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Abstract

For an irreducible root system R, consider a coefficient matrix S of the positive
roots with respect to the associated simple roots. Then S defines an arrangement
of “hyperplanes” modulo a positive integer q. The cardinality of the complement
of this arrangement is a quasi-polynomial of ¢, which we call the characteristic
quasi-polynomial of R. This paper gives the complete list of the characteristic
quasi-polynomials of all irreducible root systems, and shows that the characteristic
quasi-polynomial of an irreducible root system R is positive at g € Z~¢ if and only
if ¢ is greater than or equal to the Coxeter number of R.

Key words: characteristic quasi-polynomial, elementary divisor, hyperplane arrange-
ment, root system.

1 Introduction

Let S be an arbitrary m x n integral matrix without zero columns. For each positive
integer q € Zo, denote Z, = Z/qZ and Z) = Z, \ {0}. Consider the set

My(S) ={z=(21,...,2m) € L] : 25 € (Z;)"},

and its cardinality |M,(S)|. In our recent paper [3]|, we showed that there exists a monic
quasi-polynomial (periodic polynomial) xs(¢) with integral coefficients of degree m such
that

xs(q) = [My(S)], q € Zso.
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Note that the set M,(S) is the complement of an arrangement of hyperplanes in the
following sense: Let S7, 5, ..., S, be the columns of S. Each set

Hig:={z=(21,...,2m) €Z; 25 =0}, 1<i<n,

can be called a “hyperplane” in Z;" by a slight abuse of terminology. Then

M,(8) = Zg' \ | Hig-
i=1

For a sufficiently large prime number ¢, xs(q) is known [1] to be equal to the charac-
teristic polynomial [4, Def. 2.52] of the real arrangement consisting of the following
hyperplanes (ignoring possible repetitions):

Hgr:={z=(z21,...,2m) €ER™:25, =0}, 1<i<n.

It is thus natural to call the quasi-polynomial ys(¢) the characteristic quasi-polynomial
of S as in [3].

In this paper, we define and determine the characteristic quasi-polynomial xr(q) for
every irreducible root system R. Let m be the rank of R and n = |R|/2. We assume
that an m x n integral matrix S = S(R) = [S;;] satisfies

R+:{ZSijai j: 1,...,77,},
i=1

where Ry is a set of positive roots and B(R) = {ay,aq,..., ) is the set of simple
roots associated with R,. In other words, S is a coefficient matrix of R, with respect to
the basis B(R). Define the characteristic quasi-polynomial yz(q) := xs(q) for each
irreducible root system R. Then xr(q) depends only upon R.

For example, for the root system R = Ay = {e; —¢; : 1 <i <3, 1 <j5<3, i#j},
B(Ay) = {a; = €1 — €3, ag = €3 — 3} and Ry = {«ay, a9, a1 + a2}, where €7, €9, €3 are
orthonormal, one has

011

It is easy to see that xa,(q) = xs(¢) = (¢ — 1)(¢ — 2), which is equal to the ordinary
characteristic polynomial of type A,. In other words, the minimum period of the quasi-
polynomial y 4,(q) is one. The minimum periods for all irreducible root systems are shown
in the following table:

S — S(Ay) = F 0 1]

root system minimum period root system minimum period
A 1 Eg 6
B, 2 Er 12
Cm 2 Eg 60
D,, 2 Fy 12
Go 6



The outline of this paper is as follows: In Section 2, we prove general results on ys(q)
which are used in Sections 5 and 6. In Section 3, we study the case of root system A,,,
which is the easiest case. We investigate the root systems B,,,, C,,, and D,,, using the coset
method in Section 4. The characteristic quasi-polynomials of these three root systems
are closely related to each other. The cases of G5 and Fj are studied in Section 5. In
Section 6, we study the remaining root systems F,, (m = 6,7,8) which require the hardest
calculations in this paper. We are aided by the computer package PARI/GP [5] and the
theoretical results from Section 2. Lastly in Section 7, we state two results obtained from
our calculations and the classification of irreducible root systems. Throughout this paper
we use the table of irreducible root systems in [2] as our standard reference.

2 Results on the characteristic quasi-polynomial of
an integral matrix

Let xs(t) be the characteristic quasi-polynomial of an m X n integral matrix S without

zero columns. Fix a nonempty J C [n] := {1,2,...,n} and define an m x |J| matrix S;
consisting of the columns of S corresponding to the set J. Let ej1,...,e ) € Z>o be
the elementary divisors of S; numbered so that e;1|esa| - - - |ese.r), where £(J) := rank 5.

Write e(J) := ey, and define the lem period py(S) of S by
po=po(S) = lem{e(J): J C[n], J# 0}
= lem{e(J): J C[n], 1 <|J| < min{m,n}}.

Then it is known ([3, Theorem 2.4]) that the lem period py is a period of ys(t).

It is further shown in [3] that the constituents of the quasi-polynomial xg(¢) are the
same for all ¢’s with the same value of ged{pg, ¢}. Let d be a positive integer which divides
po, and define a monic polynomial P,(t) = Ps4(t) with integral coefficients of degree m
by

xs(q) = Pa(q) for all g € d+ poZxo.
Put

(/)
e(J,d) = H ged{ey;, d}.
=1

Then the following formula was essentially proved in our previous paper [3].

Theorem 2.1. For each d € Z~q with d|py, the polynomial Py(t) is given by

Py(t) = > (=1)le(J, dytm),

JC[n]
where for J = (), we understand that £(0) = 0 and that e(0,d) = 1.

Proof. Obtained from [3, (10)] and the inclusion-exclusion principle. O



Theorem 2.2 ([3] Theorem 2.5). The polynomial
Pi(t) =) (=)=t
JCn]

is equal to the ordinary characteristic polynomial [4, Def. 2.52] of the real arrangement
consisting of the hyperplanes (ignoring possible repetitions) Hy g, Hag, . .., Hyr.

Corollary 2.3. Suppose d,d" € Z~q both divide py, and assume the following condition
holds true for some positive integer s: ged{e(J),d} = ged{e(J),d'} for all J C [n] with
|J| <s. Then

deg{P,(t) — Py(t)} <m — s.

In particular, we have deg{ Py(t) — Pi(t)} < m—s if gcd{e(J),d} =1 for all J C [n] with
|| <s.

Proof. We apply Theorems 2.1 and 2.2. It is enough to show e(J,d) = e(J,d') for
J C [n] with ¢(J) < s. We can choose a subset J' C J such that |J'| = ¢(J) < s.
Then ged{e(J'),d} = ged{e(J’),d'}. Since e(J)|e(J') [3, Lemma 2.3], ged{e(J),d} =
ged{e(J),d'}. This shows e(J,d) = Hf(:‘]f ged{ey;,d} = Hf(:‘]f ged{e,;,e(J),d}

=1\ ged{es,e(J), d'} = [1°) ged{es;,d'} = e(J,d'). O
Corollary 2.4. Suppose that d € Z~o and d' € Z~q both divide py and that ged{d,d'} = 1.
In addition, we assume the following condition holds true for some positive integer s:

(1) ged{e(J),d} =1 or ged{e(J),d} =1
for all J C [n] with |J| < s. Then
deg{Pi(t) + Pya(t) — Py(t) — Py(t)} <m — s.
Proof. Suppose J C [n] with ¢(J) < s. It is enough to show
1+ e(J,dd') — e(J,d) — e(J,d') = 0.

We can choose a subset J' C J such that |J'| = ¢(J) < s. Then either ged{e(J'),d} =
1 or ged{e(J'),d'} =1 by (1). Since e(J)|e(J),

ged{e(J),d} =1 or ged{e(J]),d'} = 1.
This shows that either e(J,;d) =1 or e(J,d’) = 1. We finally have
0={l—e(J,d)H{l—e(J,d)} =1—e(J,d)—e(J,d)+e(J d)e(J,d)
—1—e(J,d) — e(J,d) + e(J,dd").
[

Corollary 2.5. Suppose that d € Z~o and d' € Z~q both divide py and that ged{d,d'} = 1.
If e(J) are prime powers or one for all J, we have Py (t) = Py(t) + Py(t) — Pi(t).

Proof. Easily follows from Corollary 2.4. m

The results in Corollaries 2.3, 2.4 and 2.5 will be used to find characteristic quasi-
polynomials of root systems.



3 Characteristic quasi-polynomial of A,,

We follow PLATE T in [2]. Let {€i,..., €41} be an orthonormal basis for an (m + 1)-
dimensional Euclidean space W, and define

m+1 m—+1
V.= {ZCiEi EW:ZCZ'ZO}.
i=1 i=1
Then
R:={£(e;i—¢):1<i<j<m+1}CV, |Rl=m(m+1),
is an irreducible root system in V' of type A,,. Then we may choose a set of positive roots
R.o={e—¢:1<i<j<m+1}.

Define o; := ¢; — €41, 1 < i < m. Then B := {ay,...,a,} is the set of simple roots
associated with R,. We may express

R+:{Z ak:lgigjgm}.
i<k<j
Let n:=|Ry| = m(m + 1)/2. Then the m x n matrix S(A,,) consists of only 0’s and 1’s

such that 1 appears consecutively in each column. For example

Lo 1 10010 1
S(Ay) = [1], S(Az)—[o | 1], S(4;)=10 101 11
001011

The characteristic quasi-polynomial y4,,(t) of the root system A, is the characteristic
quasi-polynomial of S(A,,) : xa,.(t) := Xs(4,,)(t). Let us enumerate the size of

First, there are (¢ — 1) ways to choose z;. Next, there are (¢ — 2) ways to choose zy, etc.
Therefore we have

XA, (@) = [My(S)] = (g —1)--- (g —m).

Thus the characteristic quasi-polynomial x 4,,(¢q) of A,, is equal to the ordinary charac-
teristic polynomial.



4 Characteristic quasi-polynomials of B,,,C,,, D,,

4.1 The coset method

Let P be a non-singular m X m integral matrix. Consider a finite additive group G := Z",
and define a group homomorphism 7= : G — G by n(z) = zP, z € . Consider the
subgroup H := im~ of G. Then it is not difficult to see that the index (G : H) is equal
to b(q) := ged{q,det P}. Note that every fiber 7~!(y) has the same cardinality b(q) for
any y € H. Let us express the set G/H of cosets as

G/H={gi+H:1<i<b(q)}

for some complete set of representatives gi,..., gy, € G, g1 € H.
Let S be an m x n integral matrix, and define an m x n integral matrix 1" by T' = PS.
Then we can write fs(q) := {y € G :yS € (Z))"}| as

b(q)
fsla) =[{y € GryS e @)} = >y €&+ H:yS € (z;)"}]
b(q) .
_ @Z ’{z €G:(gi+zP)S e (Z;)”}‘
b(q)

1 X\
:@;HZEG:ZTJrgiSG(Zq) E

Define
(2) file) = {z € G : 2T + &S € (Z;)"}|
fori=1,...,b(q). Then we have:

Theorem 4.1. For an m x n integral matriz S, define fs(q) = {y € G :yS € (Z;)"}|.
Then, for any non-singular m x m integral matrix P and the m X n integral matriz T

defined by T = PS, we can write fs(q) as

b(q)

(3) Z filg

where b(q) = ged{q,det P}, and f;(q), 1 <i < b(q), are defined in (2).

Note that when S has a zero column, (3) is trivially true because both sides are zero.
Thus, we do not need the assumption that S has no zero column; when this assumption
is satisfied, fs(q) is the characteristic quasi-polynomial xs(q).

We also note the following: fi(q) = [{z € G : 2T € (Z})"}| = fr(q). Hence, when
b(q) = 1 in particular (e.g., when P is unimodular), we have fs(q) = fi(q) = fr(q).

6



42 B,

We follow PLATE Il in [2]. Let {ey,...,€,} be an orthonormal basis for an m-dimensional
Euclidean space V. Let m > 2. Then

R = {#e (1<i<m), (e —¢) (1 <i<j<m),
te+e) (1<i<j<m)}CV, |R =2m?

is an irreducible root system of type B,,. Then we may choose a set of positive roots
Ri={e(1<i<m), e—¢ (1<i<j<m), ¢+¢ (1<i<j<m)}.

Define o; :==€¢; — €41 (1 <i<m—1), a,, := €,. Then B = {ay,...,q,} is the set of
simple roots associated with R,. We may express

Let n := |R,| = m? Then the m x n matrix S := S(B,,) is the coefficient matrix of R,
with respect to the set of simple roots B. For example,

1 011

100101011
5(32)2[0112}78(33):010111112
001011222

We want to find the characteristic quasi-polynomial xp,,(t) := Xs(B,.)(t) of By,. Define
an m X m matrix

1
-1 1
-1
P =
1
-1 1
Then the m x n matrix T' = T'(B,,) := PS is the coefficient matrix of R, with respect to
the orthonormal basis €1, ..., €,. Since P is unimodular, we have
(4) XB (4) = X5(8.)(0) = X1(8,,)(4)-
4.3 C,

We follow PLATE III in [2]. Let m > 3.

R = {£2¢ (1<i<m), +(e—¢) (1 <i<j<m),
+e+e) (1<i<j<m)}CV, |R|=2m’

7



is an irreducible root system in V' of type C),. Then we may choose a set of positive roots
R+:{2€i (1§z§m), € — €5 (1§Z<]§m), €i+€j (1§Z<]§m)}

Define o; :=¢; — €41 (1 <i <m —1), o, = 2€¢,. Then B = {ay,...,a,,} is the set of
simple roots associated with R,;. We may express

R, = {Zak(lgigjgm), Zozk+2 Z ak+am(1§i§j<m)}.
i<k<j i<k<j j<k<m

Let n := |Ry| = m?. Then the m x n matrix S = S(C,,) is the coefficient matrix of R,
with respect to the set of simple roots B. For example,

100101012
SC)=10 10111222
001011111

We want to find the characteristic quasi-polynomial x¢,,(t) := xs(c,,)(t) of Cy,. Define
an m X m matrix

1
-1 1
-1
P .=
1
-1 2
Then the m x n matrix "= T(C,,) := PS is the coefficient matrix of R, with respect to
€1,...,6n. Since det P = 2, we have to consider two cases.

Case 1: When ¢ is odd.
For odd ¢, we have b(q) := gcd{q,det P} = 1 and thus

XS(Q) = XT(cm)(Q)-

Case 2: When ¢ is even.

For m : G — G defined by 7(z) = zP, z € G, we have

H:=imm = {(y17"'7ym—172ym) “Ytls e Ym € Zq}

Since b(q) = (G : H) = ged{q,det P} = 2, we take g =0 € H and gy = (0,...,0,1) €
G\ H. By Theorem 4.1

xs(q) = % {file) + f2(0)},

8



where f1(q) = xr(c,,)(¢) and
fle) = {ze€G: 2T + g5 € (Z;)"}]
= H(z1,-2m) €27 1 22+ 15#0 (1 < i <m),
zi— 2 #0 (1 <i<j<m),
zi+2zj+1#0(1<i<j<m)}
= H(z1, 0 2m) €27
zi—z; #0 (1 <i<j<m),
(5) zi+z+1#0(1<i<ji<m)}
= m!x[{(c1,...,cm) €EZ™:0< 1 < -+ < ¢ < g,
Gte#Fq—1(1<i<j<m)}
= m!x|{(c1,...,0m) EZM:0< 1 <+ < <q+1,
Gt Fq+1(1<i<j<m)}
= X1(B.)(7+1).

In the second equation of (5), we have used {d ;o 11 <i<j<m}={e—¢:
1 S Z <] S m}7 {Zigkﬁmak (1 S Z S m), Zi§k<jak + 22j§k<mak +am (1 S Z S] <

m)} ={2¢ (1 <i<m), ¢+¢ (1<i<j<m)} for R,.
Therefore,
1
xs(9) = 5{xrem (@) + X7 (@ + 1)}

for even q.

In summary,

XT(Cm)(Q) if ¢ is odd,

(6) Xcm (@) = Xscm) (@) = S
o {1 (@) + X1y (g + 1)} if ¢ is even.

4.4 D,

We follow PLATE IV in [2]. Let m > 4.

R:={f(es—¢) (1<i<j<m), £(e+¢) (1<i<j<m)}CV, |R|=2m(m—-1),

is an irreducible root system in V' of type D,,. Then we may choose a set of positive roots
Ri={e—¢ (1<i<ji<m), e+¢ (1<i<j<m)}

Define a; :=€¢; — €41 (1 <i<m —1), o :=€n_1+ €n. Then B ={ay,...,a,} is the
set of simple roots associated with R,. We may express

R, = {Zak(1§i§j<m),

i<k<j



Zak—‘f—Q Z ak+am—1+am(1§i<j<m>7

1<k<j j<k<m—1
Z ak+am(1§i<m)}.
i<k<m—1

Let n:=|R.| = m(m — 1). Then the m x n matrix S = S(D,,) is the coefficient matrix
of R, with respect to the set of simple roots B. For example,

100010011011
010011111112
S(Da) = 001001010111
0001001017111

We want to find the characteristic quasi-polynomial xp,, (t) := xs(p,.)(t) of Dy,. Define
an m X m matrix

Then the m x n matrix 7' = T'(D,,) := PSS is the coefficient matrix of R, with respect to
€1,...,6n. Since det P = 2, we have to consider two cases.

Case 1: When ¢ is odd.

For odd ¢, we have b(q) := gcd{q,det P} = 1 and thus

Xs(9) = X7(D,) (Q)-

Case 2: When ¢ is even.

We have

H=imm={(y1, -, Ym-1,Ym-1+2Ym) Y1+, Ym € Ly}

Since b(q) = (G : H) = ged{q,det P} = 2, we take g =0 € H and gy = (0,...,0,1) €
G\ H. By Theorem 4.1

xs(@) = £ (h0) + o)}
where f1(q) = x7(p..)(¢) and
Pla) = WeeGral +ms e ))

10



(7) = H(z, o 2m) €27 2z — 2 #0 (1 < i < j <m),
Gtz 120 (1<i<j<m)}
- XT(B77L)<q+1>

by (5). In the second equation of (7), we have used {> ., ;or 1 1 < i < j<m} =
{ei—¢ 1 <i<j<m} {Zi§k<jak+2Zj§k<m—1ak?+am—1 +a, (1<i<j<
M), D icphemt Ok T om (1<i<m)} ={e+¢:1<i<j<m} for R,.

Therefore,

X5(2) = 3 0xrom) (@) + X150 + 1)

for even gq.

In summary,

X1(D,,)(q if ¢ is odd,
(8) XD (@) = X5(Dw)(Q) :{ 70 (@)

{1 (@) + X (g+ 1)} if g is even.

4.5 Orthonormal basis

4.5.1  x75,)(q¢) and x7(p,,(q)

We first prove the following lemma.

Lemma 4.2. Assume that a matrix A satisfies the following three conditions:
(1) each entry lies in {0,£1, £2},
(2) each column contains at most two nonzero entries, and
(8) each column contains at most one entry from {+2}.

Then the elementary divisors of A lie in {1,2}.

Proof. Let us temporarily say that a matrix is of type (T) if it satisfies these three
conditions. Denote the set of elementary divisors of A by ED(A). Argue by an induction
on the number of columns. When a matrix has only one column, the statement is obviously
true. Suppose that a matrix A has more than one column.

Case 1. When A = O, ED(A) = 0.

Case 2. When A # O and each entry of A lies in {0, £2}, then ED(A) = {2}.

Case 3. If A has a column with only one nonzero entry a € {£1}, then A is equivalent

[1‘***1
0

to

: B
0
with B of type (T). Since ED(B) C {1, 2} by the induction assumption, ED(A) C {1, 2}.

11



Case 4. If A has a column with exactly two nonzero entries, then A is equivalent to

1
1

A = |0

0

By clearing the first row using the first column of A; we see that A is equivalent to

110 --- 0
1
0

Since

(1,1,0,...,0)' = (1,—1,0,...,0)* = (0,2,0,...,0)",
(1,1,0,...,0)" — (1,0,—1,...,0)' = (0,1,1,...,0)",
(1,1,0,...,0)" = (1,0,1,...,0)* = (0,1,—1,...,0)",

and so on, C'is of type (T). Since ED(C) C {1, 2} by the induction assumption, ED(A) C
{1,2}. O

In the cases of T(B,,) and T(D,,), we have by Lemma 4.2 that ged{po,q} = 1 for
odd ¢q € Z-y. Therefore, xr(s,,)(¢) and x7(p,,)(q) for odd ¢ are equal to the values of the
characteristic polynomials of the real arrangements determined by the columns of T'(B,,)
and T'(D,,), respectively ([3, Theorem 2.5]). Hence we have the following proposition.

Proposition 4.3. For odd integers q € Z~q, we have

(9) XrB.)(@) = (@=1)(q¢—3) - (¢g—2m+1),
(10) Xro.(@) = (@—=1)(g—3)--(¢—2m+3)(g—m+1).

Next, let us find x7(p,.)(q) and x7(s,,)(q) for even q € Z,.

Lemma 4.4. We have the following equalities:

(11) XT(Bm)(CI) = XT(Dm)(q —1) for even q € Zy,
(12) XT(Dm)(Q) = XT(Bm)(CI) + mXT(Bm—l)(q) for all q € Zy.

Proof. For even q € Z+,,
Xt (@) = H(z1,-2m) €27 12 #0 (1 <i <m),

12



zi#+z (1<i<j<m)}
= m!x|{(c1,...,cm) EZ™:0< 1 < -+ <y <,
cite#ql<i<j<m)}

= m!><|{(c1,...,cm)eZmzl—g§01<~-<cm<q

57
¢+ #0(1<i<j<m)}
{(orr o) €2y <2y 2 (1< i < j <))
= XT(Dm)(q - 1);
where the third equality is seen by considering ¢; — (¢/2) instead of ¢;, 1 <7 < m.
On the other hand, for all integers g € Z~(, we have

Xt (@) = Hz o zm) €27 1z # 42 (1 < i< j < m)j

= m!x[{(c,...,cm) €EZ™:0< 1 <+ <y < g,
cite#q(l<i<j<m)

= m!x[{(cry...,0m) EZ™:0< 1 <+ < <,
e #q(1<i<j<m)}
+m! x [{(0,ca,...,cn) EZ™ 0 <y < -+ < ¢y < g,

cite#q2<i<j<m)l
= X1(Bm) (@) + MXT(B,_1)(Q)-

Theorem 4.5. For even integers q € Z~q, we have

(13) Xre.)(@) = (@—=2)(q—4)(¢—2m+2)(qg —m),
(14) X)) = (@—2)(¢—4) - (¢—2m+4)
x{q* —2(m — 1)g+m(m —1)}.

Proof. Equation (13) follows from (11) and (10); then (14) follows from (12) and
(13). O

Proposition 4.3 and Theorem 4.5 imply in particular that each of the characteristic

quasi-polynomials xr(p,,)(t) and xr(p,,)(t) has the minimum period two.

4.5.2 X7, (q)

Lemma 4.2 implies that ged{po, ¢} = 1 for odd ¢ € Z~ also in the case of T'(C,,). Since
T(By,) and T(C,,) define the same real arrangement, we have xr(c,.)(¢) = X7(B..)(q) for
odd q € Z~y.

Proposition 4.6. For odd integers q € Z~q, we have

Xt (@) = (@ —1)(g—=3)-- (¢ —2m+1).

13



For even q € Z~, we can derive the following result:

Theorem 4.7. For even integers q € Z~q, we have

xren (@) = Xren)(q@—1)
= (¢—2)(¢—4) - (g—2m).

Proof. For even q € Z+,,

xre) (@) = Rz, 2m) €27 22 #£0 (1 < i <m),
= m!x|{(c1,...,6m) EZ™:0< 1 <+ <y < ¢,

A5 <i<m) et Fq<i<j<m)
= m!x|{(c1,...,cm) EZ":0< 1 <+ < <q—1,
Gte#Fq—1(1<i<j<m)}
= xr8.)(¢—1) = X1 (e — 1),

where the third equality is confirmed by transforming ¢; — ¢; — 1 for those ¢;’s with
¢; > q/2. Thus we obtain the theorem by Proposition 4.6. O

We see that x7(c,,)(t) has also the minimum period two.

4.6 Conclusion on B,,,C,, and D,,

By equations (4), (6), (8) and the results in Section 4.5, we can obtain the characteristic
quasi-polynomials of B,,, C,, and D,,:

Theorem 4.8. The characteristic quasi-polynomaials of B,,,C,, and D,, are

_ _ (¢q—=1)(¢—3)---(¢g—2m+1) if q is odd,

xen(@) = Xon(d) {( 2)(gq—4)---(g—2m+2)(g—m) if q is even,
() = (q—1(g—=3)---(¢—2m+3)(¢g—m+1) if q is odd,
Mo (¢—2)(¢—4)---(¢—2m+4) {C] —2(m—1)q+ mim—_ 1)} if q is even.

Thus the minimum periods for B,,, C,, and D,, are equal to two.

5 Characteristic quasi-polynomials of G, F}

In the rest of this paper we use the notation

Es:={e(J):JCnl], |J| < s}

for the m x n matrix S = S(R) for a root system R and s € Z~o.
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5.1 Characteristic quasi-polynomial of G,

We follow PLATE IX in [2]. Let {€1, €2, €3} be an orthonormal basis for a 3-dimensional
Euclidean space W, and define

i=1 i=1

Then

R:={£(6; —€)(1<i<j<3),£(26; —€e2—€3), £(2e2 — €1 —€3), £(2e5 — €1 —€2)} C V,

R =12,

is an irreducible root system in V' of type G3. Then we may choose a set of positive roots
Ry :={€ — €, —2€; + €2+ €3,€3 — €1,€3 — €2, —2€3 + €1 + €3,2€3 — €] — €a}.

Define v 1= €1 — €9, 9 := —2¢€1 + €3 + €3. Then B := {1, s} is the set of simple roots
associated with R,. We may express

R+ = {Oél, g, O -+ g, 2061 + Quo, 3@1 + Qg 30(1 + 2@2}.
Thus the 6 x 3 matrix S(G») is given by
1012 3 3
5(Gr) = 1112}

We find xg,(q) as follows: First, the exponents of Gy are 1,5. So we have
Pi(q) =¢* —6g+5=(g—1)(g —5),
which is the ordinary characteristic polynomial of type G5. Next we compute:
& =A{1}, & ={1,2,3}.

Thus po = lem & = lem{1, 2,3} = 6. By Corollary 2.3, we have P;(q) = ¢* —6q+ - - - for
any d|6. Since
Ps=PFPo+ Py — P

by Corollary 2.5, it is enough to find P, and P3. Therefore the special values
Py(2) = [M(S)| =0, P3(3) = |M3(5)[=0

are enough for us to obtain:

¢ —6g+5=(¢—1)(¢—5

¢ —6g+8=(q—2)(¢—4), ged{6,q} =2,

¢ —6g+9=(¢—3)% gcd{6,q} =3,

¢> —6g+12, gcd{6,q} =6.

), ged{6,q} =1,

X6, (q) =

Thus the minimum period for G5 is 6.
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5.2 Characteristic quasi-polynomial of F}

We follow PLATE VIITin [2]. Let {€1, €2, €3, €4} be an orthonormal basis for a 4-dimensional
Euclidean space V.

Ri={te (1<i<4), (6 —¢) (1<i<j<4), (e+¢) (1<i<j<4),

1
5(161 + ey +e3+€4) (16 of them)} C V,

|R| = 48, is an irreducible root system in V' of type Fy. Then we may choose a set of
positive roots

R+:{6i (1§Z§4), € — € (1§Z<]§4), 6i+6j (1§Z<]§4),

1
5(61 + e+ e3+¢4) (8 of them)}.

Define a; := €5 — €3, p := €3 — €4, 3 = €4, and ay = %(61 — €y — €3 — €4). Then

B ={ay, ag, az, ay} is the set of simple roots associated with R,. We may express

R, = { > ap (1<i<j<4),00+ 203,01 + 0+ 203, 05 + 205 + ay,
1<k<j

a1+a2+2a3+a4,a1+20z2+2a3,a2—|—2a3+2a4,a1+a2+2a3+2a4,a1+2a2+2a3+a4,
aq + 200 + 203 + 204, ap + 200 4 3ag + g, a1 + 200 + 33 + 204, 0 + 200 + dag 4 20,

a1 + 3ag + dag + 2ay, 200 + 3as + das + 2a4}.

Thus the 4 x 24 matrix S = S(F}), which is the coefficient matrix of R, with respect to
the set of simple roots B, is:

1 0001001001101 1011T1T1T1T1T12
S(Fy) = 0610011011111 112112222233
0600100111 121222222223344H14
cooo1oo0o1010101102212122722

We find xr,(q) as follows: First, the exponents of Fy are 1,5,7,11. So we have
Pi(q) = ¢* — 24¢° +190¢* — 552¢ + 385 = (¢ — 1)(¢ — 5)(¢ — 7)(q — 11),
which is the ordinary characteristic polynomial of type Fj. Next we compute:
S =11}, &=1{1,2}, &={1,2,4), & =1{1,2,34}.

Thus pg = lem &, = lem{1,2, 3,4} = 12. By Corollary 2.3, we have Py(q) = ¢*—24¢>+- - -
for any d|12. Since
Po=P+P—P, Pe=PB+P—-P
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by Corollary 2.5, it is enough to find P, P3 and P,. Also
deg(Py — Py) <2, deg(Ps—P) <1
by Corollary 2.3. Therefore the following special values
Py(2) = |Ma(S)| = 0, P5(3) = [M3(S5)[ = 0, Py(4) = [My(S)| = 0,
Py(8) = [Mg(S)| = 0, P2(10) = [Mi(S)| = 0, Po(14) = |[M14(S)| = 3456
are enough for us to obtain:
(q* — 24¢% + 190¢* — 552¢ + 385
=(¢—1(g=5)(¢—7)(¢—11), ged{12,q} =1,
q* — 24¢3 + 208¢> — 768q + 880
= (¢ —2)(q—10)(¢* — 12¢ +44), ged{12,¢} = 2,
q* — 24¢ + 190¢> — 552q + 513
xr(g) =q =(¢-3)(¢—9)(¢* —12¢+19), ged{12,q¢} =3,
q* — 24¢3 + 208¢* — 768¢q + 1024
=(¢—4)*(¢—8)%, ged{12,q} =4,
q* — 2443 + 208¢> — 768q + 1008
= (q—6)%(¢* — 12¢ +28), ged{12,¢} =6,
Lq? — 2443 + 208¢ — 768¢ + 1152, ged{12,q} = 12.

Thus the minimum period for Fj is 12.

6 Characteristic quasi-polynomials of Ejg, E7, Eg

For each of the root systems Fg, E7 and Eg, we can find the characteristic quasi-polynomial
by a similar method to the method in the previous section. First we compute &, for each
s. Then we have the lem period py. For each constituent Py(t), d|po, apply Corollaries 2.3,
2.4 and 2.5 to get as much information as possible. Finally we actually count |M,(S)] for
a large enough number of ¢’s with ged{po, ¢} = d and interpolate a polynomial. In this
way, we obtain the characteristic quasi-polynomials for Fg, £ and Eg. For the evaluations

of po’s, we used PARI/GP [5].

6.1 Characteristic quasi-polynomial of Fj

We use PLATE V in [2] to get the 6 x 36 matrix S = S(FEs):
(100000100001 000O011000
01 0000O0O1O0O0OO0O0O011O0O0I1O01T1O0
S(Eg) = 001000101001 1010111O01
oo0o061o00o011101111111111
0o0o001000O0O0CB1I10011101111
000001 0000100O0O0C1TO0O0O0T1




110011011011 1T171
1 0111111111111 2
1111111211212 272
1 1122122222223 3
1 1111111121222 2
0110011011 111T11]

We find xg,(q) as follows: First, the exponents of Eg are 1,4,5,7,8,11. So we have
Pi(q) = ¢% — 36¢° + 510¢* — 3600¢® 4 13089¢* — 22284¢ + 12320
= (¢—1(¢—4)(g—5)(g—T7)(q—8)(¢—11),
which is the ordinary characteristic polynomial of type Eg. Next we compute:
Ei=&E=&={1}, &=&={1,2}, & ={1,2,3}.
Thus po = lem & = lem{1, 2,3} = 6. By Corollary 2.3,
Py(q) = ¢° — 36¢° + 510¢"* — 3600¢> + - - -
for any d|6. Since
Ps=P,+P;— P
by Corollary 2.5, it is enough to find P, and P;. Also

deg(P; — Pp) < 1
by Corollary 2.3. Therefore the following special values
Py(2) = [My(S)] = 0, Py(3) = [M(S)| = 0, Po(4) = |My(S)] = 0, Py(8) = |Ms(S)| = 0
are enough for us to obtain:

(45 — 36¢° + 510¢* — 3600¢° + 13089¢% — 22284 + 12320
=(q—1(g—4)(q—5)(qg—T7)(q—8)(g—11),
ged{6,q} =1,
¢® — 36¢° + 510¢* — 3600¢° + 13224¢% — 23904 + 16640
= (¢ —2)(q¢ —4)(¢ — 8)(¢ — 10)(¢* — 12¢ + 26),
ged{6,q} = 2,
¢® — 36¢° + 510¢* — 3600¢® + 13089¢% — 222844 + 12960
=(¢—3)(q¢—9)(q* — 24¢® + 195¢® — 612¢ + 480),
ged{6,q} = 3,
¢® — 36¢° + 510¢* — 3600¢% + 13224¢> — 23904 + 17280
= (q — 6)*(q* — 24¢> + 1864 — 504q + 480),
\ ged{6, ¢} = 6.

Thus the minimum period for Ej is 6.

XEg (Q) =
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6.2 Characteristic quasi-polynomial of FE;
We use PLATE VI in [2] to get the 7 x 63 matrix S = S(E7):

_ = =0 OO

OSOHFEFNNDHE PO OO0 KO
_ RN RO OO0 OO
O NN RFRFFPF OORFKRRKFERFROO
O P NN P OFRFRREFEOOO
e R e e e =N e S e i )
H R NN RO OO0
e AV NV e e B e I e I
O NNNDNHFE P OO, R F~=RFRO
HEF R NN OO O

EF NN RO ORFRr R R~ RFROO

R NN, R OO R EFHRFREF OOOOCOO O —
R R NN, R, OFR R R RO, OO0~ O
OSORLRNDNWNRHRPFEF O FHFFPFRPFPO OOODOR~ROO
O N WNDNINNEHFE OOFNNFEPFEFO OO RO O
F NN R R R R R, O, OO0, OO0 OO
RF RN WNRR R PR R R OO0 O, OO0 oo
HF NN WND R OO, NMFEFRFMFEF OO0 oo
R RN WNONNRE OFRFRP R FFF OO0+~ O —
N WWND R~ OFFEFNEFERFRFO OO0 RO RO
R NN WNNNRFE RO OO0, +—~,OO
N W WNONDEFE === O0OFF OO0, ), OOO
— N WER NN = == O R =000
H NN WA WD OFRFRPNNFHFEFRF RO 0o o
EF NN WERE WNON OOF NNDNHFEFF OO0 F O

We find xg.(q) as follows: First, the exponents of E7 are 1,5,7,9,11,13,17. So we have

Pi(q) = ¢" —63¢° + 1617¢° — 21735¢* + 162939¢> — 663957¢* + 1286963q — 765765
= (¢ —1)(g—5)(g—T7)(qg—9)(g—11)(g — 13)(¢g — 17),

which is the ordinary characteristic polynomial of type E7. Next we compute:
E=E=8&={1}, &=&={1,2}, & ={1,2,3}, & ={1,2,3,4}.
Thus pp = lem & = lem{1,2,3,4} = 12. By Corollary 2.3,
Py(q) = ¢" — 63¢5 + 1617¢° — 21735¢" + - - -

for any d|12. Since
P6:P2+P3—P1, P12:P4+P3—P1

by Corollary 2.5, it is enough to find P, P3 and P,. Also

deg(Pg—P1)<2, deg(Pg—P4)<1
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by Corollary 2.3. Therefore the following special values

Py(2) = [Ma(S)] = 0, P5(3) = [M5(5)| = 0, P4(4) = [My(S)] = 0, P5(9) = [My(5)| =0,

[Mio(S)| = 0, Py(14) = [M14(S5)] = 0, P2(22) = [M5(S)| = 36288000

are enough for us to obtain:

XE.(q) =

(¢7 — 63¢° + 1617¢° — 21735¢"* + 162939¢% — 663957¢> + 1286963¢ — 765765
=(¢—1)(¢—5)(¢—T)q—9)(g—11)(¢ — 13)(¢ — 17),
ged{12,¢} =1,
¢7 — 63¢° + 1617¢° — 21735¢* + 163884¢® — 689472¢2 + 14958087 — 1244880
= (¢ —2)(¢ —10)(q — 13)(¢ — 14)(¢* — 24¢> + 155q — 342),
ged{12,q} = 2,
¢7 — 63¢° + 1617¢° — 21735¢* + 162939¢® — 663957¢2 + 1304883¢ — 927045
= (¢ —3)(q — 9)(q — 15)(¢* — 36¢° + 438¢> — 2052¢ + 2289),
ged{12,¢} = 3,
¢7 — 63¢° + 1617¢° — 21735¢* + 163884¢® — 689472¢2 + 1495808¢ — 1290240
=(¢—4)(¢—5)(g —8)(g — 16)(¢° — 30¢> + 263¢ — 504),
ged{12,q} = 4,
¢7 — 63¢° + 1617¢° — 21735¢* + 163884¢® — 689472¢2 + 1513728¢ — 1406160
— (¢ — 6)(¢® — 57¢° + 1275¢"* — 14085¢® + 79374¢2 — 213228¢ + 234360),
ged{12,q} = 6,
¢7 — 63¢° + 1617¢° — 21735¢* + 163884¢> — 689472¢2 + 1513728¢ — 1451520
= (¢ —12)(¢° — 51¢° + 1005¢* — 9675¢® + 47784¢2 — 116064q + 120960),

ged{12,q} = 12.

\

Thus the minimum period for E7 is 12.

6.3 Characteristic quasi-polynomial of Fjg

We use PLATE VII in [2] to get the 8 x 120 matrix S = S(Es):

16000000O010O0O0OO0O0OO0O1O0O0OO0O0O0OO01T10
c1000000O01O0O0O0OO0OO0O0OI1T1O0O0O0OO0OT1QO071
coo1o0o00600101000011010001T1T71
cooo0o1o00600011100011111001T171
coooo0o106o000001100001111O001T1
coooo06o010000001100000111O00O00
cooo06o0oo006010000O0OO0OI1TT1O00O0O0OO01T1O0QO00O0
cooo0o00001000O0OO0OO0O1O0O0O0OO0OO0OO0OT1QO0®O0O0

[\)
o

OO R R )OO

OO R R Pk EFE OO



060110000011 00100111001O0T1T171

o0o601011710011110101111101T1T171

0611110101111 1011121111121

1 o01112111212111112222117272:72
1111111111111 11111121112171

1101101110111 11111011111171

11000011 10001111100011100T1

6010000O0O0O1O0O0OO0OO0OO0O11O0O0O0OO0O0O1T1T®O0O0O0

01ro011100111101111111011T1T171

1111111111111 11211111121171
111221111221 12122221122272]1
21222222232222232322233322
211212221222212272227222722722
1111112111 12211121122211 722
1110111110111 110111121111 2
0110000110001 11000111001T171
1111111111111 1111211T12T1:1
12211221 1222122212222222
222222222222232223322332
3333 233334333443 3444 3444
322223232332333333333333
22122222 222222223222372723
1111211121 12211221122122

0601110111011 1011101111T171

2112112122222 2222
22 2222232323333 33
33 2333333344444 44
4 444454555 5566666
3343 4444444445555
2333333333333 3444
2222 2222222222233

111111111111 11112

We find xpg,(q) as follows: First, the exponents of Fg are 1,7,11,13,17,19,23,29. So we

have

¢ — 120¢" + 6020¢° — 163800¢> + 2616558¢*

(q) =

P

— 24693480¢% + 130085780¢% — 323507400q + 215656441
=(q—=1)(¢—"7)(qg—11)(g = 13)(q = 17)(q — 19)(q — 23)(q — 29)

which is the ordinary characteristic polynomial of type Es. Next we compute:

84 == 85 - {1a 2}a

& = {1},

& =& =
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£ =11,2,3), & =1{1,2,3,4}, & =1{1,2,3,4,5,6)
aided by PARI/GP [5]. Thus pg = lem & = lem{1,2,3,4,5,6} = 60. By Corollary 2.3,
Pi(q) = ¢® — 120¢" 4 6020¢° — 163800¢° + - - -
for any d|60. Since

Po=P+P—P, Pis=P+D—P, Py=P+PFP-—DP",
Pyg=Fs+Ps— P, Fso=PFPao+Ps— P

by Corollary 2.4, it is enough to find P, P3, Py, Ps, Ps and Py5. Also
deg(Pi+ P — P, — P3) <1, deg(Pi+Po—P;—Py) <1
by Corollary 2.4 again. Moreover,
deg(Py — Py) <3, deg(Py,— Py) <2, deg(Ps— P) <1

by Corollary 2.3. Therefore the following special values

Py(2) = [Ma(S)[ = 0, P3(3) = [M3(5)] = 0, Py(4) = [My(S)| = 0, P5(5) = | M5(S)| =
Ps(6) = | Ms(S)| = 0, Py(8) = |[Ms(S)| =0, P5(9) = [My(S)| =0, P12(12) = [My2(S )\
Py(14) = [M14(S)| = 0, P3(21) = |[M21(S)| = 0, P»(22) = [Mx(S)| =0,

Pa(26) = |Mas(S)| = 0, Po(34) = [Maa(S)| = 6967296000

Pi(q) = ¢ —120¢" + 6020¢° — 163800¢° 4 2616558¢"
—24693480¢> + 130085780¢° — 323507400¢ + 215656441
= (¢—1(¢—7)(qg—11)(q = 13)(¢ — 17)(q — 19)(¢q — 23)(q — 29),
Py(q) = ¢ —120q" + 6020¢° — 1638004 + 26260084"
—252604804° + 141860480¢> — 418876800¢ + 435250816
= (q—2)(q—14)(q — 22)(q — 26)(¢* — 56¢> + 1068¢* — 8344q + 27176),
Py(q) = ¢ —120¢" + 6020¢° — 163800¢° 4 2616558¢"
—246934804¢> + 130802580¢° — 345011400¢ + 348264441
= (¢—3)(g—9)(qg—21)(q — 27)(¢* — 60¢> + 1250¢> — 10500¢ + 22749),
Pi(q) = ¢®—120¢" + 6020¢° — 1638004° + 2626008¢*
—252604804° + 141860480¢> — 424320000¢ + 516898816
= (¢g—4)(q—8)(qg—16)(q — 28)(¢* — 64¢> + 1428¢° — 12536 + 36056),
Ps(q) = ¢®—120¢" + 6020¢° — 163800¢° + 2616558¢*
—246934804¢> + 130085780¢ — 323507400q + 243525625
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= (¢—5)(q—25)(¢° — 90¢° + 3195¢* — 567004¢° + 516183¢* — 2120490¢ + 1948205),

Ps(q) = ¢® —120¢" +6020¢° — 163800¢° + 2626008¢*
—25260480¢% + 142577280¢ — 440380800¢ + 587212416

= (q—6)(q—18)(¢° — 96¢° + 3608¢"* — 66840q¢" + 632184¢* — 2869344 + 5437152),

Pi(q) = ¢ —120¢" 4 6020¢° — 1638004° 4 2626008¢*
—252604804° + 141860480¢* — 418876800¢ + 463120000
= (g —10)(q" — 110¢° + 4920¢° — 1146004*
+1480008¢* — 10460400¢* + 37256480q — 46312000),
Pia(q) = ¢ —120¢" + 6020¢° — 163800¢° + 26260084
—252604804° + 142577280¢% — 445824000¢ + 668860416

(g —12)(q — 24)(¢° — 84¢° + 2708¢* — 42120¢> + 3297844¢* — 1257696q + 2322432),

Pis(q) = ¢ —120¢" +6020¢° — 163800¢° + 2616558¢*
—24693480¢> + 130802580¢> — 345011400¢ + 376133625
= (q—15)*(¢° — 90¢° + 3095¢* — 50700¢” + 399183¢* — 1310490q + 1671705),
Pylq) = ¢ —120¢" +6020¢° — 163800¢° 4 2626008¢*
—25260480¢> + 141860480¢> — 424320000¢ + 544768000
= (g —20)(q" — 100¢° + 4020¢° — 834004¢"
1958008¢° — 6100320¢> + 19854080q — 27238400),
Py(q) = ¢ —120¢" 4+ 6020¢° — 1638004° 4 2626008¢*
—25260480¢° + 142577280¢% — 440380800¢ + 615081600,
Psolq) = ¢ —120¢" +6020¢° — 163800¢° + 2626008¢*
—25260480¢> + 142577280¢° — 445824000¢ + 696729600.

Thus the minimum period for Ejg is 60.

7 Two results

The following two results are obtained from our calculations and the classification of
irreducible root systems.

Theorem 7.1. For an irreducible root system R, the minimum period of the quasi-
polynomial xr(q) is equal to the lem period py.

Theorem 7.2. Let q be a positive integer. For an irreducible root system R with its
Cozeter number h, xg(q) > 0 if and only if ¢ > h.

Remark 7.3. [t is easy to see the point (1,1,...,1) € Z7 lies in M,(S) if ¢ > h because
the sum of the elements of each column of S does not exceed the largest exponent. This
shows xr(q) > 0 if ¢ > h. However, our proof of the “only if” part of Theorem 7.2 still
requires the classification.
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