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Abstract

We show that enumerating all minimal spanning and connected
subsets of a given matroid can be solved in incremental quasi-polynomial
time. In the special case of graphical matroids, we improve this com-
plexity bound by showing that all minimal 2-vertex connected sub-
graphs of a given graph can be generated in incremental polynomial
time.

1 Introduction

The level of connectivity in communications and computer networks is an
important parameter influencing the reliability of the service such networks
provide. The problem of computing network reliability, that is calculating
the probability that the network is able to provide its services without inter-
ruption, assumes the enumeration of minimal subsets of links in the network
which guarantee the required level of connectivity [6, 21].

In the simplest case the connectivity of an undirected graph is required.
In this case minimal working subsets are the spanning trees, and reliability
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computations call for the enumeration of all spanning trees of the given
graph. In case of a (directed) communication network, minimal working
subnetworks are determined by subsets of the arcs which guarantee strong
connectivity. Both minimal spanning trees and minimal strongly connected
subgraphs can be efficiently enumerated [4, 17, 20].

Practical applications frequently demand higher levels of connectivity,
resulting in higher reliability. Numerous research articles consider the prob-
lem of increasing efficiently the connectivity of a given (directed) graph, see
e.g. [1, 11]. Determining the reliability of such highly connected networks
requires the enumeration of all minimal edge (arc) sets F ⊆ E of a given (di-
rected) graph G = (V,E) which guarantee the required level of connectivity
of the subgraph (V, F ).

In this paper we consider such enumeration problems, corresponding to
the next levels of connectivity. An undirected graph G = (V,E) is called
2-vertex connected if between any pair u, v ∈ V of its vertices there are at
least two paths connecting u and v and having no other vertex in common.
Obviously, adding edges to a graph can only increase its connectivity. In
other words, the property that for a subset X ⊆ E the subgraph (V,X) is
2-vertex connected is a monotone property, i.e., if X ⊆ X ′ ⊆ E, and (V,X)
is 2-vertex connected, then (V,X ′) must also be 2-vertex connected. Thus,
determining the reliability of such a graph, that is the probability that it
remains 2-vertex connected if its edges are deleted (fail) according to some
probability distribution, requires the enumeration of all minimal 2-vertex
connected subgraphs of G:

Minimal 2-Vertex-Connected Spanning Subgraphs: Given a 2-
vertex connected undirected graph G = (V,E), enumerate all minimal

edge sets X ⊆ E such that G′ = (V,X) is still 2-vertex connected.

Undirected graphs can be viewed as special cases of matroids (so called
graphical or cycle matroids), and thus the above enumeration problems have
a natural generalization for matroids. In our presentation we follow standard
terminology of matroid theory (see e.g., [16] or [22]). Given a matroid M on
ground set E, a subset T ⊆ E is called connected if for every pair of distinct
elements x, y of T there is a circuit C of M such that T ⊇ C ⊇ {x, y}. It
is well-known that connectivity defines an equivalence relation on E, whose
equivalence classes are called the connected components of M . Let us also
recall that a subset X ⊆ E is said to span the matroid M if r(X) = r(E),
where r : E → Z+ denotes the rank function of M and we define r(M) =
r(E).

Note that in the cycle matroid of a graph G = (V,E) spanning trees are
the bases. Thus, the problem of enumerating all bases of a matroid includes
as a special case the spanning tree enumeration problem. Note also that
edge subsets X ⊆ E for which (V,X) are 2-vertex connected are exactly
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the spanning and connected subsets in the cycle matroid of G (see e.g., [22,
Theorem 3 on page 70]). Let us add that spanning and connected subsets in
a matroid form a monotone system (see Lemma 2.3), while connected subsets
of a matroid may not form a monotone system. The following enumeration
problem generalizes naturally the problem of enumerating minimal 2-vertex-
connected spanning subgraphs:

Minimal Spanning and Connected Subsets in Matroids: Given

a connected matroid M on ground set E, generate all minimal span-

ning and connected subsets of E.

1.1 Main results

It is easy to see that in enumeration problems, such as the ones mentioned
above, the size of the output may be exponential in terms of the input size.
For such problems the efficiency of the enumeration method is measured
both in the input and output sizes (see e.g., [14, 17, 21]). In particular, the
enumeration procedure is said to run in incremental (quasi-) polynomial1

time, if generating k elements of the target (or generating all if it has less
than k elements) can be done in (quasi-) polynomial time in the size of the
input and k, for an arbitrary integer k.

Note that all of the above mentioned enumeration problems involve
monotone systems. Among such monotone generation problems perhaps
the most widely known is the so called hypergraph transversal problem (or
equivalently, monotone Boolean dualization). For a hypergraph H ⊆ 2V

on finite vertices V = {1, 2, . . . n}, a set X ⊆ V is called transversal if
X∩H 6= ∅ for all H ∈ H. The hypegraph transversal problem is to generate
all (inclusion) minimal transversals of a given hypergraph. This problem
has numerous applications in several different areas (see e.g., [2, 7, 8, 9]).

Our first result shows that the problem of generating minimal spanning
and connected subsets of a matroid generalizes the hypergraph transversal
problem:

Theorem 1.1 The problem of enumerating all minimal spanning and con-

nected subsets of a matroid includes, as a special case, the hypergraph transver-

sal problem.

This theorem implies that generating minimal spanning and connected
subsets of a matroid is at least as hard as the hypergraph transversal prob-
lem, for which the most efficient currently known algorithm is incrementally
quasi-polynomial [10]. Our next result shows that minimal spanning and
connected subsets in a matroid can also be generated in incremental quasi-
polynomial time.

1A function f(x) is called quasi-polynomial if f(x) = O(2polylog(x)).
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Theorem 1.2 All minimal spanning and connected subsets in a matroid

can be generated in incremental quasi-polynomial time.

As we noted above, the problem of generating minimal spanning and
connected subsets in a graphical matroid coincides with the problem of gen-
erating minimal 2-vertex-connected subgraphs of the underlying undirected
graph. Our third result shows that in this special case the problem can be
solved more efficiently:

Theorem 1.3 All minimal 2-vertex connected spanning subgraphs of a given

graph can be generated in incremental polynomial time. The total running

time of the algorithm is O(m2N2), where m = |E| and N is the total number

of 2-vertex connected subgraphs.

The remainder of the paper is organized as follows. We prove Theo-
rems 1.1 and 1.2 in Section 2, and the proof of Theorem 1.3 is included in
Section 3.

2 Minimal Spanning and Connected Subsets in

Matroids

2.1 Proof of Theorem 1.1

Let H be a hypergraph on n vertices consisting of m = |H| hyperedges. We
denote by v1, . . . ,vn the column vectors of the edge-vertex incidence matrix
of H.

We shall associate toH a binary matroid M = MH, defined by m+2n+2
binary vectors of dimension 2m + 2. For this, let us introduce o = (0, ..., 0)
denoting the zero vector of dimension m, and let ei denote the ith unit
vector of dimension m, for i = 1, ...,m. We shall define the vectors of MH by
concatenations from the above vectors, as follows: Let µ(vj) = (vj ,o, 1, 0)
for j = 1, ..., n, let ai = (ei, ei, 0, 0) and bi = (o, ei, 0, 0) for i = 1, ...,m, and
finally let c1 = (o,o, 1, 1) and c2 = (o,o, 0, 1).

We group the above defined vectors into four groups: H = {µ(vj) | j =
1, ..., n}, A = {ai | i = 1, ...,m}, B = {bi | i = 1, ...,m} and C = {c1, c2},
and finally we consider the binary matroid M = MH on the ground set
E = H ∪A∪B ∪C. For simplicity, we re-interpret H as a family of subsets
of H.

Example 2.1 Consider the hypergraph H defined by the incidence matrix

(v1, . . . ,v5) =









1 0 0 1 0
0 1 0 1 1
0 1 1 0 0
0 0 1 0 1
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Then the binary matroid MH on the ground set H∪A∪B∪C is represented

by a matrix



































1 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 1 0 1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

1 1 1 1 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1



































The following two lemmas complete the proof of Theorem 1.1. Let us
recall (e.g., from [22]) that in a matroid M on ground set E with rank
function r a subset X ⊆ E is spanning and connected if and only if for every
nontrivial partition X = Y ∪Z (i.e., for which |Y | ≥ 1 and |Z| ≥ 1) we have
r(Y ) + r(Z) ≥ r(M) + 1.

Lemma 2.1 Let X be a spanning and connected subset in M . Then A ∪
B ∪C ⊆ X and X ∩H is a transversal of H.

Proof: First we show that for each i = 1, . . . , 2m + 2 at least two vectors
of X have their ith coordinates equal to 1. Indeed, since X is spanning and
the matrix representing M has full row rank, there is at least one vector in
X whose ith coordinate is 1. Suppose that there is exactly one such vector
x ∈ X. Then we consider the partition of X into Y = {x} and Z = X r{x}.
For this partition we have r(Y ) = 1, and r(Z) < r(M) since all vectors of Z
have their ith coordinates equal to 0. Consequently, r(Y ) + r(Z) ≤ r(M),
contradicting the assumption that X is spanning and connected.

The above implies that X must contain all vectors of A, B and C, in
order to have two 1’s in rows from m+1 to 2m and in row 2m+2. In order
to contain two 1’s in the first m rows, H ∩X must form a transversal of H.
�

Lemma 2.2 If X is a transversal of H, then X ∪A∪B ∪C is a connected

and spanning subset in M .

Proof: First note that r(M) = 2m + 2, and observe that X ∪A ∪B ∪ C is
spanning, since r(A ∪B ∪ C) = 2m + 2.

To prove the statement, we show that r(Y )+ r(Z) ≥ r(M)+1 = 2m+3
for every partition Y ∪Z = X ∪A∪B ∪C for which |Y | ≥ 1 and |Z| ≥ 1.
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Suppose that all vectors of A∪B∪C belong to Y . Then r(Y ) = 2m+2
and r(Z) ≥ 1, since Z is nonempty. For all other nontrivial partitions of X
the vectors of A ∪B ∪ C must be split between Y and Z.

Without loss of generality assume that Y contains k vectors of A∪B∪C
including c1, where 1 ≤ k ≤ 2m + 1. Since A ∪ B ∪ C are independent,
r(Y ) ≥ k and r(Z) ≥ 2m + 2 − k. Let Ii ⊆ {1, . . . ,m} denote the set of
coordinates of vi equal to 1. Observe that µ(vi) = c1 + c2 +

∑

j∈Ii
(aj +bj)

is the only combination of vectors in A∪B∪C producing µ(vi). Depending
whether Z contains a vector µ(vi) ∈ X, or not, we have two cases:
Case 1: Z contains at least one vector of X. Since vectors of X cannot
be obtained without c1, we must have r(Z) ≥ 2m + 3 − k implying thus
r(Y ) + r(Z) ≥ 2m + 3.
Case 2: Y contains all vectors of X. Since X is a transversal of H, we have
⋃

µ(vi)∈X Ii = {1, . . . ,m}. As Y does not contain all vectors of A ∪ B ∪ C,
there is a vector in X which cannot be obtained as a combination of vectors
in Y . Thus r(Y ) ≥ k + 1, which again implies r(Y ) + r(Z) ≥ 2m + 3. �

The statement of the theorem follows from Lemmas 2.1 and 2.2.

2.2 Proof of Theorem 1.2

Let M be a matroid on ground set E with rank function r : E → Z+. Since
no X ⊆ E is connected if X contains a loop, i.e., a singleton of rank 0, we
assume that M contains no loop.

Let us show first that spanning and connected subsets of a matroid form
a monotone family.

Lemma 2.3 If X ⊆ E is spanning and connected then for an arbitrary

element f ∈ E r X the set X ∪ f is again spanning and connected.

Proof: Let X ⊆ E be a spanning and connected subset and let f ∈ E r X.
Clearly X ∪ f is spanning. According to [22], to see that X ∪ f is also
connected it is enough to show that r(Y ) + r(Z) ≥ r(X ∪ f) + 1 holds for
an arbitrary partition Y ∪ Z = X ∪ f with |Y |, |Z| ≥ 1. Note that, since X
is spanning, r(X) + 1 = r(X ∪ f) + 1. Without loss of generality assume
that f ∈ Z. If |Z| = 1 we have r(Y ) + r(Z) = r(X) + r(f) = r(X) + 1,
since we assume that all singletons of M have rank 1. In case |Z| ≥ 2, we
have r(Y ) + r(Z) ≥ r(Y ) + r(Z r f) ≥ r(X) + 1, since r(Z) ≥ r(Z r f)
and the sets Y and Z r f form a partition of X, with |Y | ≥ 1, |Z r f | ≥ 1,
completing the proof of our claim. �

To prove Theorem 1.2, we show that for every matroid M , the family
F of all minimal spanning and connected subsets in M is exactly the set of
minimal solutions of a polymatroid inequality with polynomially bounded
right hand side. For such inequalities, it is known that the generation of
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minimal feasible sets can be done in incremental quasi-polynomial time (see
Theorem 3 in [3]).

Toward this end, let us define a set function f(X) on subsets of E by:

f(X) = |E| r(X) − 1.

The Dilworth truncation of f(X) is the set function f∗(X) defined as follows:

f∗(∅) = 0,

f∗(X) = min{f(X1) + . . . + f(Xk) | {X1, . . . , Xk} is a partition of X}

for X 6= ∅.

Note that f(X) is polymatroid (i.e., nondecreasing and submodular), where
a function f : 2E → R is called nondecreasing if X ⊆ Y (⊆ E) always implies
f(X) ≤ f(Y ), and submodular if f(X)+f(Y ) ≥ f(X ∩Y )+f(X ∪Y ) holds
for any X,Y ⊆ E. It is known [15] that if f(X) is submodular then so
is f∗(X), and moreover f∗(X) can be evaluated in polynomial time using
poly(|E|) calls to the membership oracle defining the matroid M . We next
show that f∗(X) is also nondecreasing, implying that f∗(X) is polymatroid.

Lemma 2.4 f∗(X) is nondecreasing.

Proof: We will show that f∗(X ∪ e) ≥ f∗(X), where X ⊆ E and e ∈ E rX.
Let X1, X2, . . . , Xk be an optimal partition for X ∪ e, i.e., f∗(X ∪ e) =
f(X1)+f(X2)+ . . .+f(Xk). Without loss of generality assume that e ∈ X1.
There are two cases:
Case 1: X1 r e 6= ∅. Then {X1 r e,X2, . . . , Xk} is a partition of X. Hence

f∗(X) ≤ f(X1 r e) +

k
∑

i=2

f(Xi) ≤ f(X1) +

k
∑

i=2

f(Xi) = f∗(X ∪ e),

where the last inequality in the chain follows from f(X1 r e) = |E|r(X1 r

e)− 1 ≤ |E|r(X1)− 1 = f(X1).
Case 2: X1 = {e}. Consider the partition {X2, . . . , Xk} of X, which again
gives

f∗(X) ≤
k

∑

i=2

f(Xi) ≤ f(e) +

k
∑

i=2

f(Xi) = f∗(X ∪ e),

where the last inequality in the chain follows from the fact that r(e) = 1,
thus f(e) = |E| − 1 ≥ 0, for all e ∈ X. �

Consider now the polymatroid inequality

f∗(X) ≥ |E| r(M) − 1.

Note that the right hand side of the above inequality is bounded by |E|2.
We prove that minimal connected spanning subsets are exactly minimal
solutions to the above polymatroid inequality.
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Lemma 2.5 X is connected in M if and only if f∗(X) ≥ f(X).

Proof: Let X be a connected subset in M . Consider a partition {X1, . . . , Xk}
of X into at least k ≥ 2 sets. Since the rank function is submodular and
by the definition of connectivity we have r(A) + r(X r A) > r(X) for
every proper subset A of X, we obtain r(X1) + r(X2) + . . . + r(Xk) ≥
r(X1) + r(X2 ∪ . . . ∪Xk) ≥ r(X) + 1. Hence

f(X1) + f(X2) + . . . + f(Xk) ≥ |E| r(X) + |E| − k > |E| r(X) − 1 = f(X).

Comparing that with the trivial partition X = X1 for k = 1, we conclude
that f∗(X) = f(X).

On the other hand, if X is not connected, then we can decompose X
into two disjoint sets X1 and X2 such that r(X1) + r(X2) = r(X). Hence
f(X1) + f(X2) = |E| r(X) − 2, and consequently, f∗(X) < |E|r(X) − 1 =
f(X). �

Lemma 2.6 X is connected and spanning subset in M if and only if f∗(X) ≥
|E| r(M)− 1.

Proof: If X is connected and spanning, the claim follows from Lemma 2.5
and the fact that r(X) = r(M).

Conversely, suppose X satisfies f∗(X) ≥ |E| r(M) − 1 and also suppose
that X is not spanning. Then since r(X) < r(M) for the trivial partition
X = X1, we obtain f(X1) = |E|r(X1) − 1 < |E|r(M) − 1, which implies
f∗(X) < |E|r(M) − 1, a contradiction. Thus X must be spanning and by
Lemma 2.5 X must also be connected. �

This completes the proof of Theorem 1.2.

2.3 The X − e + Y method

In the next section we present another proof of Theorem 1.2, which is some-
what more direct, based on a general approach, called the X−e+Y method.
This approach will be particularly useful in the special case of graphical ma-
troids, i.e., for the proof of Theorem 1.3.

Let us first recall the X − e + Y method from [12], which is a variant of
the so called supergraph approach introduced by [18]. Let E be a finite set,
and π : 2E → {0, 1} be a monotone Boolean function, i.e., one for which
X ⊆ Y implies π(X) ≤ π(Y ). We assume that π(∅) = 0 and π(E) = 1. We
also assume that an efficient algorithm for evaluating π(X) in polynomial
time in the size of E is available for every X ⊆ E. Let

F = {X | X ⊆ E is a minimal set satisfying π(X) = 1}.

Our goal is to generate all sets belonging to F .
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Let us remark first that for every X ⊆ E for which π(X) = 1 we can
derive a subset Y ⊆ X such that Y ∈ F , by evaluating π exactly |X| times.
This can be accomplished (typically in many different ways) by deleting one-
by-one elements of X the removal of which does not change the value of π.
To formalize this, let us denote by µ(X) = Y such a minimal subset of X,
i.e., µ is a mapping from {X ⊆ E | π(X) = 1} to F such that µ(X) ⊆ X.

We next introduce a directed graph G = (F , E) on vertex set F , where
the edge set E is defined by specifying the neighborhood N(X) for every
X ∈ F as

N(X) = {µ((X r e) ∪ Y ) | e ∈ X,Y ∈ YX,e},

where

YX,e = {Y | Y ⊆ E r X is a minimal set satisfying π((X r e) ∪ Y ) = 1}.

In other words, for every set X ∈ F and for every element e ∈ X (since
X ∈ F , we have π(X r e) = 0) we extend X r e in all possible ways to a set
X ′ = (X r e) ∪ Y for which π(X ′) = 1, and introduce each time a directed
arc from X to µ(X ′). We call the obtained directed graph G a supergraph

of our generation problem.

Proposition 2.1 ([12]) The supergraph G = (F , E) is strongly connected.

�

Since G is strongly connected by performing a breadth-first search in G
we can generate all elements of F as follows:

Traversal(G)

Find an initial vertex X0 ← µ(E), initialize a queue Q = ∅ and a
dictionary of output vertices D = ∅.

Perform a breadth-first search of G starting from X o:

1 output X0 and insert it to Q and to D

2 while Q 6= ∅ do

3 take the first vertex X out of the queue Q

4 for every e ∈ X do

5 for every Y ∈ YX,e do

6 compute the neighbor X ′ ← µ((X r e) ∪ Y )

7 if X ′ /∈ D then

8 output X ′ and insert it to Q and to D

9



Proposition 2.2 ([12]) If the sets of YX,e can be generated in incremental

polynomial time for every X ∈ F and e ∈ X, then Traversal(G) generates

all elements of F in incremental polynomial time. �

2.4 Second Proof of Theorem 1.2

In this section, we present another proof of Theorem 1.2 by applying the
X − e + Y method. For the problem of generating all minimal connected
spanning subsets of a matroid M , let us define π(X) = 1 if X is connected
and spanning of M , and 0 otherwise. Clearly π is monotone, and the corre-
sponding family F of all minimal subsets X for which π(X) = 1 is exactly
the family of minimal spanning and connected subsets of M .

We apply the X − e + Y method for the generation of F , as described
in the previous subsection. By Proposition 2.2, it is sufficient to prove the
following statement.

Proposition 2.3 All elements of YX,e can be generated in incremental quasi-

polynomial time.

Proof: First we show that X r e is spanning. Since X is connected there
is a circuit C in X containing e. Thus the independent set C r e must be
contained in a maximal independent set B ⊆ X such that e /∈ B. Since X
is spanning and B ⊆ X, B is a basis. Thus X r e is spanning.

Since X is a minimal connected spanning subset of E and X r e is
spanning, X re must be partitioned into connected components K1, . . . ,Kr,
r ≥ 2. For a cycle C we denote by I(C) the set of indices of components
having some elements belonging to C:

I(C) = {i ∈ {1, ..., r} | Ki ∩C 6= ∅}.

For y ∈ E r X let

Cy = {C | C is a cycle, y ∈ C and C ⊆ (X r e) ∪ y}

be a family of all cycles containing y and some elements of X r e. Note that
Cy is nonempty for every y ∈ E r X, since X r e is spanning.

We show that for every cycle C ∈ Cy the set I(C) contains the same
indices.

Lemma 2.7 There is Iy ⊆ {1, . . . , r} such that I(C) = Iy for every C ∈ Cy.

Proof: Let Iy = I(C), where C ∈ Cy is an arbitrary cycle. Suppose that
there is a cycle C ′ ∈ Cy such that I(C ′) r Iy 6= ∅. Let i ∈ I(C ′) r Iy. Then
there is an element z ∈ Ki belonging to C ′ but no element of Ki belongs to C.
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By the strong circuit axiom there is a cycle C ′′ ⊆ (C ∪C ′)r y such that z ∈
C ′′. Since y /∈ C ′′, all elements of C ′′ belong to K1, . . . ,Kr. Observe that C ′′

must contain at least one element of C, since C ′
ry is independent. Thus C ′′

contains elements of two different connected components, a contradiction.
�

We construct a hypergraph H on vertex set {1, . . . , r} whose edges are
the sets Iy for y ∈ E r X. A connected set cover Y of H is a subset of
hyperedges satisfying:

(i)
⋃

y∈Y Iy = {1, . . . , r} and

(ii) there is no partition of Y into Y1 and Y2 such that
⋃

y∈Y1
Iy and

⋃

y∈Y2
Iy are disjoint subsets of vertices.

We now prove that generating all minimal connected set covers of H is
equivalent to the generation of all elements of YX,e.

Lemma 2.8 Let Y ⊆ E r X. Then {Iy | y ∈ Y } is a connected set cover

of H if and only if (X r e) ∪ Y is connected.

Proof: If {Iy | y ∈ Y } is a connected set cover of H then by Lemma 2.7
and by the definition of a connected set cover it reconnects all components
K1, . . . ,Kr.

Conversely suppose that (X r e)∪Y is connected. Let C ⊆ (X r e)∪ Y
be a cycle containing at least one element of Y . We prove that I(C) ⊆
⋃

y∈C∩Y Iy by induction on the size of C ∩ Y . If C ∩ Y = {z}, then by
Lemma 2.7 I(C) = Iz. Suppose that there is j ∈ I(C) r

⋃

y∈C∩Y Iy. Then
there is an element z ∈ Kj belonging to C but no element of Kj belongs to
cycles in Cy, for each y ∈ C ∩Y . Pick an arbitrary w ∈ C ∩Y . Let C ′ ∈ Cw.
By the strong circuit axiom, there is a cycle C ′′ ⊆ (C ∪ C ′) r w such that
z ∈ C ′′. If C ′′ does not contain any elements of Y , then C ′′ connects Kj to
some other component, a contradiction. Thus C ′′ ∩ Y is nonempty. Since
|C ′′ ∩ Y | < |C ∩ Y |, we have I(C ′′) ⊆

⋃

y∈C′′∩Y Iy. As z ∈ C ′′, we obtain
j ∈

⋃

y∈C′′∩Y Iy, a contradiction. Hence we have I(C) ⊆
⋃

y∈C∩Y Iy.

By the above and since all components are connected by the cycles con-
tained in (X r e) ∪ Y , we have

⋃

y∈Y Iy = {1, . . . , r}. Hence Y satisfies
(i).

Suppose that Y does not satisfy (ii), thus there is a partition of Y into
Y1 and Y2 such that

⋃

y∈Y1
Iy = R1 and

⋃

y∈Y2
Iy = R2, where R1 and R2

are disjoint subsets of vertices. Since X re∪Y is connected, there is a cycle
C containing elements of components in R1 and R2 with |C ∩ Y | minimal.
Observe that C must contain at least two elements of Y . Pick y ∈ C ∩ Y
and Cy ∈ Cy. Assume y ∈ Y1. Let w ∈ C be an element of a component in
R2. By the strong circuit axiom, there is a cycle C ′′ ⊆ (C ∪ Cy) r y such
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that w ∈ C ′′. C ′′ must contain an element of Cy, belonging to a component
in R1, since C r y is independent. Thus C ′′ is the cycle containing elements
of components in R1 and R2 and |C ′′ ∩ Y | < |C ∩ Y |, because y /∈ C ′′, a
contradiction to the selection of C. �

To prove that all minimal connected set covers of H can be generated
in incremental quasi-polynomial time, we show that this problem reduces
to generating all minimal spanning collections of a graph, which can be
done in incremental quasi-polynomial time (see Section 2.6 in [3]). Let
R = {1, . . . , r} be a vertex set. For every y ∈ E r X, let Ey = {(i, j) | i, j ∈
Iy, i 6= j} be a clique on vertices of Iy. Recall that f(Y ) = r− k(Y ) ≥ t is a
polymatroid inequality, where k(Y ) be a number of connected components
in a graph (R,

⋃

y∈Y Ey). Thus we can generate elements of a family Bt

of all minimal subsets Y ⊆ E r X satisfying the inequality f(Y ) ≥ t in
incremental quasi-polynomial time for every t ∈ {1, . . . , r}. Now observe
that elements of Br−1 are minimal subsets of E r X such that the graph
(R,

⋃

y∈Y Ey) is connected. Hence they are minimal connected set covers of
H.

This completes the proof of Theorem 1.2. �

Let us finally remark that our first proof of Theorem 1.2, which shows
that the family F of minimal spanning and connected subsets of a matroid is
exactly the family of all minimal feasible solutions of a corresponding poly-
matroid inequality, implies (by [3]) quasi-polynomially dual-boundedness,
that is, that the inequality |F ∗| ≤ q(|F|) holds for a quasi-polynomial func-
tion q(), where F∗ denotes the family of all maximal non-connected spanning
subsets of M . Thus the so-called joint generation approach would also pro-
vide us with a quasi-polynomial generation algorithm (see [5] for details
and precise definitions). However, it is still open whether the problem is
polynomially dual-bounded.

3 Minimal 2-Connected Spanning Subgraphs

3.1 Proof of Theorem 1.3

We apply the X − e + Y method to the generation of all minimal 2-vertex
connected spanning subgraphs of a 2-vertex connected graph G = (V,E).

For X ⊆ E, we define a Boolean function π as follows:

π(X) =

{

1, if (V,X) is 2-vertex connected;
0, otherwise.

Clearly π is monotone and it can be evaluated in O(|V | + |E|) time [19].
Then F = {X | X ⊆ E is a minimal set satisfying π(X) = 1} is a family of
edge sets of all minimal 2-vertex connected spanning subgraphs of (V,E).

12



It is not difficult to see that we can compute from G a minimal 2-vertex
connected spanning subgraph X in O(|V |+ |E|) time. This implies that we
have a mapping µ : {X ⊆ E | π(X) = 1} → F such that µ(X) ⊆ X, in
which µ(X) is linearly computable from X. For X ∈ F and e ∈ X we define

YX,e = {Y | Y ⊆ E r X is a minimal set satisfying π((X r e) ∪ Y ) = 1}.

Therefore by Proposition 2.2 we only need to prove that we can generate all
elements of YX,e in incremental polynomial time. In fact, we show that we
can do it, more efficiently, with polynomial delay, i.e., in which the generation
of the first k elements can be accomplished in time polynomial in the input
size and linear in k.

Recall that a maximal connected subgraph without a cutvertex is called
a block. Thus, every block of a connected graph H is either a maximal
2-vertex connected subgraph, or a bridge (with its ends). Different blocks
overlap in at most one vertex, which is a cutvertex of H. Hence, every edge
of the graph lies in a unique block.

Let A denote the set of cutvertices of H and let B denote the set of its
blocks. We then have a natural bipartite graph on vertex set A∪B in which
two vertices B ∈ B, a ∈ A are connected if a is a cutvertex of H belonging
to B. We call such graph a block graph of H. Observe that the block graph
of a connected graph is a tree.

Proposition 3.1 All elements of YX,e can be generated with polynomial

delay.

Proof: Let (V,X) be a minimal 2-vertex connected spanning subgraph of
(V,E) (see Figure 1).

G (V, X)

e

Figure 1: 2-vertex connected graph G = (V,E) and a minimal 2-connected
spanning subgraph (V,X) of G.

First we show that the block graph of (V,X r e) is a path such that
endpoints of e belong to its ends. As we observed above the block graph
of (V,X r e) is a tree. Suppose it has a leaf B that does not contain an
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endpoint of e. Let a be a cutvertex of (V,X r e) adjacent to B in the block
graph. But removing the vertex a from the 2-vertex connected graph (V,X)
disconnects vertices of B from other vertices, a contradiction. Thus the
block graph of (V,X r e) has only two leaves, each containing one endpoint
of e.

We denote by B1, . . . , Br the blocks of (V,X r e) and by a1, . . . , ar−1 its
cutvertices. Without loss of generality we assume that the block graph of
(V,X r e) is a path B1a1B2 . . . ar−1Br (see Figure 2).

a1 a2 a3 a4

B1
B2

B3
B4

B5

B1 B2 B3 B4 B5a1 a2 a3 a4

Figure 2: (V,X r e) and its block graph

Let f = uv be an edge of E r X, such that u belongs to the block Bi and v
belongs to Bj , where i < j. We define

α(f) =

{

i, if v ∈ Bi r ai ;
i + 1, if v = ai,

and β(f) =

{

j, if v ∈ Bj r aj−1 ;
j − 1, if v = aj−1.

Then we construct a directed multigraph D on vertex set B1, . . . , Br whose
arc set is defined as follows:

• for each i = 1, . . . , r − 1, we add an arc Bi+1Bi,

• for each edge f ∈ E r X, such that α(f) < β(f), we add an arc
Bα(f)Bβ(f) (see Figure 3).

B1 B2 B3 B4 B5

Figure 3: Directed multigraph D.

Claim 3.1 The directed multigraph D has at most |V | vertices and |V |+|E|
arcs and it can be constructed in O(|V |+ |E|).

14



Proof: The number r of vertices of D is equal to the number of blocks of
(V,Xre), which is at most |V |. D has exactly r−1 arcs between subsequent
vertices and at most |E| arcs corresponding to edges of E r X. Thus D has
at most |V |+ |E| arcs.

We can construct D as follows:

• find all blocks of (V,X r e) in O(|V |+ |E|) time [19],

• create r vertices and add r − 1 arcs between subsequent vertices and
at most |E| arcs corresponding to edges of E r X; this step also takes
O(|V |+ |E|) time.

�

Now we show that the generation of elements Y ∈ YX,e is equivalent to
the generation of minimal directed B1-Br paths in D.

For every cutvertex ak there is an edge f ∈ Y such that α(f) ≤ k < β(f).
By minimality of Y , edges of E r X whose both endpoints belong to the
same block cannot be in Y . We conclude that Y = {f1, . . . , fs} such that

1 = α(f1) < α(f2) ≤ β(f1) < α(f3) ≤ . . . < α(fs) ≤ β(fs−1) < β(fs) = r.

Thus Y corresponds to a directed path

Bα(f1)Bβ(f1)Bβ(f1)−1 . . . Bα(f2)+1Bα(f2)Bβ(f2)Bβ(f2)−1 . . .

Bα(f3)+1Bα(f3)Bβ(f3) . . . Bβ(fs)

(see Figure 4).

f1 f2

B1 B2 B3 B4 B5

Figure 4: Y = {f1, f2} and corresponding directed path B1B4B3B5.

Since all minimal directed paths between two vertices can be generated
via backtracking with polynomial delay [17], Proposition 3.1 follows. �

This completes the proof of Theorem 1.3.
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3.2 Complexity

In this section we analyze the total running time of the procedure Traversal (G).
Let n = |V |, m = |E| and N = |F|. We observe m ≥ n, since G is 2-vertex
connected.

As noticed in the previous section, the initial vertex X o of the supergraph
can be computed in O(m) time. Outputting a vertex of the supergraph
takes O(m) time and we output each vertex only once. Thus the total time
of outputting vertices is O(mN).

Each vertex of the supergraph is inserted to the queue Q and removed
from Q only once. The operations of enqueuing and dequeuing take O(1)
time, so the total time devoted to queue operations is O(N). We implement
the dictionary D for F as a binary tree with depth m. Here leaves in the
tree store elements X ∈ F , and the components of X correspond to the
path from the root to the leaf. Since the insert and find operations in the
tree take O(m) time, the total time devoted to insert operations is O(mN).

Since a vertex is removed from Q every time we execute the while loop
(lines 2-8) and it will never be reinserted to Q, the while loop is executed
at most N times. As a vertex of the supergraph is a subset of edges of the
input graph, the for loop (lines 4-8) is executed at most m times. We now
analyze the time Traversal(G) spends performing lines of the main loop.

line 5: As we noted above we generate at most mN families YX,e. Also
note that we always have |YX,e| ≤ N . By the claim, the construction
of the directed multigraph D takes O(m) time and this graph has at
most n vertices and n + m arcs. Since the generation of elements of
YX,e is equivalent to the generation of directed paths in D we obtain
that for a given X and e we can compute YX,e in O(mN) time [17].
Thus the total time spent generating families YX,e is O(m2N2).

line 6: We compute µ at most mN 2 times. Thus the total time of comput-
ing µ is O(m2N2).

line 7: We test if D contains X ′ at most mN 2 times. Thus the total running
time of the test is O(m2N2).

Therefore, in total Traversal(G) runs in O(m2N2) time.
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