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Abstract

For an irreducible root system R, consider a coefficient matrix S of the positive
roots with respect to the associated simple roots. Then S defines an arrangement
of “hyperplanes” modulo a positive integer q. The cardinality of the complement
of this arrangement is a quasi-polynomial of q, which we call the characteristic
quasi-polynomial of R. This paper gives the complete list of the characteristic
quasi-polynomials of all irreducible root systems, and shows that the characteristic
quasi-polynomial of an irreducible root system R is positive at q ∈ Z>0 if and only
if q is greater than or equal to the Coxeter number of R.
Key words: characteristic quasi-polynomial, elementary divisor, hyperplane arrange-
ment, root system.

1 Introduction

Let S be an arbitrary m × n integral matrix without zero columns. For each positive
integer q ∈ Z>0, denote Zq = Z/qZ and Z×

q = Zq \ {0}. Consider the set

Mq(S) := {z = (z1, . . . , zm) ∈ Zm
q : zS ∈ (Z×

q )n},

and its cardinality |Mq(S)|. In our recent paper [3], we showed that there exists a monic
quasi-polynomial (periodic polynomial) χS(q) with integral coefficients of degree m such
that

χS(q) = |Mq(S)|, q ∈ Z>0.

∗Faculty of Economics, Okayama University
†Graduate School of Information Science and Technology, University of Tokyo
‡Department of Mathematics, Hokkaido University
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Note that the set Mq(S) is the complement of an arrangement of hyperplanes in the
following sense: Let S1, S2, . . . , Sn be the columns of S. Each set

Hi,q := {z = (z1, . . . , zm) ∈ Zm
q : zSi = 0}, 1 ≤ i ≤ n,

can be called a “hyperplane” in Zm
q by a slight abuse of terminology. Then

Mq(S) = Zm
q \

n∪
i=1

Hi,q.

For a sufficiently large prime number q, χS(q) is known [1] to be equal to the charac-
teristic polynomial [4, Def. 2.52] of the real arrangement consisting of the following
hyperplanes (ignoring possible repetitions):

Hi,R := {z = (z1, . . . , zm) ∈ Rm : zSi = 0}, 1 ≤ i ≤ n.

It is thus natural to call the quasi-polynomial χS(q) the characteristic quasi-polynomial
of S as in [3].

In this paper, we define and determine the characteristic quasi-polynomial χR(q) for
every irreducible root system R. Let m be the rank of R and n = |R|/2. We assume
that an m × n integral matrix S = S(R) = [Sij] satisfies

R+ = {
m∑

i=1

Sijαi : j = 1, . . . , n},

where R+ is a set of positive roots and B(R) = {α1, α2, . . . , αm} is the set of simple
roots associated with R+. In other words, S is a coefficient matrix of R+ with respect to
the basis B(R). Define the characteristic quasi-polynomial χR(q) := χS(q) for each
irreducible root system R. Then χR(q) depends only upon R.

For example, for the root system R = A2 = {εi − εj : 1 ≤ i ≤ 3, 1 ≤ j ≤ 3, i 6= j},
B(A2) = {α1 = ε1 − ε2, α2 = ε2 − ε3} and R+ = {α1, α2, α1 + α2}, where ε1, ε2, ε3 are
orthonormal, one has

S = S(A2) =

[
1 0 1
0 1 1

]
.

It is easy to see that χA2(q) = χS(q) = (q − 1)(q − 2), which is equal to the ordinary
characteristic polynomial of type A2. In other words, the minimum period of the quasi-
polynomial χA2(q) is one. The minimum periods for all irreducible root systems are shown
in the following table:

root system minimum period root system minimum period
Am 1 E6 6
Bm 2 E7 12
Cm 2 E8 60
Dm 2 F4 12

G2 6
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The outline of this paper is as follows: In Section 2, we prove general results on χS(q)
which are used in Sections 5 and 6. In Section 3, we study the case of root system Am,
which is the easiest case. We investigate the root systems Bm, Cm and Dm using the coset
method in Section 4. The characteristic quasi-polynomials of these three root systems
are closely related to each other. The cases of G2 and F4 are studied in Section 5. In
Section 6, we study the remaining root systems Em (m = 6, 7, 8) which require the hardest
calculations in this paper. We are aided by the computer package PARI/GP [5] and the
theoretical results from Section 2. Lastly in Section 7, we state two results obtained from
our calculations and the classification of irreducible root systems. Throughout this paper
we use the table of irreducible root systems in [2] as our standard reference.

2 Results on the characteristic quasi-polynomial of

an integral matrix

Let χS(t) be the characteristic quasi-polynomial of an m × n integral matrix S without
zero columns. Fix a nonempty J ⊆ [n] := {1, 2, . . . , n} and define an m × |J | matrix SJ

consisting of the columns of S corresponding to the set J . Let eJ,1, . . . , eJ,`(J) ∈ Z>0 be
the elementary divisors of SJ numbered so that eJ,1|eJ,2| · · · |eJ,`(J), where `(J) := rank SJ .
Write e(J) := eJ,`(J), and define the lcm period ρ0(S) of S by

ρ0 = ρ0(S) := lcm{e(J) : J ⊆ [n], J 6= ∅}
= lcm{e(J) : J ⊆ [n], 1 ≤ |J | ≤ min{m,n}}.

Then it is known ([3, Theorem 2.4]) that the lcm period ρ0 is a period of χS(t).
It is further shown in [3] that the constituents of the quasi-polynomial χS(t) are the

same for all q’s with the same value of gcd{ρ0, q}. Let d be a positive integer which divides
ρ0, and define a monic polynomial Pd(t) = PS,d(t) with integral coefficients of degree m
by

χS(q) = Pd(q) for all q ∈ d + ρ0Z≥0.

Put

e(J, d) :=

`(J)∏
j=1

gcd{eJ,j, d}.

Then the following formula was essentially proved in our previous paper [3].

Theorem 2.1. For each d ∈ Z>0 with d|ρ0, the polynomial Pd(t) is given by

Pd(t) =
∑
J⊆[n]

(−1)|J |e(J, d)tm−`(J),

where for J = ∅, we understand that `(∅) = 0 and that e(∅, d) = 1.

Proof. Obtained from [3, (10)] and the inclusion-exclusion principle.
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Theorem 2.2 ([3] Theorem 2.5). The polynomial

P1(t) =
∑
J⊆[n]

(−1)|J |tm−`(J)

is equal to the ordinary characteristic polynomial [4, Def. 2.52] of the real arrangement
consisting of the hyperplanes (ignoring possible repetitions) H1,R, H2,R, . . . , Hn,R.

Corollary 2.3. Suppose d, d′ ∈ Z>0 both divide ρ0, and assume the following condition
holds true for some positive integer s: gcd{e(J), d} = gcd{e(J), d′} for all J ⊆ [n] with
|J | ≤ s. Then

deg{Pd(t) − Pd′(t)} < m − s.

In particular, we have deg{Pd(t)−P1(t)} < m− s if gcd{e(J), d} = 1 for all J ⊆ [n] with
|J | ≤ s.

Proof. We apply Theorems 2.1 and 2.2. It is enough to show e(J, d) = e(J, d′) for
J ⊆ [n] with `(J) ≤ s. We can choose a subset J ′ ⊆ J such that |J ′| = `(J) ≤ s.
Then gcd{e(J ′), d} = gcd{e(J ′), d′}. Since e(J)|e(J ′) [3, Lemma 2.3], gcd{e(J), d} =

gcd{e(J), d′}. This shows e(J, d) =
∏`(J)

j=1 gcd{eJ,j, d} =
∏`(J)

j=1 gcd{eJ,j, e(J), d}
=

∏`(J)
j=1 gcd{eJ,j, e(J), d′} =

∏`(J)
j=1 gcd{eJ,j, d

′} = e(J, d′).

Corollary 2.4. Suppose that d ∈ Z>0 and d′ ∈ Z>0 both divide ρ0 and that gcd{d, d′} = 1.
In addition, we assume the following condition holds true for some positive integer s:

(1) gcd{e(J), d} = 1 or gcd{e(J), d′} = 1

for all J ⊆ [n] with |J | ≤ s. Then

deg{P1(t) + Pdd′(t) − Pd(t) − Pd′(t)} < m − s.

Proof. Suppose J ⊆ [n] with `(J) ≤ s. It is enough to show

1 + e(J, dd′) − e(J, d) − e(J, d′) = 0.

We can choose a subset J ′ ⊆ J such that |J ′| = `(J) ≤ s. Then either gcd{e(J ′), d} =
1 or gcd{e(J ′), d′} = 1 by (1). Since e(J)|e(J ′),

gcd{e(J), d} = 1 or gcd{e(J), d′} = 1.

This shows that either e(J, d) = 1 or e(J, d′) = 1. We finally have

0 = {1 − e(J, d)}{1 − e(J, d′)} = 1 − e(J, d) − e(J, d′) + e(J, d)e(J, d′)

= 1 − e(J, d) − e(J, d′) + e(J, dd′).

Corollary 2.5. Suppose that d ∈ Z>0 and d′ ∈ Z>0 both divide ρ0 and that gcd{d, d′} = 1.
If e(J) are prime powers or one for all J , we have Pdd′(t) = Pd(t) + Pd′(t) − P1(t).

Proof. Easily follows from Corollary 2.4.

The results in Corollaries 2.3, 2.4 and 2.5 will be used to find characteristic quasi-
polynomials of root systems.
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3 Characteristic quasi-polynomial of Am

We follow PLATE I in [2]. Let {ε1, . . . , εm+1} be an orthonormal basis for an (m + 1)-
dimensional Euclidean space W , and define

V :=

{
m+1∑
i=1

ciεi ∈ W :
m+1∑
i=1

ci = 0

}
.

Then
R := {±(εi − εj) : 1 ≤ i < j ≤ m + 1} ⊂ V, |R| = m(m + 1),

is an irreducible root system in V of type Am. Then we may choose a set of positive roots

R+ := {εi − εj : 1 ≤ i < j ≤ m + 1}.

Define αi := εi − εi+1, 1 ≤ i ≤ m. Then B := {α1, . . . , αm} is the set of simple roots
associated with R+. We may express

R+ =

{ ∑
i≤k≤j

αk : 1 ≤ i ≤ j ≤ m

}
.

Let n := |R+| = m(m + 1)/2. Then the m × n matrix S(Am) consists of only 0’s and 1’s
such that 1 appears consecutively in each column. For example

S(A1) =
[
1
]
, S(A2) =

[
1 0 1
0 1 1

]
, S(A3) =

1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 0 1 1

 .

The characteristic quasi-polynomial χAm(t) of the root system Am is the characteristic
quasi-polynomial of S(Am) : χAm(t) := χS(Am)(t). Let us enumerate the size of

Mq(S) = {z ∈ Zm
q : zS ∈ (Z×

q )n} = {z ∈ Zm
q :

∑
i≤k≤j

zk 6= 0 (1 ≤ i ≤ j ≤ m)}.

First, there are (q − 1) ways to choose z1. Next, there are (q − 2) ways to choose z2, etc.
Therefore we have

χAm(q) = |Mq(S)| = (q − 1) · · · (q − m).

Thus the characteristic quasi-polynomial χAm(q) of Am is equal to the ordinary charac-
teristic polynomial.
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4 Characteristic quasi-polynomials of Bm, Cm, Dm

4.1 The coset method

Let P be a non-singular m×m integral matrix. Consider a finite additive group G := Zm
q ,

and define a group homomorphism π : G → G by π(z) = zP, z ∈ G. Consider the
subgroup H := im π of G. Then it is not difficult to see that the index (G : H) is equal
to b(q) := gcd{q, det P}. Note that every fiber π−1(y) has the same cardinality b(q) for
any y ∈ H. Let us express the set G/H of cosets as

G/H = {gi + H : 1 ≤ i ≤ b(q)}

for some complete set of representatives g1, . . . , gb(q) ∈ G, g1 ∈ H.
Let S be an m×n integral matrix, and define an m×n integral matrix T by T = PS.

Then we can write fS(q) := |{y ∈ G : yS ∈ (Z×
q )n}| as

fS(q) =
∣∣{y ∈ G : yS ∈ (Z×

q )n}
∣∣ =

b(q)∑
i=1

∣∣{y ∈ gi + H : yS ∈ (Z×
q )n}

∣∣
=

1

b(q)

b(q)∑
i=1

∣∣{z ∈ G : (gi + zP )S ∈ (Z×
q )n}

∣∣
=

1

b(q)

b(q)∑
i=1

∣∣{z ∈ G : zT + giS ∈ (Z×
q )n}

∣∣ .

Define

(2) fi(q) :=
∣∣{z ∈ G : zT + giS ∈ (Z×

q )n}
∣∣

for i = 1, . . . , b(q). Then we have:

Theorem 4.1. For an m × n integral matrix S, define fS(q) = |{y ∈ G : yS ∈ (Z×
q )n}|.

Then, for any non-singular m × m integral matrix P and the m × n integral matrix T
defined by T = PS, we can write fS(q) as

(3) fS(q) =
1

b(q)

b(q)∑
i=1

fi(q),

where b(q) = gcd{q, det P}, and fi(q), 1 ≤ i ≤ b(q), are defined in (2).

Note that when S has a zero column, (3) is trivially true because both sides are zero.
Thus, we do not need the assumption that S has no zero column; when this assumption
is satisfied, fS(q) is the characteristic quasi-polynomial χS(q).

We also note the following: f1(q) = |{z ∈ G : zT ∈ (Z×
q )n}| = fT (q). Hence, when

b(q) = 1 in particular (e.g., when P is unimodular), we have fS(q) = f1(q) = fT (q).
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4.2 Bm

We follow PLATE II in [2]. Let {ε1, . . . , εm} be an orthonormal basis for an m-dimensional
Euclidean space V . Let m ≥ 2. Then

R := {±εi (1 ≤ i ≤ m), ±(εi − εj) (1 ≤ i < j ≤ m),

±(εi + εj) (1 ≤ i < j ≤ m)} ⊂ V, |R| = 2m2,

is an irreducible root system of type Bm. Then we may choose a set of positive roots

R+ = {εi (1 ≤ i ≤ m), εi − εj (1 ≤ i < j ≤ m), εi + εj (1 ≤ i < j ≤ m)} .

Define αi := εi − εi+1 (1 ≤ i ≤ m − 1), αm := εm. Then B = {α1, . . . , αm} is the set of
simple roots associated with R+. We may express

R+ =

{ ∑
i≤k≤j

αk (1 ≤ i ≤ j ≤ m),
∑

i≤k<j

αk + 2
∑

j≤k≤m

αk (1 ≤ i < j ≤ m)

}
.

Let n := |R+| = m2. Then the m × n matrix S := S(Bm) is the coefficient matrix of R+

with respect to the set of simple roots B. For example,

S(B2) =

[
1 0 1 1
0 1 1 2

]
, S(B3) =

1 0 0 1 0 1 0 1 1
0 1 0 1 1 1 1 1 2
0 0 1 0 1 1 2 2 2

 .

We want to find the characteristic quasi-polynomial χBm(t) := χS(Bm)(t) of Bm. Define
an m × m matrix

P :=



1
−1 1

−1
. . .

1
−1 1


.

Then the m× n matrix T = T (Bm) := PS is the coefficient matrix of R+ with respect to
the orthonormal basis ε1, . . . , εm. Since P is unimodular, we have

(4) χBm(q) = χS(Bm)(q) = χT (Bm)(q).

4.3 Cm

We follow PLATE III in [2]. Let m ≥ 3.

R := {±2εi (1 ≤ i ≤ m), ±(εi − εj) (1 ≤ i < j ≤ m),

±(εi + εj) (1 ≤ i < j ≤ m)} ⊂ V, |R| = 2m2,
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is an irreducible root system in V of type Cm. Then we may choose a set of positive roots

R+ = {2εi (1 ≤ i ≤ m), εi − εj (1 ≤ i < j ≤ m), εi + εj (1 ≤ i < j ≤ m)}.

Define αi := εi − εi+1 (1 ≤ i ≤ m − 1), αm := 2εm. Then B = {α1, . . . , αm} is the set of
simple roots associated with R+. We may express

R+ =

{ ∑
i≤k≤j

αk (1 ≤ i ≤ j ≤ m),
∑

i≤k<j

αk + 2
∑

j≤k<m

αk + αm (1 ≤ i ≤ j < m)

}
.

Let n := |R+| = m2. Then the m × n matrix S = S(Cm) is the coefficient matrix of R+

with respect to the set of simple roots B. For example,

S(C3) =

1 0 0 1 0 1 0 1 2
0 1 0 1 1 1 2 2 2
0 0 1 0 1 1 1 1 1

 .

We want to find the characteristic quasi-polynomial χCm(t) := χS(Cm)(t) of Cm. Define
an m × m matrix

P :=



1
−1 1

−1
. . .

1
−1 2


.

Then the m× n matrix T = T (Cm) := PS is the coefficient matrix of R+ with respect to
ε1, . . . , εm. Since det P = 2, we have to consider two cases.

Case 1: When q is odd.

For odd q, we have b(q) := gcd{q, det P} = 1 and thus

χS(q) = χT (Cm)(q).

Case 2: When q is even.

For π : G → G defined by π(z) = zP, z ∈ G, we have

H := im π = {(y1, . . . , ym−1, 2ym) : y1, . . . , ym ∈ Zq}.

Since b(q) = (G : H) = gcd{q, det P} = 2, we take g1 = 0 ∈ H and g2 = (0, . . . , 0, 1) ∈
G \ H. By Theorem 4.1

χS(q) =
1

2
{f1(q) + f2(q)} ,
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where f1(q) = χT (Cm)(q) and

f2(q) = |{z ∈ G : zT + g2S ∈ (Z×
q )n}|

= |{(z1, . . . , zm) ∈ Zm
q : 2zi + 1 6= 0 (1 ≤ i ≤ m),

zi − zj 6= 0 (1 ≤ i < j ≤ m),

zi + zj + 1 6= 0 (1 ≤ i < j ≤ m)}|
= |{(z1, . . . , zm) ∈ Zm

q :

zi − zj 6= 0 (1 ≤ i < j ≤ m),

zi + zj + 1 6= 0 (1 ≤ i < j ≤ m)}|(5)

= m! × |{(c1, . . . , cm) ∈ Zm : 0 ≤ c1 < · · · < cm < q,

ci + cj 6= q − 1 (1 ≤ i < j ≤ m)}|
= m! × |{(c1, . . . , cm) ∈ Zm : 0 < c1 < · · · < cm < q + 1,

ci + cj 6= q + 1 (1 ≤ i < j ≤ m)}|
= χT (Bm)(q + 1).

In the second equation of (5), we have used {
∑

i≤k≤j αk : 1 ≤ i ≤ j < m} = {εi − εj :
1 ≤ i < j ≤ m}, {

∑
i≤k≤m αk (1 ≤ i ≤ m),

∑
i≤k<j αk + 2

∑
j≤k<m αk + αm (1 ≤ i ≤ j <

m)} = {2εi (1 ≤ i ≤ m), εi + εj (1 ≤ i < j ≤ m)} for R+.
Therefore,

χS(q) =
1

2
{χT (Cm)(q) + χT (Bm)(q + 1)}

for even q.

In summary,

(6) χCm(q) = χS(Cm)(q) =

{
χT (Cm)(q) if q is odd,
1
2
{χT (Cm)(q) + χT (Bm)(q + 1)} if q is even.

4.4 Dm

We follow PLATE IV in [2]. Let m ≥ 4.

R := {±(εi − εj) (1 ≤ i < j ≤ m), ±(εi + εj) (1 ≤ i < j ≤ m)} ⊂ V, |R| = 2m(m − 1),

is an irreducible root system in V of type Dm. Then we may choose a set of positive roots

R+ = {εi − εj (1 ≤ i < j ≤ m), εi + εj (1 ≤ i < j ≤ m)}.

Define αi := εi − εi+1 (1 ≤ i ≤ m − 1), αm := εm−1 + εm. Then B = {α1, . . . , αm} is the
set of simple roots associated with R+. We may express

R+ =

{ ∑
i≤k≤j

αk (1 ≤ i ≤ j < m),

9



∑
i≤k<j

αk + 2
∑

j≤k<m−1

αk + αm−1 + αm (1 ≤ i < j < m),

∑
i≤k<m−1

αk + αm (1 ≤ i < m)

}
.

Let n := |R+| = m(m − 1). Then the m × n matrix S = S(Dm) is the coefficient matrix
of R+ with respect to the set of simple roots B. For example,

S(D4) =


1 0 0 0 1 0 0 1 1 0 1 1
0 1 0 0 1 1 1 1 1 1 1 2
0 0 1 0 0 1 0 1 0 1 1 1
0 0 0 1 0 0 1 0 1 1 1 1

 .

We want to find the characteristic quasi-polynomial χDm(t) := χS(Dm)(t) of Dm. Define
an m × m matrix

P :=



1
−1 1

−1
. . .

1 1
−1 1


.

Then the m×n matrix T = T (Dm) := PS is the coefficient matrix of R+ with respect to
ε1, . . . , εm. Since det P = 2, we have to consider two cases.

Case 1: When q is odd.

For odd q, we have b(q) := gcd{q, det P} = 1 and thus

χS(q) = χT (Dm)(q).

Case 2: When q is even.

We have

H = im π = {(y1, . . . , ym−1, ym−1 + 2ym) : y1, . . . , ym ∈ Zq}.

Since b(q) = (G : H) = gcd{q, det P} = 2, we take g1 = 0 ∈ H and g2 = (0, . . . , 0, 1) ∈
G \ H. By Theorem 4.1

χS(q) =
1

2
{f1(q) + f2(q)} ,

where f1(q) = χT (Dm)(q) and

f2(q) = |{z ∈ G : zT + g2S ∈ (Z×
q )n}|

10



= |{(z1, . . . , zm) ∈ Zm
q : zi − zj 6= 0 (1 ≤ i < j ≤ m),(7)

zi + zj + 1 6= 0 (1 ≤ i < j ≤ m)}|
= χT (Bm)(q + 1)

by (5). In the second equation of (7), we have used {
∑

i≤k≤j αk : 1 ≤ i ≤ j < m} =
{εi − εj : 1 ≤ i < j ≤ m}, {

∑
i≤k<j αk + 2

∑
j≤k<m−1 αk + αm−1 + αm (1 ≤ i < j <

m),
∑

i≤k<m−1 αk + αm (1 ≤ i < m)} = {εi + εj : 1 ≤ i < j ≤ m} for R+.
Therefore,

χS(q) =
1

2
{χT (Dm)(q) + χT (Bm)(q + 1)}

for even q.

In summary,

(8) χDm(q) = χS(Dm)(q) =

{
χT (Dm)(q) if q is odd,
1
2
{χT (Dm)(q) + χT (Bm)(q + 1)} if q is even.

4.5 Orthonormal basis

4.5.1 χT (Bm)(q) and χT (Dm)(q)

We first prove the following lemma.

Lemma 4.2. Assume that a matrix A satisfies the following three conditions:
(1) each entry lies in {0,±1,±2},
(2) each column contains at most two nonzero entries, and
(3) each column contains at most one entry from {±2}.

Then the elementary divisors of A lie in {1, 2}.

Proof. Let us temporarily say that a matrix is of type (T) if it satisfies these three
conditions. Denote the set of elementary divisors of A by ED(A). Argue by an induction
on the number of columns. When a matrix has only one column, the statement is obviously
true. Suppose that a matrix A has more than one column.

Case 1. When A = O, ED(A) = ∅.
Case 2. When A 6= O and each entry of A lies in {0,±2}, then ED(A) = {2}.
Case 3. If A has a column with only one nonzero entry a ∈ {±1}, then A is equivalent

to 
1 ∗ ∗ ∗
0
... B
0


with B of type (T). Since ED(B) ⊆ {1, 2} by the induction assumption, ED(A) ⊆ {1, 2}.
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Case 4. If A has a column with exactly two nonzero entries, then A is equivalent to

A1 =


1 ∗ ∗ ∗
1 ∗ ∗ ∗
0 ∗ ∗ ∗
... ∗ ∗ ∗
0 ∗ ∗ ∗

 .

By clearing the first row using the first column of A1 we see that A is equivalent to
1 0 · · · 0
1
0
... C
0

 .

Since

(1, 1, 0, . . . , 0)t − (1,−1, 0, . . . , 0)t = (0, 2, 0, . . . , 0)t,

(1, 1, 0, . . . , 0)t − (1, 0,−1, . . . , 0)t = (0, 1, 1, . . . , 0)t,

(1, 1, 0, . . . , 0)t − (1, 0, 1, . . . , 0)t = (0, 1,−1, . . . , 0)t,

and so on, C is of type (T). Since ED(C) ⊆ {1, 2} by the induction assumption, ED(A) ⊆
{1, 2}.

In the cases of T (Bm) and T (Dm), we have by Lemma 4.2 that gcd{ρ0, q} = 1 for
odd q ∈ Z>0. Therefore, χT (Bm)(q) and χT (Dm)(q) for odd q are equal to the values of the
characteristic polynomials of the real arrangements determined by the columns of T (Bm)
and T (Dm), respectively ([3, Theorem 2.5]). Hence we have the following proposition.

Proposition 4.3. For odd integers q ∈ Z>0, we have

χT (Bm)(q) = (q − 1)(q − 3) · · · (q − 2m + 1),(9)

χT (Dm)(q) = (q − 1)(q − 3) · · · (q − 2m + 3)(q − m + 1).(10)

Next, let us find χT (Bm)(q) and χT (Bm)(q) for even q ∈ Z>0.

Lemma 4.4. We have the following equalities:

χT (Bm)(q) = χT (Dm)(q − 1) for even q ∈ Z>0,(11)

χT (Dm)(q) = χT (Bm)(q) + mχT (Bm−1)(q) for all q ∈ Z>0.(12)

Proof. For even q ∈ Z>0,

χT (Bm)(q) = |{(z1, . . . , zm) ∈ Zm
q : zi 6= 0 (1 ≤ i ≤ m),
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zi 6= ±zj (1 ≤ i < j ≤ m)}|
= m! × |{(c1, . . . , cm) ∈ Zm : 0 < c1 < · · · < cm < q,

ci + cj 6= q (1 ≤ i < j ≤ m)}|

= m! × |{(c1, . . . , cm) ∈ Zm : 1 − q

2
≤ c1 < · · · < cm <

q

2
,

ci + cj 6= 0 (1 ≤ i < j ≤ m)}|
= |{(z1, . . . , zm) ∈ Zm

q−1 : zi 6= ±zj (1 ≤ i < j ≤ m)}|
= χT (Dm)(q − 1),

where the third equality is seen by considering ci − (q/2) instead of ci, 1 ≤ i ≤ m.
On the other hand, for all integers q ∈ Z>0, we have

χT (Dm)(q) = |{(z1, . . . , zm) ∈ Zm
q : zi 6= ±zj (1 ≤ i < j ≤ m)}|

= m! × |{(c1, . . . , cm) ∈ Zm : 0 ≤ c1 < · · · < cm < q,

ci + cj 6= q (1 ≤ i < j ≤ m)}|
= m! × |{(c1, . . . , cm) ∈ Zm : 0 < c1 < · · · < cm < q,

ci + cj 6= q (1 ≤ i < j ≤ m)}|
+m! × |{(0, c2, . . . , cm) ∈ Zm : 0 < c2 < · · · < cm < q,

ci + cj 6= q (2 ≤ i < j ≤ m)}|
= χT (Bm)(q) + mχT (Bm−1)(q).

Theorem 4.5. For even integers q ∈ Z>0, we have

χT (Bm)(q) = (q − 2)(q − 4) · · · (q − 2m + 2)(q − m),(13)

χT (Dm)(q) = (q − 2)(q − 4) · · · (q − 2m + 4)(14)

×{q2 − 2(m − 1)q + m(m − 1)}.

Proof. Equation (13) follows from (11) and (10); then (14) follows from (12) and
(13).

Proposition 4.3 and Theorem 4.5 imply in particular that each of the characteristic
quasi-polynomials χT (Bm)(t) and χT (Dm)(t) has the minimum period two.

4.5.2 χT (Cm)(q)

Lemma 4.2 implies that gcd{ρ0, q} = 1 for odd q ∈ Z>0 also in the case of T (Cm). Since
T (Bm) and T (Cm) define the same real arrangement, we have χT (Cm)(q) = χT (Bm)(q) for
odd q ∈ Z>0.

Proposition 4.6. For odd integers q ∈ Z>0, we have

χT (Cm)(q) = (q − 1)(q − 3) · · · (q − 2m + 1).
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For even q ∈ Z>0, we can derive the following result:

Theorem 4.7. For even integers q ∈ Z>0, we have

χT (Cm)(q) = χT (Cm)(q − 1)

= (q − 2)(q − 4) · · · (q − 2m).

Proof. For even q ∈ Z>0,

χT (Cm)(q) = |{(z1, . . . , zm) ∈ Zm
q : 2zi 6= 0 (1 ≤ i ≤ m),

zi 6= ±zj (1 ≤ i < j ≤ m)}|
= m! × |{(c1, . . . , cm) ∈ Zm : 0 < c1 < · · · < cm < q,

ci 6=
q

2
(1 ≤ i ≤ m), ci + cj 6= q (1 ≤ i < j ≤ m)}|

= m! × |{(c1, . . . , cm) ∈ Zm : 0 < c1 < · · · < cm < q − 1,

ci + cj 6= q − 1 (1 ≤ i < j ≤ m)}|
= χT (Bm)(q − 1) = χT (Cm)(q − 1),

where the third equality is confirmed by transforming ci 7→ ci − 1 for those ci’s with
ci > q/2. Thus we obtain the theorem by Proposition 4.6.

We see that χT (Cm)(t) has also the minimum period two.

4.6 Conclusion on Bm, Cm and Dm

By equations (4), (6), (8) and the results in Section 4.5, we can obtain the characteristic
quasi-polynomials of Bm, Cm and Dm:

Theorem 4.8. The characteristic quasi-polynomials of Bm, Cm and Dm are

χBm(q) = χCm(q) =

{
(q − 1)(q − 3) · · · (q − 2m + 1) if q is odd,

(q − 2)(q − 4) · · · (q − 2m + 2)(q − m) if q is even,

χDm(q) =

{
(q − 1)(q − 3) · · · (q − 2m + 3)(q − m + 1) if q is odd,

(q − 2)(q − 4) · · · (q − 2m + 4)
{

q2 − 2(m − 1)q + m(m−1)
2

}
if q is even.

Thus the minimum periods for Bm, Cm and Dm are equal to two.

5 Characteristic quasi-polynomials of G2, F4

In the rest of this paper we use the notation

Es := {e(J) : J ⊆ [n], |J | ≤ s}

for the m × n matrix S = S(R) for a root system R and s ∈ Z>0.
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5.1 Characteristic quasi-polynomial of G2

We follow PLATE IX in [2]. Let {ε1, ε2, ε3} be an orthonormal basis for a 3-dimensional
Euclidean space W , and define

V :=

{
3∑

i=1

ciεi ∈ W :
3∑

i=1

ci = 0

}
.

Then

R : = {±(εi − εj) (1 ≤ i < j ≤ 3),±(2ε1 − ε2 − ε3),±(2ε2 − ε1 − ε3),±(2ε3 − ε1 − ε2)} ⊂ V,

|R| = 12,

is an irreducible root system in V of type G2. Then we may choose a set of positive roots

R+ := {ε1 − ε2,−2ε1 + ε2 + ε3, ε3 − ε1, ε3 − ε2,−2ε2 + ε1 + ε3, 2ε3 − ε1 − ε2}.

Define α1 := ε1 − ε2, α2 := −2ε1 + ε2 + ε3. Then B := {α1, α2} is the set of simple roots
associated with R+. We may express

R+ = {α1, α2, α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 + 2α2}.

Thus the 6 × 3 matrix S(G2) is given by

S(G2) =

[
1 0 1 2 3 3
0 1 1 1 1 2

]
.

We find χG2(q) as follows: First, the exponents of G2 are 1, 5. So we have

P1(q) = q2 − 6q + 5 = (q − 1)(q − 5),

which is the ordinary characteristic polynomial of type G2. Next we compute:

E1 = {1}, E2 = {1, 2, 3}.

Thus ρ0 = lcm E2 = lcm{1, 2, 3} = 6. By Corollary 2.3, we have Pd(q) = q2 − 6q + · · · for
any d|6. Since

P6 = P2 + P3 − P1

by Corollary 2.5, it is enough to find P2 and P3. Therefore the special values

P2(2) = |M2(S)| = 0, P3(3) = |M3(S)| = 0

are enough for us to obtain:

χG2(q) =


q2 − 6q + 5 = (q − 1)(q − 5), gcd{6, q} = 1,

q2 − 6q + 8 = (q − 2)(q − 4), gcd{6, q} = 2,

q2 − 6q + 9 = (q − 3)2, gcd{6, q} = 3,

q2 − 6q + 12, gcd{6, q} = 6.

Thus the minimum period for G2 is 6.
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5.2 Characteristic quasi-polynomial of F4

We follow PLATE VIII in [2]. Let {ε1, ε2, ε3, ε4} be an orthonormal basis for a 4-dimensional
Euclidean space V .

R := {±εi (1 ≤ i ≤ 4), ±(εi − εj) (1 ≤ i < j ≤ 4), ±(εi + εj) (1 ≤ i < j ≤ 4),

1

2
(±ε1 ± ε2 ± ε3 ± ε4) (16 of them)} ⊂ V,

|R| = 48, is an irreducible root system in V of type F4. Then we may choose a set of
positive roots

R+ = {εi (1 ≤ i ≤ 4), εi − εj (1 ≤ i < j ≤ 4), εi + εj (1 ≤ i < j ≤ 4),

1

2
(ε1 ± ε2 ± ε3 ± ε4) (8 of them)}.

Define α1 := ε2 − ε3, α2 := ε3 − ε4, α3 := ε4, and α4 := 1
2
(ε1 − ε2 − ε3 − ε4). Then

B = {α1, α2, α3, α4} is the set of simple roots associated with R+. We may express

R+ =

{ ∑
i≤k≤j

αk (1 ≤ i ≤ j ≤ 4), α2 + 2α3, α1 + α2 + 2α3, α2 + 2α3 + α4,

α1 +α2 +2α3 +α4, α1 +2α2 +2α3, α2 +2α3 +2α4, α1 +α2 +2α3 +2α4, α1 +2α2 +2α3 +α4,

α1 + 2α2 + 2α3 + 2α4, α1 + 2α2 + 3α3 + α4, α1 + 2α2 + 3α3 + 2α4, α1 + 2α2 + 4α3 + 2α4,

α1 + 3α2 + 4α3 + 2α4, 2α1 + 3α2 + 4α3 + 2α4

}
.

Thus the 4 × 24 matrix S = S(F4), which is the coefficient matrix of R+ with respect to
the set of simple roots B, is:

S(F4) =


1 0 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 2
0 1 0 0 1 1 0 1 1 1 1 1 1 1 2 1 1 2 2 2 2 2 3 3
0 0 1 0 0 1 1 1 1 2 1 2 2 2 2 2 2 2 2 3 3 4 4 4
0 0 0 1 0 0 1 0 1 0 1 0 1 1 0 2 2 1 2 1 2 2 2 2

 .

We find χF4(q) as follows: First, the exponents of F4 are 1, 5, 7, 11. So we have

P1(q) = q4 − 24q3 + 190q2 − 552q + 385 = (q − 1)(q − 5)(q − 7)(q − 11),

which is the ordinary characteristic polynomial of type F4. Next we compute:

E1 = {1}, E2 = {1, 2}, E3 = {1, 2, 4}, E4 = {1, 2, 3, 4}.

Thus ρ0 = lcm E4 = lcm{1, 2, 3, 4} = 12. By Corollary 2.3, we have Pd(q) = q4−24q3+· · ·
for any d|12. Since

P6 = P2 + P3 − P1, P12 = P3 + P4 − P1
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by Corollary 2.5, it is enough to find P2, P3 and P4. Also

deg(P2 − P4) < 2, deg(P3 − P1) < 1

by Corollary 2.3. Therefore the following special values

P2(2) = |M2(S)| = 0, P3(3) = |M3(S)| = 0, P4(4) = |M4(S)| = 0,

P4(8) = |M8(S)| = 0, P2(10) = |M10(S)| = 0, P2(14) = |M14(S)| = 3456

are enough for us to obtain:

χF4(q) =



q4 − 24q3 + 190q2 − 552q + 385

= (q − 1)(q − 5)(q − 7)(q − 11), gcd{12, q} = 1,

q4 − 24q3 + 208q2 − 768q + 880

= (q − 2)(q − 10)(q2 − 12q + 44), gcd{12, q} = 2,

q4 − 24q3 + 190q2 − 552q + 513

= (q − 3)(q − 9)(q2 − 12q + 19), gcd{12, q} = 3,

q4 − 24q3 + 208q2 − 768q + 1024

= (q − 4)2(q − 8)2, gcd{12, q} = 4,

q4 − 24q3 + 208q2 − 768q + 1008

= (q − 6)2(q2 − 12q + 28), gcd{12, q} = 6,

q4 − 24q3 + 208q2 − 768q + 1152, gcd{12, q} = 12.

Thus the minimum period for F4 is 12.

6 Characteristic quasi-polynomials of E6, E7, E8

For each of the root systems E6, E7 and E8, we can find the characteristic quasi-polynomial
by a similar method to the method in the previous section. First we compute Es for each
s. Then we have the lcm period ρ0. For each constituent Pd(t), d|ρ0, apply Corollaries 2.3,
2.4 and 2.5 to get as much information as possible. Finally we actually count |Mq(S)| for
a large enough number of q’s with gcd{ρ0, q} = d and interpolate a polynomial. In this
way, we obtain the characteristic quasi-polynomials for E6, E7 and E8. For the evaluations
of ρ0’s, we used PARI/GP [5].

6.1 Characteristic quasi-polynomial of E6

We use PLATE V in [2] to get the 6 × 36 matrix S = S(E6):

S(E6) =


1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 1 1 0
0 0 1 0 0 0 1 0 1 0 0 1 1 0 1 0 1 1 1 0 1
0 0 0 1 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1
0 0 0 0 1 0 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1
0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1
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1 1 0 0 1 1 0 1 1 0 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1 1 1 1 1 2
1 1 1 1 1 1 1 2 1 1 2 1 2 2 2
1 1 1 2 2 1 2 2 2 2 2 2 2 3 3
1 1 1 1 1 1 1 1 1 2 1 2 2 2 2
0 1 1 0 0 1 1 0 1 1 1 1 1 1 1

 .

We find χE6(q) as follows: First, the exponents of E6 are 1, 4, 5, 7, 8, 11. So we have

P1(q) = q6 − 36q5 + 510q4 − 3600q3 + 13089q2 − 22284q + 12320

= (q − 1)(q − 4)(q − 5)(q − 7)(q − 8)(q − 11),

which is the ordinary characteristic polynomial of type E6. Next we compute:

E1 = E2 = E3 = {1}, E4 = E5 = {1, 2}, E6 = {1, 2, 3}.

Thus ρ0 = lcm E6 = lcm{1, 2, 3} = 6. By Corollary 2.3,

Pd(q) = q6 − 36q5 + 510q4 − 3600q3 + · · ·

for any d|6. Since
P6 = P2 + P3 − P1

by Corollary 2.5, it is enough to find P2 and P3. Also

deg(P3 − P1) < 1

by Corollary 2.3. Therefore the following special values

P2(2) = |M2(S)| = 0, P3(3) = |M3(S)| = 0, P2(4) = |M4(S)| = 0, P2(8) = |M8(S)| = 0

are enough for us to obtain:

χE6(q) =



q6 − 36q5 + 510q4 − 3600q3 + 13089q2 − 22284q + 12320

= (q − 1)(q − 4)(q − 5)(q − 7)(q − 8)(q − 11),

gcd{6, q} = 1,

q6 − 36q5 + 510q4 − 3600q3 + 13224q2 − 23904q + 16640

= (q − 2)(q − 4)(q − 8)(q − 10)(q2 − 12q + 26),

gcd{6, q} = 2,

q6 − 36q5 + 510q4 − 3600q3 + 13089q2 − 22284q + 12960

= (q − 3)(q − 9)(q4 − 24q3 + 195q2 − 612q + 480),

gcd{6, q} = 3,

q6 − 36q5 + 510q4 − 3600q3 + 13224q2 − 23904q + 17280

= (q − 6)2(q4 − 24q3 + 186q2 − 504q + 480),

gcd{6, q} = 6.

Thus the minimum period for E6 is 6.
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6.2 Characteristic quasi-polynomial of E7

We use PLATE VI in [2] to get the 7 × 63 matrix S = S(E7):

S(E7) =



1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 0
0 0 1 0 0 0 0 1 0 1 0 0 0 1 1 0 1 0 0 1 1 1 0 1 0
0 0 0 1 0 0 0 0 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1
0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 1 1 1 0 1 1 1 1 1
0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 1
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 1 1 0 1 1 1 0
1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 0 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 2 2 1
1 1 1 2 1 1 2 1 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 2 2 2 1 2
0 1 1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 2
0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 0 0 1 1 1 0 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 2
1 1 1 2 1 1 1 2 1 2 2 2 2 2
1 2 2 2 2 2 2 2 2 2 2 2 3 3
2 2 3 3 2 3 3 3 3 3 3 4 4 4
2 2 2 2 2 2 2 2 3 2 3 3 3 3
2 1 1 1 2 1 2 1 2 2 2 2 2 2
1 1 0 0 1 1 1 1 1 1 1 1 1 1


.

We find χE7(q) as follows: First, the exponents of E7 are 1, 5, 7, 9, 11, 13, 17. So we have

P1(q) = q7 − 63q6 + 1617q5 − 21735q4 + 162939q3 − 663957q2 + 1286963q − 765765

= (q − 1)(q − 5)(q − 7)(q − 9)(q − 11)(q − 13)(q − 17),

which is the ordinary characteristic polynomial of type E7. Next we compute:

E1 = E2 = E3 = {1}, E4 = E5 = {1, 2}, E6 = {1, 2, 3}, E7 = {1, 2, 3, 4}.

Thus ρ0 = lcm E7 = lcm{1, 2, 3, 4} = 12. By Corollary 2.3,

Pd(q) = q7 − 63q6 + 1617q5 − 21735q4 + · · ·

for any d|12. Since
P6 = P2 + P3 − P1, P12 = P4 + P3 − P1

by Corollary 2.5, it is enough to find P2, P3 and P4. Also

deg(P3 − P1) < 2, deg(P2 − P4) < 1
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by Corollary 2.3. Therefore the following special values

P2(2) = |M2(S)| = 0, P3(3) = |M3(S)| = 0, P4(4) = |M4(S)| = 0, P3(9) = |M9(S)| = 0,

P2(10) = |M10(S)| = 0, P2(14) = |M14(S)| = 0, P2(22) = |M22(S)| = 36288000

are enough for us to obtain:

χE7(q) =



q7 − 63q6 + 1617q5 − 21735q4 + 162939q3 − 663957q2 + 1286963q − 765765

= (q − 1)(q − 5)(q − 7)(q − 9)(q − 11)(q − 13)(q − 17),

gcd{12, q} = 1,

q7 − 63q6 + 1617q5 − 21735q4 + 163884q3 − 689472q2 + 1495808q − 1244880

= (q − 2)(q − 10)(q − 13)(q − 14)(q3 − 24q2 + 155q − 342),

gcd{12, q} = 2,

q7 − 63q6 + 1617q5 − 21735q4 + 162939q3 − 663957q2 + 1304883q − 927045

= (q − 3)(q − 9)(q − 15)(q4 − 36q3 + 438q2 − 2052q + 2289),

gcd{12, q} = 3,

q7 − 63q6 + 1617q5 − 21735q4 + 163884q3 − 689472q2 + 1495808q − 1290240

= (q − 4)(q − 5)(q − 8)(q − 16)(q3 − 30q2 + 263q − 504),

gcd{12, q} = 4,

q7 − 63q6 + 1617q5 − 21735q4 + 163884q3 − 689472q2 + 1513728q − 1406160

= (q − 6)(q6 − 57q5 + 1275q4 − 14085q3 + 79374q2 − 213228q + 234360),

gcd{12, q} = 6,

q7 − 63q6 + 1617q5 − 21735q4 + 163884q3 − 689472q2 + 1513728q − 1451520

= (q − 12)(q6 − 51q5 + 1005q4 − 9675q3 + 47784q2 − 116064q + 120960),

gcd{12, q} = 12.

Thus the minimum period for E7 is 12.

6.3 Characteristic quasi-polynomial of E8

We use PLATE VII in [2] to get the 8 × 120 matrix S = S(E8):

S(E8) =



1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 1 0
0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1 1 0 1
0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1
0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 1 1 1 1
0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 1 1
0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
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0 0 1 1 0 0 0 0 0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 1 1 1
0 0 1 0 1 1 1 0 0 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1
0 0 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 2 1 1 1 1 1 2 1
1 0 1 1 1 2 1 1 1 2 1 2 1 1 1 1 1 2 2 2 2 1 1 2 2 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1
1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
1 1 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 0 0 1
0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0

0 1 0 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1
1 1 1 2 2 1 1 1 1 2 2 1 1 2 1 2 2 2 2 1 1 2 2 2 2 1
2 1 2 2 2 2 2 2 2 3 2 2 2 2 2 3 2 3 2 2 2 3 3 3 2 2
2 1 1 2 1 2 2 2 1 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 2 1 1 1 1 2 2 1 1 1 2 1 1 2 2 2 1 1 2 2
1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 2 1 1 1 1 2
0 1 1 0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1
1 2 2 1 1 2 2 1 1 2 2 2 1 2 2 2 1 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 3 3 2 2 3 3 2
3 3 3 3 2 3 3 3 3 4 3 3 3 4 4 3 3 4 4 4 3 4 4 4
3 2 2 2 2 3 2 3 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3
2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 3 2 2 3
1 1 1 1 2 1 1 1 2 1 1 2 2 1 1 2 2 1 1 2 2 1 2 2
0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1

2 1 1 2 1 1 2 1 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 3 2 3 2 3 3 3 3 3 3
3 3 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4
4 4 4 4 4 5 4 5 5 5 5 5 6 6 6 6 6
3 3 4 3 4 4 4 4 4 4 4 4 4 5 5 5 5
2 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2


.

We find χE8(q) as follows: First, the exponents of E8 are 1, 7, 11, 13, 17, 19, 23, 29. So we
have

P1(q) = q8 − 120q7 + 6020q6 − 163800q5 + 2616558q4

− 24693480q3 + 130085780q2 − 323507400q + 215656441

= (q − 1)(q − 7)(q − 11)(q − 13)(q − 17)(q − 19)(q − 23)(q − 29)

which is the ordinary characteristic polynomial of type E8. Next we compute:

E1 = E2 = E3 = {1}, E4 = E5 = {1, 2},
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E6 = {1, 2, 3}, E7 = {1, 2, 3, 4}, E8 = {1, 2, 3, 4, 5, 6}

aided by PARI/GP [5]. Thus ρ0 = lcm E8 = lcm{1, 2, 3, 4, 5, 6} = 60. By Corollary 2.3,

Pd(q) = q8 − 120q7 + 6020q6 − 163800q5 + · · ·

for any d|60. Since

P10 = P2 + P5 − P1, P15 = P3 + P5 − P1, P20 = P4 + P5 − P1,

P30 = P6 + P5 − P1, P60 = P12 + P5 − P1

by Corollary 2.4, it is enough to find P2, P3, P4, P5, P6 and P12. Also

deg(P1 + P6 − P2 − P3) < 1, deg(P1 + P12 − P3 − P4) < 1

by Corollary 2.4 again. Moreover,

deg(P3 − P1) < 3, deg(P2 − P4) < 2, deg(P5 − P1) < 1

by Corollary 2.3. Therefore the following special values

P2(2) = |M2(S)| = 0, P3(3) = |M3(S)| = 0, P4(4) = |M4(S)| = 0, P5(5) = |M5(S)| = 0,

P6(6) = |M6(S)| = 0, P4(8) = |M8(S)| = 0, P3(9) = |M9(S)| = 0, P12(12) = |M12(S)| = 0,

P2(14) = |M14(S)| = 0, P3(21) = |M21(S)| = 0, P2(22) = |M22(S)| = 0,

P2(26) = |M26(S)| = 0, P2(34) = |M34(S)| = 6967296000

are enough for us to obtain:

P1(q) = q8 − 120q7 + 6020q6 − 163800q5 + 2616558q4

−24693480q3 + 130085780q2 − 323507400q + 215656441

= (q − 1)(q − 7)(q − 11)(q − 13)(q − 17)(q − 19)(q − 23)(q − 29),

P2(q) = q8 − 120q7 + 6020q6 − 163800q5 + 2626008q4

−25260480q3 + 141860480q2 − 418876800q + 435250816

= (q − 2)(q − 14)(q − 22)(q − 26)(q4 − 56q3 + 1068q2 − 8344q + 27176),

P3(q) = q8 − 120q7 + 6020q6 − 163800q5 + 2616558q4

−24693480q3 + 130802580q2 − 345011400q + 348264441

= (q − 3)(q − 9)(q − 21)(q − 27)(q4 − 60q3 + 1250q2 − 10500q + 22749),

P4(q) = q8 − 120q7 + 6020q6 − 163800q5 + 2626008q4

−25260480q3 + 141860480q2 − 424320000q + 516898816

= (q − 4)(q − 8)(q − 16)(q − 28)(q4 − 64q3 + 1428q2 − 12536q + 36056),

P5(q) = q8 − 120q7 + 6020q6 − 163800q5 + 2616558q4

−24693480q3 + 130085780q2 − 323507400q + 243525625
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= (q − 5)(q − 25)(q6 − 90q5 + 3195q4 − 56700q3 + 516183q2 − 2120490q + 1948205),

P6(q) = q8 − 120q7 + 6020q6 − 163800q5 + 2626008q4

−25260480q3 + 142577280q2 − 440380800q + 587212416

= (q − 6)(q − 18)(q6 − 96q5 + 3608q4 − 66840q3 + 632184q2 − 2869344q + 5437152),

P10(q) = q8 − 120q7 + 6020q6 − 163800q5 + 2626008q4

−25260480q3 + 141860480q2 − 418876800q + 463120000

= (q − 10)(q7 − 110q6 + 4920q5 − 114600q4

+1480008q3 − 10460400q2 + 37256480q − 46312000),

P12(q) = q8 − 120q7 + 6020q6 − 163800q5 + 2626008q4

−25260480q3 + 142577280q2 − 445824000q + 668860416

= (q − 12)(q − 24)(q6 − 84q5 + 2708q4 − 42120q3 + 329784q2 − 1257696q + 2322432),

P15(q) = q8 − 120q7 + 6020q6 − 163800q5 + 2616558q4

−24693480q3 + 130802580q2 − 345011400q + 376133625

= (q − 15)2(q6 − 90q5 + 3095q4 − 50700q3 + 399183q2 − 1310490q + 1671705),

P20(q) = q8 − 120q7 + 6020q6 − 163800q5 + 2626008q4

−25260480q3 + 141860480q2 − 424320000q + 544768000

= (q − 20)(q7 − 100q6 + 4020q5 − 83400q4

+958008q3 − 6100320q2 + 19854080q − 27238400),

P30(q) = q8 − 120q7 + 6020q6 − 163800q5 + 2626008q4

−25260480q3 + 142577280q2 − 440380800q + 615081600,

P60(q) = q8 − 120q7 + 6020q6 − 163800q5 + 2626008q4

−25260480q3 + 142577280q2 − 445824000q + 696729600.

Thus the minimum period for E8 is 60.

7 Two results

The following two results are obtained from our calculations and the classification of
irreducible root systems.

Theorem 7.1. For an irreducible root system R, the minimum period of the quasi-
polynomial χR(q) is equal to the lcm period ρ0.

Theorem 7.2. Let q be a positive integer. For an irreducible root system R with its
Coxeter number h, χR(q) > 0 if and only if q ≥ h.

Remark 7.3. It is easy to see the point (1, 1, . . . , 1) ∈ Zm
q lies in Mq(S) if q ≥ h because

the sum of the elements of each column of S does not exceed the largest exponent. This
shows χR(q) > 0 if q ≥ h. However, our proof of the “only if” part of Theorem 7.2 still
requires the classification.
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