, 42 (2002),
54–68.

[3] M. Bárász, J. Becker, and A. Frank: An algorithm for source location
in directed graphs, Operations Research Letters, 33 (2005), 221–230.

[4] U. Feige: A threshold of lnn for approximating set cover, J. ACM, 45

(1998), 634–652.

[5] T. Fujito: Approximation algorithms for submodular set cover with
applications, IEICE Trans., E83-D (2000), 480–487.

[6] A. Goel and D. Estrin: Simultaneous optimization for concave costs:
Single sink aggregation or single source buy-at-bulk, Proceedings of 14th
Annual ACM-SIAM Symposium on Discrete Algorithms (2003), 499–
505.

[7] M. R. Garey and D. S. Johnson: Computers and Intractability: A Guide
to the Theory NP-Completeness, Freeman, New York, 1979.

[8] J. van den Heuvel and M. Johnson: Transversals of subtree hypergraphs
and the source location problem in digraphs, CDAM Research Report,
LSE-CDAM-2004-10, London School of Economics.

30



[9] T. Ishii, H. Fujita, and H. Nagamochi: Source location problem with
local 3-vertex-connectivity requirements, Proceedings of 3rd Hungarian-
Japanese Symposium on Discrete Mathematics and Its Applications,
(2003), 368–377.

[10] T. Ishii, H. Fujita, and H. Nagamochi: Minimum cost source loca-
tion problem with local 3-vertex-connectivity requirements, Computing
Theory: The Australian Theory Symposium, (2005), 97-105.

[11] H. Ito, M. Ito, Y. Itatsu, H. Uehara, and M. Yokoyama: Source lo-
cation problems considering vertex-connectivity and edge-connectivity
simultaneously, Networks, 40 (2002), 63–70.

[12] H. Ito, K. Makino, K. Arata, S. Honami, Y. Itatsu, and S. Fujishige:
Source location problem with flow requirements in directed networks,
Optimization Methods and Software, 18 (2003), 427–435.

[13] M. Labbe, D. Peeters, and J.-F. Thisse: Location on networks, In M.
O. Ball et al. (eds.), Handbooks in OR & MS, 8, North-Holland (1995),
551–624.

[14] C. Lund and M. Yannakakis: On the hardness of approximating mini-
mization problems, J. ACM, 41 (1994), 960–981.

[15] H. Nagamochi, T. Ishii, and H. Ito: Minimum cost source location
problem with vertex-connectivity requirements in digraphs, Informa-
tion Processing Letters, 80 (2001), 287–294.

[16] M. Sakashita, K. Makino, and S. Fujishige: Minimizing a monotone
concave function with laminar covering constraints, ISAAC 2005, LNCS
3827 (2005), 71–81.

[17] M. Sakashita, K. Makino, and S. Fujishige: Minimum cost source loca-
tion problems with flow requirements. LATIN 2006, LNCS 3887 (2006),
769-780.

[18] H. Tamura, M. Sengoku, S. Shinoda, and T. Abe: Location problems
on undirected flow networks, IEICE Trans., E73 (1990), 1989–1993.

[19] H. Tamura, M. Sengoku, S. Shinoda, and T. Abe: Some covering prob-
lems in location theory on flow networks, IEICE Trans., E75-A (1992),
678–683.

[20] H. Tamura, H. Sugawara, M. Sengoku, and S. Shinoda: Plural cover
problem on undirected flow networks, IEICE Trans., J81-A (1998),
863–869 (in Japanese).

[21] L.A. Wolsey: An analysis of the greedy algorithm for the submodular
set covering problem, Combinatorica, 2 (1982), 385–393.

31


