
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

Bidirectionalization Transformation Based on
Automatic Derivation of View Complement

Functions

Kazutaka Matsuda, Zhenjiang Hu, Keisuke Nakano,
Makoto Hamana and Masato Takeichi

METR 2007–44 July 2007

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.i.u-tokyo.ac.jp/edu/course/mi/index e.shtml

The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.

Bidirectionalization Transformation Based on

Automatic Derivation of View Complement Functions

Kazutaka Matsuda†, Zhenjiang Hu†, Keisuke Nakano†, Makoto Hamana‡ and Masato Takeichi†

†The University of Tokyo
kztk@ipl.t.u-tokyo.ac.jp

{hu,ksk,takeichi}@mist.i.u-tokyo.ac.jp

‡Gunma University
hamana@cs.gunma-u.ac.jp

Abstract

Bidirectional transformation is a pair of transformations: a view function and a back-
ward transformation. A view function maps one data structure called source onto an-
other called view. The corresponding backward transformation reflects changes in the view
to the source. Its practically useful applications include replicated data synchronization,
presentation-oriented editor development, tracing software development, and view updating
in the database community. However, developing a bidirectional transformation is hard,
because one has to give two mappings that satisfy the bidirectional properties for system
consistency.

In this paper, we propose a new framework for bidirectionalization that can automatically
generate a useful backward transformation from a view function while guaranteeing that
the two transformations satisfy the bidirectional properties. Our framework is based on
two known approaches to bidirectionalization, namely the constant complement approach
from the database community and the combinator approach from the programming language
community, but it has three new features: (1) unlike the constant complement approach, it
can deal with transformations between algebraic data structures rather than just tables; (2)
unlike the combinator approach, in which primitive bidirectional transformations have to be
explicitly given, it can derive them automatically; (3) it generates a view update checker to
validate updates on views, which has not been well addressed so far. The new framework
has been implemented and the experimental results show that our framework has promise.

Keywords: Bidirectional Transformation, View Updating, Program Transformation, Au-
tomatic Program Generation, Program Inversion

1 Introduction

There are many situations in which one data structure, called source, is transformed to another,
called view , in such a way that changes on the view can be transformed back to those on
the original data structure. This is called bidirectional transformation, and practical examples
include synchronization of replicated data in different formats (Foster et al. 2005), presentation-
oriented structured document development (Hu et al. 2004), interactive user interface design
(Meertens 1998), coupled software transformation (Lämmel 2004), and the well-known view
updating mechanism which has been intensively studied in the database community (Bancilhon
and Spyratos 1981; Dayal and Bernstein 1982; Gottlob et al. 1988; Hegner 1990; Lechtenbörger
and Vossen 2003).

To be concrete, suppose that we have a list of students and professors (the source), and we
want to create a view that consists of all the students. This view can be defined by the following

1

view function.
students : Source → View
students [] = []
students (Student name grade major : ms)

= Student name grade major : students ms
students (Prof name position major : ms)

= students ms

To develop a bidirectional transformation, in addition to the view function one needs to define
another function, a backward transformation function, which is used for view updating, i.e.,
reflects changes on the view (such as modification of students’ names) to the source. The
following function studentsB

1 is a backward transformation that accepts a changed view and
the original source and produces a new source.

studentsB : (Source × View) → Source
studentsB ([], []) = []
studentsB (Student n g m : ms, Student n′ g′ m′ : ss)

= Student n′ g′ m′ : studentsB (ms, ss)
studentsB (Prof n p m : ms, ss)

= Prof n p m : studentsB (ms, ss)

However, there are several limitations in manually writing a pair of view function and back-
ward transformation (such as students and studentsB) to develop a bidirectional transformation.
First, it is difficult to prove that the two functions satisfy the bidirectional property and form a
bidirectional transformation (Section 2). Second, the consistency of the two functions is difficult
to maintain. A small change in the view function may require a big change in the backward
transformation function. For instance, suppose we want a view that contains only the names
of the students who major in Computer Science. While it is easy to give the following view
function by composing another function with above the view function, it requires more thinking
to write a backward transformation.

cs students = cs ◦ students
cs [] = []
cs (Student name grade CS : ss) = name : cs ss
cs (: ss) = cs ss

Third, it is hard to automatically infer permitted changes in the view. Backward transformation
functions, such as studentsB, are usually partial functions, disallowing some changes to the view.
For example, studentsB does not allow insertion of a new student to the view. When the source
and the view are huge, it is better to have an inference system for validating view changes rather
than to directly compute backward transformation until an error message appears.

Several methods for automatically deriving backward transformation functions from view
definition functions have been proposed to overcome these three problems. In the database com-
munity, this issue, known as view updating problem, has been studied for a long time (Bancilhon
and Spyratos 1981; Dayal and Bernstein 1982; Gottlob et al. 1988; Hegner 1990; Lechtenbörger
and Vossen 2003).

One known approach (Bancilhon and Spyratos 1981) is to construct an injective function
from the view function so that changes on the image of the injective function can be reflected
back to its domain by inversion. To do this, lost information in the view generation is gathered as
a complement for later backward transformation. Bancilhon and Spyratos proposed the concept

1The subscript B stands for “backward”.

2

of view complement function and the method of view updating under constant complement.
Generally speaking, for a view function from a source to a view

f : S → V

a view complement function of f is a function from the source to another view (called a com-
plement view)

g : S → V ′

such that the tupled function
(f M g) : S → (V × V ′)

is injective. This view complement function, g, provides the information that does not appear
in the view generated by f . Then, for an original source s, the updated source s′ corresponding
to an updated view v can be calculated by

s′ = (f M g)−1(v, g(s)).

Therefore, if a view complement function g can be derived and the inversion of (f M g) can
be calculated, that means we know how to reflect changes on the view to the source. Since
the derived backward transformation depends on g, we should choose an appropriate g. For
example g = idS is the worst one because the derived backward transformation is defined
only on the input (s, v) by v = f(s), i.e., no updates are allowed. This approach has been
applied to solving the view updating problem in the relational database system (Cosmadakis and
Papadimitriou 1984; Laurent et al. 2001; Lechtenbörger and Vossen 2003). In fact, derivation of
view complement functions and inversion calculation are simplified in the context of relational
databases because views and sources are sets of flat tuples, and view functions are queries in a
simple form being closed under composition. However, though tree-structured data, e.g. XML,
is now widely used, how to apply the approach to view functions that can deal with general
algebraic data structures such as trees is still an open problem. The challenge is to find a suitable
form for these view functions such that they not only have enough descriptive power and view
complement functions but are suitable for later inversion calculation.

Another approach, which has received increasing attention in recent years, is to design a
set of general combinators (Foster et al. 2005; Hu et al. 2004; Meertens 1998) for constructing
bigger bidirectional transformations by composing smaller ones. A set of primitive bidirectional
transformations, each being defined by a pair of view function and backward transformation,
is prepared, and a new bidirectional transformation is defined by assembling the primitive
transformations with a fixed set of general combinators (Section 2.4.2). This approach has
proved to be practically useful for domain-specific applications, because primitive bidirectional
transformations for a specific application are easily determined, designed, and implemented.
Moreover, this approach is general and can deal with trees other than relational tables provided
that suitable primitive bidirectional transformations on trees are given. However, for an involved
application or in a more general setting, a lot of primitive bidirectional transformations may
need to be prepared, and it is still hard to verify whether a pair consisting of a view function
and a backward transformation forms a (primitive) bidirectional transformation.

In this paper, we propose a new bidirectional transformation framework that combines the
advantages of the above two approaches: automatic bidirectionalization and ability to deal
with tree structures. We follow the combinator approach of keeping separate the design of
primitive bidirectional transformations and the design of composition methods for gluing smaller
transformations, but we borrow the idea of the view complement approach to obtain primitive
bidirectional transformations that can manipulate arbitrary algebraic data structures.

3

The key to our framework is a suitable language for describing primitive view functions. It
should be sufficiently powerful to specify various view functions over algebraic data structures,
simple enough for derivation of view complement functions and inversion, and suitable for use
as components to be composed with others. We choose a general first-order functional language
and require view functions that are defined in the language to be affine (each variable is used at
most once) and in the treeless form (no intermediate data structure is used in the definition). In
fact, this class of functions has been considered elsewhere in the context of deforestation (fusion
transformation) (Wadler 1990), where treeless functions are used to describe basic computation
components.

In our framework, view complement functions can be automatically derived from view func-
tions, and the derived view complement functions are suitable for tupling and inversion. More-
over, updatability of views can be represented by a regular tree language with which one can
statically check whether changes in views are valid or not without really performing backward
transformation.

We have implemented all the ideas in this paper using a bidirectionalizing system for au-
tomatically constructing backward transformation functions from view functions. The derived
backward transformation function is correct in the sense that it forms a bidirectional transfor-
mation with the view function, useful in the sense that all the tracing information between the
source and the view is recorded in such a way that any change in the view element that has a
corresponding element in the source can be reflected to the source, powerful in the sense that it
can deal with bidirectional transformation between arbitrary algebraic data structures such as
lists and trees, and equipped with an inference system for validating changes in the view.

This paper is organized as follows. We start by explaining the basic concepts of bidirectional
transformation in Section 2. Then, after presenting an overview of our system in Section 3, we
define a language for view definition in Section 4, show how to derive view complement functions
in Section 5, explain how to generate backward transformation functions based on tupling and
inversion in Section 6, and give an algorithm for updatability check in Section 7. We illustrate
the whole bidirectionalization procedure with a concrete example in Section 8. Finally, we
discuss related work in Section 9, and conclude the paper and highlight some future directions
in Section 10.

2 Bidirectional Transformation

In this section, we briefly review notations, the basic concept of bidirectional transformation
(i.e., view updating) (Bancilhon and Spyratos 1981; Dayal and Bernstein 1982; Gottlob et al.
1988; Hegner 1990; Lechtenbörger and Vossen 2003; Foster et al. 2005), and the technique of
bidirectionalization based on derivation of view complement functions (Bancilhon and Spyratos
1981). These will serve as the basis of our approach.

2.1 Notations

Our notations, if not explained, follow Haskell2, a functional programming language. For a
partial function f , we write f(x)↓ if f(x) is defined, and write f(x) = ⊥ otherwise. For a
function f : X → Y and a function g : X → Z, we define a tupled function (f Mg) : X → (Y ×Z)
by

(f M g)(x) = (f(x), g(x)).
2Haskell 98 Report: http://www.haskell.org/onlinereport/

4

For a partial function f : X → Y and a partial function g : X → Y , we write f v g to denote
∀x ∈ X, f(x)↓ ⇒ f(x) = g(x). Intuitively, f v g means that g is more widely defined than f .

2.2 View Function and Backward Transformation

Let V be the set of views and S be the set of sources. A total function f : S → V that constructs
a view from a source is called view function. The following is an example of a view function

mapfst(Nil) = Nil
mapfst(Cons(Pair(a, b), x)) = Cons(a,mapfst(x))

that maps the source, a list of pairs, to the view, a list that contains all the first components of
the pairs in the original list.

A function that translates an update on views to that on sources is called a backward
transformation function. An update from x to x′ is denoted as x ½ x′; e.g., Nil ½ Cons(A,Nil)
represents the update on the view of mapfst from Nil to Cons(A, Nil). Given a view function
f : S → V , a backward transformation function ρ : (S × V) → S of f translates f(s) ½ v, an
update on views, to s ½ ρ(s, v), an update on sources, while satisfying the property:

∀s ∈ S,∀v ∈ V, ρ(s, v)↓ ⇒ f(ρ(s, v)) = v.

This property reads that the updated source produced by the backward transformation should
not change the view with the view function. In other words, for a source element s and v = f(s),
let u be a view update v ½ v′ and u′ a translated source update s ½ ρ(s, v′), then the following
diagram commutes.

-

6

-

6

S

V

S

V

f f

u′

u

It might be easier to understand a backward transformation function ρ : (S × V) → S as a
mapping that accepts an original source and a changed view as input and produces a changed
source as the result.

It is worth noting that backward transformation functions are partial: ρ(s, v)↓ means that an
update on views of f(s)½v is translated to an update on sources of s½ρ(s, v), and ρ(s, v) = ⊥
means that it prohibits the view update f(s)½v. Moreover, backward transformation functions
are not unique, and different definitions give different translation policies. For instance, the
following is a backward transformation function of the view function mapfst :

ρ(s, v) =
{

s if v = mapfst(s)
⊥ otherwise,

which means that any change in the view is ignored and the source remains unchanged.

2.3 Bidirectional Properties

A backward transformation function ρ and a view function f should satisfy some bidirectional
properties to guarantee consistency after bidirectional transformation is carried out. The follow-
ing properties follow those in the closed view updating (Bancilhon and Spyratos 1981; Hegner
1990), where the source is completely hidden from the users when the view is updated.

5

Let s ∈ S and v, v′ ∈ V . A backward transformation function ρ : (S × V) → S and a view
function f : S → V should satisfy the following bidirectional properties.

Acceptability
ρ(s, f(s)) = s

Undoability
ρ(s, v)↓ ⇒ ρ(ρ(s, v), f(s)) = s

Composability
ρ(s, v)↓ ∧ ρ(ρ(s, v), v′)↓ ⇒ ρ(ρ(s, v), v′) = ρ(s, v′)

Acceptability means that if there is no change in views there should be no change in sources.
Undoability means that all translated updates can be canceled by updates on views. Compos-
ability means that the update translation should preserve the compositional structure3, and
translated results do not depend on the update history.

2.4 Bidirectionalization

Bidirectionalization is a program transformation that derives a backward transformation func-
tion from a view function such that the two functions satisfy the bidirectional properties. It
is very much related to the known view update problem in the database community, which dis-
cusses how to translate updates on views to updates on sources. We shall review two approaches
on which our method is based.

2.4.1 Constant Complement Approach

Bancilhon and Spyratos (1981) proposed a general approach to bidirectionalization called con-
stant complement view updating.

Definition 1 (View Complement Function) A function g : S → V ′ is said to be a (view)
complement function to a view function f : S → V , if the tupled function f M g : S → (V × V ′)
is injective.

Intuitively, a view complement function of a view function provides information that is not
visible in the view to a complement view such that information from both views can uniquely
determine a source. For example, let add be a function defined by add(x, y) = x + y. Then,
the function fst defined by fst(x, y) = x is a view complement function of add . Note that the
ranges of view function f and its complement function g can be different. In fact, the range
of the view complement function is unimportant. This gives us freedom in derivation of view
complement functions.

Finding a view complement function of a view function amounts to bidirectionalization,
provided that inversion of can be calculated out (Bancilhon and Spyratos 1981). If a view
complement function exists, a backward transformation function can be obtained by inversion.
Let f be a view function and g be its view complement function. The function upd〈f,g〉 defined
by

upd〈f,g〉(s, v) = (f M g)−1(v, g(s)) (UPD)

is a backward transformation function and satisfies bidirectional properties. The function
upd〈f,g〉 may be partial. For example, upd〈mapfst ,id〉 defines the same function as ρ in Section 2.2,
which is defined only on the input (s, v) by v = mapfst(s).

3Note that u1 = f(s) v is translated to u′
1 = s ρ(s, v), u2 = v v′ is translated to u′

2 = ρ(s, v)
ρ(ρ(s, v), v′), and their composition u = u1 ◦u2 = f(s)v′ is translated to u′ = sρ(s, v′) = sρ(ρ(s, v), v′) =
u′

1 ◦ u′
2.

6

This general bidirectionalization framework has been used to bidirectionalize queries on
relational database system (Cosmadakis and Papadimitriou 1984; Laurent et al. 2001; Lecht-
enbörger and Vossen 2003): derivation of view complement functions and inversion calculation
is not difficult in this setting because views and sources are tuples and view definition functions
are queries with a normal form being closed under composition. It is, however, unclear how to
extend this approach to view functions that can deal with general algebraic data structures such
as trees. In this paper, we intend to solve this problem.

2.4.2 Compositional Approach

The compositional approach (Foster et al. 2005; Hu et al. 2004; Meertens 1998) is to derive
backward transformation functions based on the compositional structure of view functions. A
view function is supposed to be defined by

• a primitive view function, or

• a composition of simpler view functions via several combinators.

The combinators for gluing view functions includes familiar constructs from functional program-
ming languages:

• composition: f ◦ g defined by
(f ◦ g) x = f(g x)

• mapping: map f defined by

map f [x1, . . . , xn] = [f x1, . . . , f xn]

• product: f × g defined by
(f × g)(x, y) = (f x, g y)

• conditional: if p then f else g defined by

(if p then f else g) x =
{

f x, if p x
g x, otherwise

It has been shown (Foster et al. 2005) that if one can prepare backward transformation
functions for primitive view functions, one can get backward transformations for view functions
that are constructed by primitive view functions and the above combinators for function gluing.
The present paper shows how to automatically derive backward transformations for primitive
view functions over arbitrary algebraic data structures.

2.5 Better Backward Transformation

Generally, there are many backward transformation functions for a given view function. Re-
call the constant complement approach to bidirectionalization and the view function add in
Section 2.4.1. All functions below are view complement functions of add

fst(x, y) = x

snd(x, y) = y

sub(x, y) = x − y

idpair (x, y) = (x, y)

7

and will lead to the following backward transformation functions based on the approach in
Section 2.4.1.

upd〈add ,fst〉((x, y), v) = (x, v − y)

upd〈add ,snd〉((x, y), v) = (v − y, y)

upd〈add ,sub〉((x, y), v) = ((v + (x − y))/2, (v − (x − y))/2)

upd〈add ,idpair 〉((x, y), v) = (x, y), if v = x + y

These backward transformation functions have different updatability: the first three allow any
modification of the view, but the last one disallows arbitrary modification of the view because
view v must be the same as x + y. Bancilhon and Spyratos (1981) introduce the following
preorder, under which smaller view complement functions give more updatability.

Definition 2 (Collapsing Order) Let f : S → V, g : S → V ′ be functions. The collapsing
order, -, is a preorder defined by

f - g ⇐⇒ ∀s, s′ ∈ S, g(s) = g(s′) ⇒ f(s) = f(s′).

The following theorem would help readers to understand the definition of collapsing order.

Theorem 1 Let Rf be a relation over S × S defined as (s, s′) ∈ Rf ⇐⇒ f(s) = f(s′) for a
view function f , then

Rf ⊆ Rg ⇔ g - f

holds.

Order f - g means that, with respect to the results of mappings, f collapses input more than
g. Hence, all elements in the input collapse into one in the result by the minimal functions, i.e.,
constant functions, and nothing collapses by the maximal functions, i.e., the injective functions.
For the above examples, idpair is greater than the others because it keeps the values of the
input. The functions fst , snd and sub are not comparable.

Note that a complement view keeps information that does not appear in the view, and that
the backward transformation function derived from the view complement function should forbid
any change in the information that the complement has kept. So, a smaller view complement
function gives a better backward transformation function because it keeps less information.
Formally, we have the following theorem (Bancilhon and Spyratos 1981).

Theorem 2 Let f : S → V be a view function, and g1 : S → V ′ and g2 : S → V ′′ be two
complement functions of f . If g1 - g2, then

upd〈f,g2〉 v upd〈f,g1〉

holds.

3 An Overview

Before we discuss the details of our new approach to bidirectionalization, we give an overview
of our system, explaining its architecture and relation with the sections later, and illustrating
with an example how it works in derivation of backward transformation functions from view
functions that manipulate arbitrary algebraic data structures including trees.

Figure 1 shows the architecture of our bidirectionalization system. The input to our system
is a view function. The output is a backward transformation function together with a checker
for validating changes on the view. A change on the view is said to be valid if it can be reflected
back to the source by the backward transformation function. The core part is the bidirectional
transformation engine mapping from the input to the output.

8

View Function

Bidirectional Transformation Engine

Deriving Complement Function

Tupling

Inversion

Backward TransformationView Update Checker

Figure 1: System Architecture

3.1 View Function

Views are generated by application of view functions to sources. View functions are defined in
a compositional way something like

f = (f1 ◦ f2) × map f3.

Precisely, a view function is a combination of primitive view functions with the gluing combi-
nators explained in Section 2.4.2.

Each primitive function is in the affine treeless form defined by a constructor-based first-
order functional language with pattern matching (Section 4). The patterns and constructors in
the language make it easy to code primitive view functions from one algebraic data structure to
another. As a simple example, consider to generate a view of a list from two lists by appending
them together. This view function can be defined in our language as follows.

append(Nil, y) =̂ y
append(Cons(a, x), y) =̂ Cons(a, append(x, y))

It decomposes the data by pattern matching and constructs new data by data constructors.

3.2 Bidirectional Transformation Engine

Since our view functions are compositional, our bidirectionalization basically consists of two
parts:

• bidirectionalizing primitive view functions, and

• bidirectionalizing those combinators for gluing view functions.

Given that bidirectionalization of combinators has been well studied (Foster et al. 2005; Hu
et al. 2004), this paper will focus on bidirectionalization of primitive view functions, though the
whole system should combine the two.

3.2.1 Deriving View Complement Functions

Our system starts by automatically deriving a small (with respect to the collapsing order in De-
finition 2) view complement function for a given view function so that tupling the two functions

9

gives an injective function (Section 5). For example, a view complement function automatically
derived by our system for append is as follows.

append c(Nil, y) =̂ B1

append c(Cons(a, x), y) =̂ B2(append c(x, y))

In this definition, B1 and B2 are data constructors automatically generated by the system. A
close look at the definition reveals that the derived view complement function actually computes
the length of the first argument. One can easily check that although append is non-injective,
tupling append and append c, append M append c, is injective.

3.2.2 Deriving Backward Transformation Functions by Tupling and Inversion

After obtaining the view complement function, our system generates a backward transformation
function based on two program transformations, tupling and inversion, based on the constant
complement approach to bidirectionalization (Section 6).

For the example of append , our system first automatically derives the following definition
for the tupled function appendM, append M append c.

appendM(Nil, y) =̂ (y, B1)
appendM(Cons(a, x), y) =̂ (Cons(a, s), B2(t))

where (s, t) =̂ appendM(x, y)

Then, it derives the following inverse of the tupled function.

(appendM)−1(y, B1) =̂ (Nil, y)
(appendM)−1(Cons(a, s),B2(t)) =̂ (Cons(a, x), y)

where (x, y) =̂ (appendM)−1(s, t)

And finally, it applies Equation (UPD) in Section 2.4.1 and produces the following backward
transformation function.

upd〈append ,appendc〉(s, v) =̂ (appendM)−1(v, append c(s))

To see what the derived backward transformation function actually is, let us rename upd〈append ,appendc〉
to appendB. Applying the fusion transformation (Wadler 1990) can yield the following defini-
tion.

appendB((Nil, y), v) =̂ (Nil, v)
appendB((Cons(a, x), y), Cons(b, v)) =̂ (Cons(b, s), t)

where (s, t) =̂ appendB((x, y), v)

That is, appendB is such a function that accepts the original source (x, y) and a new view v,
and returns a new source (x′, y′), where x′ is the first n elements of v and y′ is the rest. Here n
is the length of the x.

3.2.3 Generating View Update Checker

As seen in the above example, a derived backward transformation function may be partial:
function appendB is defined only if the length of the updated view is not less than the length of
the first list in the original source. So the backward transformation will fail if an updated view
does not fall in its domain.

Our system automatically generates from a given view function together with the original
source a view update checker, represented by a tree automaton, which can check whether an
update on the view is valid or not. Section 7 explains details about how to generate view update
checkers, including a generated automaton for the example of append in this section.

10

Syntax:
rule ::= f(p1, . . . , pn) =̂ e

p ::= C(p1, . . . , pn) constructor pattern
| x variable pattern

e ::= C(e1, . . . , en) constructor application
| f(x1, . . . , xn) function call
| x variable

where C ∈ C and f ∈ F are of arity n, and x ∈ X .

Operational Semantics:

(Con)
e1 ⇓ v1 · · · en ⇓ vn

C(e1, . . . , en) ⇓ C(v1, . . . , vn)

(Fun)

f(p1, . . . , pn) =̂ e ∈ R
∃θ, f(p1θ, . . . , pnθ) = f(v1, . . . , vn) eθ ⇓ u

f(v1, . . . , vn) ⇓ u

where “eθ” denotes the expression that is obtained by replacing any variable x in e with the
value θ(x), and v1, . . . , vn denotes values: values are expressions that consist only of constructor
symbols in C.

Figure 2: View Definition Language

4 View Definition Language

In this section, we introduce our language, Vdl, for defining view functions. It is a first-
order functional programming language that is similar to Wadler’s language for defining basic
functions for fusion (Wadler 1990).

4.1 The Language Vdl

The syntax and semantics4 of the language is given in Figure 2. A program of our language
consists of a set of function definitions, and each function is defined by several rules of the form

f(p1, . . . , pn) =̂ e.

To simplify our presentation, we assume that there is no overlap among rules of the same
function, i.e., no two patterns in the left-hand side overlap.

There are two important syntactic restrictions on each rule declaration.

• The expression, e, of a rule is in a treeless form (Wadler 1990), i.e., a function call, which
may appear inside a constructor application but never appears inside another function
call. It can be seen in Figure 2 that each argument to a function call is a variable instead
of an expression. This restriction ensures no intermediate data structure in e.

4Note that Vdl has the call-by-value semantics, where values are expressions that consists of only constructor
symbols in C.

11

• Variable occurrences in a rule are affine, i.e., every variable in the left-hand side of a rule
occurs at most once in the corresponding right-hand side. This restriction ensures that
there is no duplication of data.

These two syntactic restrictions play an important role in our automatic bidirectionalization
framework, simplifying the generation of a view complement function from a view function
written in Vdl.

Though restricted, this language is sufficiently powerful to describe many interesting view
functions. It is not difficult to see that the view functions we have seen so far, such as students,
mapfst , and append , can be coded in Vdl with slight syntactic modification. In the following,
we give more examples of view functions in Vdl.

Example 1 (Identity View Function) The simplest view function is the identity function,
which creates a view that is the same as its source. It can be defined in Vdl as follows.

id(x) =̂ x

Example 2 (Projection View Functions) The projection view functions are useful for se-
lecting a component from the source. They can be defined in Vdl as follows.

fst(x, y) =̂ x
snd(x, y) =̂ y

Example 3 (Constant View Functions) A constant view function is useful for creating a
view that is independent of its source. An example of the constant view function is defined in
Vdl as follows.

nil(x) =̂ Nil

Example 4 (Recursive View Functions on Natural Numbers) Many view functions are
defined recursively by traversing over data structures. For example, the view function for addi-
tion of two natural numbers is defined by

add(Z, y) =̂ y
add(S(x), y) =̂ S(add(x, y)).

As in Haskell, we use a symbol starting with an uppercase letter to denote a constructor and
a symbol starting with a lowercase letter to denote a function or a variable. Function add is
defined by traversing over one data structure in the source, while the following function, max ,
for computing the maximum of two natural numbers is defined by simultaneously traversing
over two data structures in the source.

max (Z, y) =̂ y
max (S(x),Z) =̂ S(x)
max (S(x),S(y)) =̂ S(max (x, y))

Example 5 (Recursive View Functions on Lists and Trees) Our language can be used
to define view functions on various data structures such as lists and trees. As a view function
on lists, the function zip for zipping two lists is defined below.

zip(Nil, y) =̂ Nil
zip(Cons(a, x), Nil) =̂ Nil
zip(Cons(a, x), Cons(b, y)) =̂ Cons(Pair(a, b), zip(x, y))

As a view function on trees, the function for flipping a binary tree is defined below.

flip(Leaf) =̂ Leaf
flip(Node(n, l, r)) =̂ Node(n,flip(r),flip(l))

12

4.2 Notations for Manipulating Programs in Vdl

In the rest of this paper, we will discuss several program transformations and prove important
properties for them. To do this, we give a more formal definition of our programs in Vdl, and
prepare some notations and functions for later program manipulation.

Formally, a program P in our language Vdl is a 4-tuple (R,F , C,X) where

• R is a set of rules (see Figure 2),

• F is a set of function symbols with associated arities,

• C is a set of constructor symbols with associated arities, and

• X is a set of variables

such that all sets are pairwise disjoint. We call an expression generated only by constructor
symbols in C a value or a tree value and use TC to denote the set of all values.

A substitution is a mapping θ : X → TC that assigns to a variable a value. We denote by eθ
an expression obtained by replacing each variable x in e with a tree θ(x).

As discussed before, we do not allow rule overlapping in R. Formally, R is non-overlapping
if for any two distinct rules

f(p1, . . . , pn) =̂ e
f(p′1, . . . , p

′
n) =̂ e′

there is no substitution θ satisfying (p1, . . . , pn)θ = (p′1, . . . , p
′
n)θ.

We sometimes use vector notations −→e to denote sequence e1, . . . , en when the length of
sequence n is not concerned. For example, a rule f(p1, . . . , pn) =̂ e is denoted as f(−→p) =̂ e.

For a rule r, we write Vars(r) to denote the set of all variables occurring in r, UsedVars(r) the
set of all variables occurring in the right-hand side of r, and LostVars(r) = Vars(r)\UsedVars(r).

To prove the properties of programs, we sometimes need to distinguish function symbols
from their meanings. We denote the semantics of f by [[f]]P . Under the operational semantics
of Vdl, shown in Figure 2, a program P yields a partial function [[f]]P : (TC × · · · × TC) → TC
for each function symbol f ∈ F :

[[f]]P (v1, . . . , vn) =
{

v if f(v1, . . . , vn) ⇓ v,
⊥ otherwise.

Note that when it is clear from the context, [[f]]P is sometimes simply written as [[f]] or even f .
We add two semantic restrictions to Vdl to avoid pathological situations in the proofs of

the properties of programs written in Vdl. First, a set of constructors C contains at least two
constructors and one is zero-arity. Second, Vdl does not contain functions that are undefined
everywhere. For example, the following functions, f and g, are undefined everywhere.

f(x) =̂ f(x)
g(C1(x)) =̂ g(x)
g(C2(x)) =̂ g(x)

5 Deriving View Complement Functions

We shall develop algorithms for derivation of view complement functions from view functions
so that tupling them gives an injective function. Compared to the algorithms in Cosmadakis
and Papadimitriou (1984), Laurent et al. (2001) and Lechtenbörger and Vossen (2003), our
algorithms are capable of dealing with functions on tree data structures. We start with a direct
algorithm, and then improve it with a minimizing procedure with injectivity and range analysis.

13

5.1 A Direct Solution

For a given view function f : S → V , to derive its complement function g : S → V ′, we should be
clear about where the non-injectivity of f comes from. Recall that a complement function g of f
is a function that makes the tupled function (f Mg) : S → (V ×V ′) injective. So, if f is injective,
its complement function g can be an arbitrary function from S to V ′ (of course, updatability
of the backward transformation depends on which g to choose). If f is non-injective, g should
return different values for any distinct arguments x, y ∈ S such that f(x) = f(y).

Syntactically, there are basically two possible cases for a view function to be non-injective:

1. Some variables on the left-hand side of a rule disappear in the corresponding right-hand
side. For example, function fst(x, y) =̂ x is non-injective.

2. The ranges of two right-hand sides of a view function overlap. For example, the following
f is obviously non-injective:

f (A) =̂ A f (B) =̂ A.

Using this observation, we give an algorithm to derive a complement function of a view function.
Below, we use the context notation. A context K is a tree value containing special holes

21, . . . , 2n and we denote by K[e1, . . . , en] an expression obtained by replacing 2i with ei for
each i in {1, . . . , n}. Any expression in treeless form can always be separated as a context,
function calls and variables as K[f1(−→x1), . . . , fn(−→xn),−→x].

Algorithm 1 (Derivation of Complement Function: ALGc)

Input: A program P = (R,F , C,X) for view functions.
Output: A program P c for view complement functions.
Procedure:

1. For each rule r ∈ R

r = f(−→p) =̂ K[f1(−→x1), . . . , fn(−→xn),−→x]

construct a rule

rc = f c(−→p) =̂ Br(f c
1(−→x1), . . . , f c

n(−→xn),−→y)

where {−→y } = LostVars(r) and Br is a fresh constructor, and f c, f1
c, . . . , fn

c 6∈ F are
function symbols corresponding to f, f1, . . . , fn respectively.

2. Create a program as follows.

P c = ({rc | r ∈ R}, {f c | f ∈ F}, {Br | r ∈ R} ∪ C,X). 2

Theorem 3 (Soundness of ALGc) Let P = (R,F , C,X) be a program and P c = (Rc,Fc, Cc,X c)
the derived program by ALGc. Then, for every function symbol f ∈ F , [[f c]] is a complement
function of [[f]].

14

Proof. See Appendix A.1. 2

Note that by ALGc, a function is defined if and only if its complement function is defined,
i.e., f(−→v) ↓ if and only if f c(−→v) ↓.

Example 6 Consider function fst defined by

fst(x, y) =̂ x.

In this definition, the second argument, y, is discarded. Algorithm ALGc derives the rule

fstc(x, y) =̂ B1(y).

Here, B1 is the newly-introduced constructor for the first rule. Later, we use the constructor Bi

for the ith rule. That is, function fstc “complements” lost value “y” in the definition of fst .

Example 7 Consider the function add defined in Example 4. In this definition, all variables
are preserved from the left-hand side to the right-hand side of each rule. Algorithm ALGc

derives the following two rules.

add c(Z, y) =̂ B1

add c(S(x), y) =̂ B2(add c(x, y))

This function add c actually returns the information of the first argument.

Example 8 Consider the function max defined in Example 4. Algorithm ALGc derives the
following three rules.

max c(Z, y) =̂ B1

max c(S(x), Z) =̂ B2

max c(S(x), S(y)) =̂ B3(max c(x, y))

This complement function is basically equivalent, with respect to the collapsing order, to the fol-
lowing function, minle, which returns the minimum of arguments and a boolean value indicating
whether the first argument is “less than or equal” to the second.

minle(x, y) =
{

(x, 1) if x ≤ y
(y, 0) if x > y

In general, there can be infinitely many complement functions for a given view function.
Ideally, we want to obtain a complement function that is minimal with respect to the collapsing
order. The function, fstc, derived by ALGc is a minimal complement of fst , but a complement
function derived by ALGc is not always a minimal one. Next we will consider how to obtain
smaller complement functions.

5.2 Making it Smaller

Algorithm ALGc does not always return a minimal complement function. For example, consider
the following negation function not .

not(True) =̂ False not(False) =̂ True

Since the function not is injective, a minimal complement of this function can be any constant
function. But Algorithm ALGc derives the rules

notc(True) =̂ B1 notc(False) =̂ B2

15

which is obviously not a constant function.
To derive smaller complement functions, we improve Algorithm ALGc by analyzing injec-

tivity of function, and calculating ranges of the right-hand-side expressions. These two kinds of
analysis are useful to minimize complement functions for the following reasons:

1. If the input function is recognized to be injective, we should return a constant function.
This requires determination of the injectivity of a function. Fortunately, this is decidable
in Vdl. In the next subsection, we present an algorithm to determine injectivity.

2. Let e be an expression that may contain free variables. By the range of an expression
e, we mean the set of evaluated values of all possible ground instances of e, i.e., the set
defined by

Range(e) = {v | ∃θ : X → TC , eθ ⇓ v}.

Suppose that we have two rules

f(C1(x)) =̂ e1 f(C2(x)) =̂ e2.

If the ranges of e1 and e2 do not overlap, f c(C1(x)) and f c(C2(x)) can be safely collapsed
to the same value for some input, and hence [[f c]] becomes smaller. In Section 5.2.2 we
present an algorithm to calculate the range of an expression by using a tree automaton.

3. In addition to the above, the range analysis is helpful to remove unnecessary unary con-
structors. For example, let f be a view function and f c be its complement function.

f(C1(x)) =̂ D1(f(x)) f(C2) =̂ D2 f(C3) =̂ D2

f c(C1(x)) =̂ B1(f c(x)) f c(C2) =̂ B2 f c(C3) =̂ B3

The unary constructor, B1, can be removed if the ranges of D1(f(x)) and D2 do not overlap.
This is because the ranges of right-hand-side expressions of tupled function (f M f c) do
not overlap if for any two rules r1, r2 of f either the ranges of right-hand-side expressions
of r1, r2 or r1

c, r2
c do not overlap. The obtained complement function defined as

f c(C1(x)) =̂ f c(x) f c(C2) =̂ B2 f c(C3) =̂ B3

is smaller than the original complement function.

5.2.1 Injectivity Analysis

We present an algorithm that determines the injectivity of a function. The algorithm consists
of three major steps. In every step, the algorithm marks functions if they are non-injective and
otherwise proceeds to other steps. All functions unmarked at the end are injective.

Algorithm 2 (Injectivity Checking: ALGi)

Input: A program P = (R,F , C,X) for view functions.
Output: For each function f ∈ F , “f is injective” or “f is non-injective”.
Procedure:

1. Mark those functions that have a rule discarding variables.

2. Mark those functions whose ranges of right-hand sides of two distinct rules overlap.

3. Repeat

16

Mark those functions that have calls to marked functions.

Until no marking can be done.

4. Return “f is non-injective” if f is marked, otherwise return “f is injective”. 2

Theorem 4 (Soundness and Completeness of ALGi) For every function symbol f ∈ F ,
ALGi returns “f is injective” if and only if [[f]] is an injective function.

Proof. See Appendix A.2 and A.3. 2

5.2.2 Range Analysis

For every expression occurring in a program, we can construct an automaton that accepts
exactly the trees in the range of the expression. Our idea was based on the existing result that
the image of a linear tree transducer is a regular tree language (Engelfriet 1975).

Let P = (R,F , C,X) be a program and E be a set of expressions occurring in R. For an
expression e ∈ E , we construct a non-deterministic (bottom-up) finite tree automaton Ae over
C. This automaton is a tuple (Q, C, {qe}, ∆) with a set of states Q, a set of constructors C, the
unique final state qe, and a set of transition rules ∆ where

• Q = {qf | f ∈ F} ∪ {qe′ | e′ ∈ E} ∪ {q∗}

• ∆ consists of

– q∗ → qe′ with e′ = x ∈ E and x ∈ X ,

– qf → qe′ with e′ = f(. . .) ∈ E and f ∈ F ,

– C(qe1 , . . . , qen) → qe′ with e′ = C(e1, . . . , en) ∈ E ,

– qe′ → qf for f(. . .) =̂ e′ ∈ R and

– C(q∗, . . . , q∗) → q∗ with C ∈ C.

The following lemma states that automaton Ae exactly accepts the trees in the range of e.

Lemma 1 (The Range of Expressions) Let P = (R,F , C,X) be a program. For each ex-
pression e occurring in P , a tree t is in the range of e if and only if the tree automaton, Ae,
accepts t.

Proof. See Appendix A.4. 2

The ranges of two expressions e and e′ overlap if and only if the language accepted by the
intersection of two tree automata Ae and Ae′ is not empty. Since finite tree automata are closed
under intersection and the emptiness of a finite tree automaton is decidable (Comon et al. 1997),
we have the following corollary.

Corollary 1 For a program P = (R,F , C,X), whether the ranges of two expressions in R
overlap or not is decidable.

17

5.2.3 Deriving Smaller Complement Functions

With injectivity and range analysis, we can improve Algorithm ALGc and derive smaller com-
plement functions. We change three parts in the original algorithm. First, we remove f c(. . .)
for every injective function f from arguments of B in ALGc in the construction of the comple-
ment, because a complement function of any injective function is a constant function and can
be ignored. Second, we use the same constructor for those rules of f c when the ranges of the
right-hand-side expressions of these rules do not overlap. Third, we remove a unary constructor
from a rule for f c, if the range of the right-hand-side expression of the corresponding rule of f
does not overlap with the ranges of other rules of f .

As a preprocessing step, we calculate a partition of R = R1] · · ·] Rk such that for each
rule subset Ri the following hold.

• For all r, r′ ∈ Ri, r and r′ define the same function.

• For all r, r′ ∈ Ri, the sum of non-injective functions and lost variables in both rules are
the same.

• For all r, r′ ∈ Ri, the ranges of the right-hand-side expressions of r and r′ do not overlap.

Algorithm 3 (Improvement of ALGc: ALGsc)

Input: A program P = (R,F , C,X) for view functions and a partition of R = R1] · · ·] Rk.
Output: A program P c for view complement functions.
Procedure:
For each rule r for defining f ∈ F :

r = f(−→p) =̂ K[f1(−→x1), . . . , fn(−→xn),−→x] ∈ Rj

do the following:

1. Construct a rule
rc
pre = f c(−→p) =̂ Bk(f ′

1
c(
−→
x′

1), . . . , f
′
m

c(
−→
x′

m),−→y)

where the function calls f ′
1(
−→
x′

1), . . . , f
′
m(

−→
x′

m) are obtained from f1(−→x1), . . . , fn(−→xn) all injec-
tive function calls removed, and {−→y } = LostVars(r).

2. If rc
pre is in the form of

f c(−→p) =̂ Bj(f ′c(
−→
x′))

and the right-hand-side expression of r does not overlap with the right-hand-side expres-
sion of any other rule r′ for f ∈ F , construct a rule

rc = f c(−→p) =̂ f ′c(
−→
x′),

otherwise, construct a rule
rc = rc

pre.

3. Create a program as follows.

P c = ({rc | r ∈ R}, {f c | f ∈ F}, {Bj | R = R1] · · ·] Rj] · · ·] Rr},X) 2

Theorem 5 (Soundness of ALGsc) Let P = (R,F , C,X) be a program and P c = (Rc,Fc, Cc,X c)
the derived program by ALGsc. Then, for every function symbol f ∈ F , [[f c]] is a complement
function of [[f]].

18

Proof. See Appendix A.5. 2

Example 9 (Role of Rule Partition) Consider the function, f , defined by

r1 = f (A1) =̂ C1

r2 = f (A2) =̂ C2

r3 = f (A3) =̂ C1

and suppose that R = {r1, r2}]{r3}. Then, Algorithm ALGsc returns the following complement
function.

f c(A1) =̂ B1

f c(A2) =̂ B1

f c(A3) =̂ B2

However, if R = {r1}] {r2, r3}, ALGsc will return another complement function.

f c(A1) =̂ B1

f c(A2) =̂ B2

f c(A3) =̂ B2

So different rule partitions can lead to different complement functions. This is why we separate
rule partitions from Algorithm ALGsc.

Example 10 (Complements of Injective Functions) Consider the function, mapnot , de-
fined as follows.

mapnot(Cons(a, x)) =̂ Cons(not(a),mapnot(x))
mapnot(Nil) =̂ Nil
not(True) =̂ False
not(False) =̂ True

In contrast with mapfst defined above, mapnot is injective. With injective analysis we know that
mapnot and not are injective functions, so ALGsc returns the following complement functions

mapnotc(Cons(a, x)) =̂ B1

mapnotc(Nil) =̂ B1

notc(True) =̂ B2

notc(False) =̂ B2

which is a minimal complement function of mapnot with respect to the collapsing order.
It is worth remarking that Algorithm ALGsc will derive constant functions for injective

functions if a partition of R is R = Rf1] · · ·] Rfn where Rfi
is the set of all rules for fi. The

existence of such a partition is easily checked by the range analysis.

Example 11 (Removing Constructors) Consider the function zip in Example 5. Algo-
rithm ALGsc returns

zipc(Nil, y) =̂ B1(y)
zipc(Cons(a, x), Nil) =̂ B2(a, x)
zipc(Cons(a, x), Cons(b, y)) =̂ zipc(x, y)

which is a minimal complement function of zipc. Note that ALGsc has removed the constructor
from the third rule, compared to the old algorithm, ALGc.

The complement functions obtained by ALGsc have two good characteristics. First, they
have the same form as view functions, which makes the later tupling step and the inversion step
easy. Second, as will be seen later, the updatability of backward transformation functions with
these complement functions is easy to understand.

19

6 Generating Backward Transformation Functions

After obtaining a view complement function f c : S → V ′ for a given view function f : S → V ,
we get the following backward transformation according to Equation (UPD).

ρ(s, v) = (f M f c)−1(v, f c(s))

That is, a backward transformation function can be derived if the tupled function, (f Mf c), and
its inverse (f M f c)−1 can be effectively derived.

The point is how to calculate an inverse program. Although this is generally difficult, now
we need merely to treat the tupled function of the form (f Mf c). Thanks to the correspondence
between the rules of f and f c, we can obtain a program of (f M f c) which is in a good form for
this inversion. In the following, we show how tupling and inversion can be done automatically.

6.1 Calculation of Program of (f M f c)

A program for tupled function (f M f c) can be straightforwardly calculated because the rules of
f and the corresponding f c have the same patterns and the same form of recursive calls in the
right-hand sides. However, we cannot directly describe the tupled function in the treeless form
because of the tuple structure, which needs to be treated specially. We extend language Vdl
with “where-clauses” and tuples:

rule ::= · · ·
| f(p1, . . . , pn) =̂ (e1, . . . , em)

where (x1, . . . , xk) =̂ g(y1, . . . , ym)
. . .

(x′
1, . . . , x

′
k′) =̂ g′(y′1, . . . , y

′
m′)

where e1, . . . , en do not include any function calls, i.e., they have the same forms as patterns,
and all variables appear on the left-hand sides of the where-clause are different from those on
the right-hand sides. The two restrictions above are the treeless condition of tupled functions.
Additionally, this new form of rules must satisfy the affine condition. That is, all variables used
at most once (actually, all variables are used exactly once in tupled functions). The operational
semantics is straightforwardly extended. Note that this extension is behind the scene of the
view definition users; it is only used internally during bidirectionalization transformation.

Algorithm 4 (Tupling)
Input: A where-free program P .
Output: A program P M for tupled functions.
Procedure:

1. Let P c be the program derived from P by ALGsc.

2. For each non-injective function f , and for each rule r of f in P do

(a) Let rc be the corresponding rule for r in P c.

(b) Structure r and rc in the following forms

r = f(−→p) =̂ K[
−→
t ,−→u ,−→x]

rc = f c(−→p) =̂ K ′[
−→
t′ ,

−→
x′]

where

20

• −→
t : non-injective function calls f1(−→y1), . . . , fn(−→yn),

• −→
t ′: function calls of the forms f1

c(−→y1), . . . , fn
c(−→yn),

• −→u : injective function calls g1(−→z1), . . . , gm(−→zm).

(c) Prepare fresh variables ti, t′i, uj for i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}.
(d) Construct the rule, rM, as follows:

rM = fM(−→p) =̂ (K[−→t ,−→u ,−→x], K ′[
−→
t′ ,

−→
x′])

where (ti, t′i) =̂ fi
M(−→yi) i ∈ {1, . . . , n}

uj =̂ gj(−→zj) j ∈ {1, . . . ,m}

3. For each injective function g, and for each rule r of g in P , construct the rule, r′, as follows
in the similar way:

r′ = g(−→p) =̂ K[−→u ,−→x]
where uj =̂ gj(−→zj) j ∈ {1, . . . ,m}

4. Gather all rM and r′ to form P M. 2

This algorithm correctly gives a program of tupled functions, i.e., [[fM]](
−→
t) = ([[f]]M[[f c]])(

−→
t).

We omit the proof here. An example is given in Section 8.

6.2 Calculation of Program of (f M f c)−1

Next, we calculate an inverse program for (f M f c)−1 from the program of (f M f c). The basic
idea is to swap the left-hand side and the right-hand side of each rule and to apply inversion
recursively.

Algorithm 5 (Inversion of Tupled Functions)

Input: A program P M = (R,F , C,X) for tupled functions.
Output: A program

(P M)−1 =
(
R−1,

{
f−1 | f ∈ F

}
, C,X

)
for tupled functions.
Procedure: For each rule r in R

r = f(−→p) =̂ (−→e) where (ti, t′i) =̂ fi(−→yi) i ∈ {1, . . . , n}
uj =̂ gj(−→zj) j ∈ {1, . . . ,m}

construct the rule r−1 in R−1 as follows.

r−1 = f−1(−→e) =̂ (−→p) where (−→yi) =̂ f−1
i (ti, t′i) i ∈ {1, . . . , n}

(−→zj) =̂ g−1
j (uj) j ∈ {1, . . . ,m} 2

Theorem 6 (Correctness) Let P be a program, and (P M)−1 the generated program. Then,
(u1, u2) = [[fM]]P M(t1, . . . , tn) implies (t1, . . . , tn) = [[(fM)−1]](P M)−1(u1, u2).

21

Proof. See Appendix A.6

Note that the obtained inverse program may be nondeterministic. However, since the original
function to be inversed is injective in our framework, it is possible to uniquely determine a rule
with a domain analysis similar to the range analysis discussed before, when the inverse program
is executed. An example of inversion is given in Section 8.

7 Generating View Update Checker

A view update checker is designed to decide whether or not an update on views is valid without
execution of the backward transformation. An update on views is said to be valid if it can be
successfully reflected to the source by the derived backward transformation function. Recall that
in our framework, a backward transformation is given by upd〈f,fc〉(s, v) =̂ (f M f c)−1(v, f c(s)).
This means that, for a view function f and the original source, s, we can check whether or not
a view update is valid by confirming whether (v, f c(s)) is in the range of (f M f c), where v is
an updated view.

We define below a nondeterministic (bottom-up) tree automaton for validating view updates.
The tree automaton has three kinds of states: state q∗ is reached by any view, state qf is reached
by a view in the range of f , and state qt

fM is reached by a view v such that (v, t) is in the range
of fM. Therefore, when the final state is a state qt0

fM , the tree automaton exactly accepts a view
v such that (v, t0) is in the range of fM (i.e., (v, t0) is in the domain of (fM)−1).

Definition 3 (View Update Checker) Let P be a program, P c be a complement program
derived by our algorithm, t0 be a complement view, and P M = (RM,FM, CM,XM) be a tu-
pled program of P and P c. A view updating checker is defined as a tree automaton AU =
(Q, CM, {qt0

f }, ∆) where

• Q = {q∗} ∪ {qf | f ∈ F} ∪ {qt
fM | fM ∈ FM, t is a subtree of t0}

• ∆ consists of the following transition rules:

– C(q∗, . . . , q∗) → q∗ with C ∈ C,

– K[−→qf ′ ,−→q∗] → qf with f(−→p) =̂ K[
−→
t ,−→x] ∈ R and ti = f ′

i(
−→e), and

– K[
−−→
qt′θ
f ′M ,−→qg′ ,

−→q∗] → qt′′
fM with fM(−→p) =̂ (K[

−→
t ,−→u ,−→x],K ′[

−→
t′ ,

−→
x′])

where (ti, t′i) =̂ f ′
i
M(−→yi) i ∈ {1, . . . , n}

uj =̂ g′j(
−→zj) j ∈ {1, . . . ,m}

 ∈ RM

where t′′ is a subtree of t0 and t′′ = K ′[
−→
t′ ,

−→
x′]θ.

Theorem 7 (Validity of View Update Checker) A view updating checking tree automa-
ton AU = (Q, CM, {qt0

fM}, ∆) in Definition 3 exactly accepts view v such that (v, t0) is in the
range of fM.

22

Proof. See Appendix A.7. 2

We show examples of automatically generated view update checkers for some view functions.
Note that the view update checking automata below have been reduced where unnecessary states
have been removed.

Example 12 Consider function append and its complement function in Section 3. When the
initial source is

(s1, s2) = (Cons(True, Cons(False, Nil)), Nil),

the view is append(s1, s2) = Cons(True, Cons(False, Nil)) and the complement view is append c(s1, s2) =
B2(B2(B1)).

Then, the view update checker generated by our system is the automaton A = (Q, C, {qB2(B2(B1))

appendM }, ∆)
where

• Q = {q∗, qB2(B2(B1))

appendM , q
B2(B1)

appendM , qB1

appendM} and

• ∆ consists of the transition rules of

– t → q∗ where t ∈ {True, False, Nil},
– Cons(q∗, q∗) → q∗,

– Cons(q∗, q
B2(B1)

appendM) → q
B2(B2(B1))

appendM ,

– Cons(q∗, qB1

appendM) → q
B2(B1)

appendM , and

– q∗ → qB1

appendM .

In fact, this automaton only accepts lists that are 2 or longer, which means one can only update
the view of lists in such a way that its length is not less than 2.

Example 13 Consider the view function zip in Example 5 and its complement function in
Example 11. When the initial source is

(s1, s2) = (Cons(True, Cons(False, Nil)),Cons(False,Nil)),

the view is zip(s1, s2) = Cons(Pair(True, False), Nil) and the complement view is zipc(s1, s2) =
B2(False,Nil).

Then, the view update checker generated by our system is the automaton A = (Q, C, {qB2(False,Nil)
zipM }, ∆)

where

• Q = {q∗, qB2(False,Nil)
zipM } and

• ∆ consists of the transition rules of

– t → q∗ where t ∈ {True, False, Nil},
– C(q∗, q∗) → q∗ where C ∈ {Cons, Pair},

– Nil → q
B2(False,Nil)
zipM , and

– Cons(Pair(q∗, q∗), q
B2(False,Nil)
zipM) → q

B2(False,Nil)
zipM .

This automaton accepts any view in the form of a list of pairs.

23

Example 14 Consider the function, filter , defined as

filter(Nil) =̂ Nil
filter(Cons(A1, x)) =̂ Cons(A1,filter(x))
filter(Cons(A2, x)) =̂ Cons(A2,filter(x))
filter(Cons(A3, x)) =̂ filter(x)

and the complement function derived by our algorithm as follows.

filter c(Nil) =̂ B1

filter c(Cons(A1, x)) =̂ B2(filter c(x))
filter c(Cons(A2, x)) =̂ B2(filter c(x))
filter c(Cons(A3, x)) =̂ B3(filter c(x))

When the initial source is

s = Cons(A2, Cons(A3, Cons(A1, Nil))),

the view is filter(s) = Cons(A2, Cons(A1, Nil)) and the complement view is filter c(s) = B2(B3(B2(B1))).
Then, the view update checker derived by our system is automaton A = (Q, C, {qB2(B3(B2(B1)))

filterM }, ∆)
where

• Q = {qB2(B3(B2(B1)))

filterM , q
B3(B2(B1))

filterM , q
B2(B1)

filterM , qB1

filterM}

• ∆ consists of transition rules

– Cons(t, qB3(B2(B1))

filterM) → q
B2(B3(B2(B1)))

filterM where t ∈ {A1, A2},

– Cons(t, qB1

filterM) → q
B2(B1)

filterM where t ∈ {A1, A2},

– q
B2(B1)

filterM → q
B3(B2(B1))

filterM , and

– Nil → qB1

filterM .

This automaton accepts lists that are 2 long, and each list element is either A1 or A2.

8 An Example

To give a whole picture of how our system works concretely, recall the example in the Intro-
duction. The following view function, students, is the same as that in the Introduction, except
that we write Cons for (:) and Nil for [].

students(Nil) =̂ Nil
students(Cons(Student(name, grade,major)),ms))

=̂ Cons(Student(name, grade,major), students(ms))
students(Cons(Prof(name, position,major)),ms))

=̂ students(ms)

The function, students, extracts all student members from a member list. This behavior of
students is similar to the function, filter . The derived complement function by our algorithm is
as follows.

studentsc(Nil) =̂ B1

studentsc(Cons(Student(name, grade,major)),ms))
=̂ B2(studentsc(ms))

studentsc(Cons(Prof(name, position,major)),ms))
=̂ B3(name, position,major , studentsc(ms))

24

Tupling the two functions students and studentsc gives

studentsM(Nil) =̂ (Nil, B1)
studentsM(Cons(Student(name, grade,major),ms))

=̂ (Cons(Student(name, grade,major), x), B2(y))
where (x, y) =̂ studentsM(ms)

studentsM(Cons(Prof(name, position,major),ms))
=̂ (x,B3(name, position,major , y))

where (x, y) =̂ studentsM(ms),

and inversion of this tupled function yields the following result.

(studentsM)−1(Nil, B1) =̂ Nil

(studentsM)−1(Cons(Students(n, g ,m), x), B2(y))
=̂ Cons(Student(n, g ,m),ms)

where ms =̂ (studentsM)−1(x, y)
(studentsM)−1(x,B3(n, p,m, y))

=̂ Cons(Prof(n, p,m),ms)
where ms =̂ (studentsM)−1(x, y)

Then, a backward transformation ρ = upd〈students,studentsc〉 can be derived (after some fusion
transformation) as follows.

ρ(Nil, Nil) = Nil
ρ(Cons(Student(n, g,m),ms), Cons(Student(n′, g′,m′), ss))

= Cons(Student(n′, g′, m′), ρ(ms, ss))
ρ(Cons(Prof(n, g,m),ms), ss)

= Cons(Prof(n, g,m), ρ(ms, ss))

This is exactly the same function as studentsB in the Introduction.
Now one can freely change the names in the view, and the backward transformation can

reflect them to the source. Consider the case where the source s is as follows.

s = Cons(Student(X, DC, CS), Cons(Prof(Y, AP, CS),Nil))

Let v be the view generated by the view function, students, on s, i.e., v = Cons((Student(X, DC, CS), Nil).
Updating view v to Cons(Student(X, DC,Math), Nil) is acceptable and results in the following
source.

Cons(Student(X,DC, Math), Cons(Prof(Y, AP, CS), Nil))

However, both inserting and removing elements, e.g., updating the view to Nil, are prohibited.
This updatability can be precisely represented by an automaton. Let

v1 = B2(B3(Y, AP, CS, B1))
v2 = B3(Y, AP, CS, B1)
v3 = B1,

then updatability of v with respect to source s is captured by automaton A = (Q, C, {qv1
students},∆),

where

• Q = {qv1
students , q

v2
students , q

v3
students , q∗}

• ∆ consists of transition rules

25

– C(q∗, . . . , q∗) → q∗ where C ∈ C,

– Cons(Student(q∗, q∗, q∗), qv2
students) → qv1

students ,

– qv3
students → qv2

students , and

– Nil → qv3
students .

Note that the view, Cons((Student(X,DC, CS), Nil), is accepted by the automaton, A, but the
view, Nil, is not.

9 Related Work

Our work is based on the idea of deriving (relational) complement functions on relational data-
bases, where view functions are expressed in terms of relational algebras. Cosmadakis and
Papadimitriou (1984) showed that finding minimal complement functions when views are de-
fined only by projections is NP-Complete. Laurent et al. (2001) proposed an algorithm to
compute complement functions when views are defined by projections, selections, and joins.
They also discussed the conditions for minimal complement functions. Their algorithm is ex-
pensive because it uses the results of NP-Complete sub-problems. Lechtenbörger and Vossen
(2003) improved on Laurent et al.’s work. They proposed a polynomial-time algorithm for
computing complement functions when views are defined by projections, selections, joins, and
renaming. Their algorithm computes smaller complement functions than Laurent et al.’s, and
the obtained complement functions are minimal when view functions contain no projection. Our
work can be considered an extension of these works such that view functions can be defined
on tree-like data structures other than tuples. Moreover, our approach is based on syntactic
program transformations, whereas the existing methods focus more on function semantics.

Our work was greatly motivated by works on bidirectional transformation on trees. In addi-
tion to the work by Foster et al. (2005) that proposed a combinatorial approach to the problem
(as discussed in the Introduction), Hu et al. (2004) showed how bidirectional transformation
can be used to maintain data dependency in the tree view, which can be seen as an application
that develops constraint maintainers on trees (Meertens 1998). Mu et al. (2004) improved the
consistency of Hu et al.’s framework by imposing restrictions on updating operators. These
frameworks are domain-specific and designed for specific applications. In contrast, our work is
more general.

Our work is also related to work on updating XML views constructed from relational data.
Wang and Rundensteiner (2004) applied the work in Dayal and Bernstein (1982) to XML views
over relational data. Braganholo et al. (2004) proposed an algorithm to map updates on XML
views to relational data. However, they did not consider the case where the source is XML too,
and our method may shed a new light on their problems.

10 Conclusion

This paper presents a new transformational approach to bidirectionalization that can auto-
matically derive backward transformation programs from view definition programs written in a
simple functional language. The new bidirectionalization method is built upon three program
transformations: automatic derivation of complement functions, tupling transformation, and
inverse transformation. These three transformations are composed together through programs
in a treeless and affine form, which simplifies and enables implementation of the transformations
and automatic generation of a view update checker. Our approach is different from many exist-
ing approaches where only a bidirectional interpreter is derived and execution of the interpreter

26

requires passing the source through all the interpretation steps, our approach does produce a
program for backward transformation. This makes it possible to utilize an optimizing compiler
for more efficient execution of backward transformation.

There are several issues that are worth looking into in the future. First, it would be inter-
esting to see if our view language could be extended with regular patterns and the restriction
on variable uses could be relaxed so that more view functions could be defined and backward
transformation could be derived. Second, we want to see if our bidirectionalization framework
can be adapted to other bidirectional semantics. The bidirectional properties (semantics) used
in this paper are known as “closed update semantics” where sources are invisible to the users
who want to modify views. There is another useful semantics called “open update semantics”
where both the source and the view are visible to users. Third, although the system has been
implemented, we would like to test it with more practical applications.

References

François Bancilhon and Nicolas Spyratos. Update semantics of relational views. ACM Trans-
actions of Database Systems, 6(4):557–575, 1981. ISSN 0362-5915.

Vanessa P. Braganholo, Susan B. Davidson, and Carlos A. Heuser. From XML view updates
to relational view updates: old solutions to a new problem. In VLDB ’04: International
Conference on Very Large Data Bases, pages 276–287. Morgan Kaufmann, 2004.

Hubert Comon, Max Dauchet, Remi Gilleron, Florent Jacquemard, Denis Lugiez, Sophie
Tison, and Marc Tommasi. Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 1997. release October, 1st 2002.

Stavros S. Cosmadakis and Christos H. Papadimitriou. Updates of relational views. Journal of
the ACM, 31(4):742–760, 1984. ISSN 0004-5411.

Umeshwar Dayal and Philip A. Bernstein. On the correct translation of update operations on
relational views. ACM Transactions of Database Systems, 7(3):381–416, 1982. ISSN 0362-
5915.

Joost Engelfriet. Bottom-up and top-down tree transformations — a comparison. Mathematical
Systems Theory, 9(3):198–231, 1975.

J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce, and Alan
Schmitt. Combinators for bi-directional tree transformations: a linguistic approach to the
view update problem. In POPL ’05: Proceedings of the 32nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 233–246, New York, NY, USA,
2005. ACM Press. ISBN 1-58113-830-X.

Georg Gottlob, Paolo Paolini, and Roberto Zicari. Properties and update semantics of consistent
views. ACM Transactions of Database Systems, 13(4):486–524, 1988. ISSN 0362-5915.

Stephen J. Hegner. Foundations of canonical update support for closed database views. In ICDT
’90: Proceedings of the Third International Conference on Database Theory, pages 422–436,
London, UK, 1990. Springer-Verlag. ISBN 3-540-53507-1.

Zhenjiang Hu, Shin-Cheng Mu, and Masato Takeichi. A programmable editor for developing
structured documents based on bidirectional transformations. In PEPM ’04: Proceedings of
the 2004 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-based Program
Manipulation, pages 178–189, New York, NY, USA, 2004. ACM Press. ISBN 1-58113-835-0.

27

Ralf Lämmel. Coupled software transformations (extended abstract). In First International
Workshop on Software Evolution Transformations, pages 31–35, November 2004.

Dominique Laurent, Jens Lechtenbörger, Nicolas Spyratos, and Gottfried Vossen. Monotonic
complements for independent data warehouses. The VLDB Journal, 10(4):295–315, 2001.
ISSN 1066-8888.

Jens Lechtenbörger and Gottfried Vossen. On the computation of relational view complements.
ACM Transactions of Database Systems, 28(2):175–208, 2003. ISSN 0362-5915.

Lambert Meertens. Designing constraint maintainers for user interaction.
http://www.cwi.nl/~lambert, June 1998.

Shin-Cheng Mu, Zhenjiang Hu, and Masato Takeichi. An algebraic approach to bidirectional up-
dating. In APLAS ’04: Second ASIAN Symposium on Programming Languages and Systems,
pages 2–18. Springer Verlag, 2004.

Philip Wadler. Deforestation: Transforming programs to eliminate trees. Theoretical Computer
Science, 73(2):231–248, 1990.

Ling Wang and Elke A. Rundensteiner. On the updatability of XML views published over
relational data. In ER 2004: International Conference on Conceptual Modeling, pages 795–
809, 2004.

28

A Appendix

This section gives the proofs of the lemmas and theorems presented in the paper. In the following
proofs, for a function f and values vi in the language Vdl, we write #funcall(f(v1, . . . , vn)) to
denote the maximum number of the use of the (Fun) rule counting vertically in the derivation
tree of f(v1, . . . , vn) ⇓ v given by Figure 2.

A.1 Proof of Theorem 3

Theorem (Soundness of ALGc) Let P = (R,F , C,X) be a program and P c = (Rc,Fc, Cc,X c)
the derived program by ALGc. Then, for every function symbol f ∈ F , [[f c]] is a complement
function of [[f]].

Proof. We prove that, for all f ∈ F , for all −→v ,
−→
v′ ∈ Dom(f) such that −→v 6=

−→
v′ ,

[[f]](−→v) = [[f]](
−→
v′) implies [[f c]](−→v) 6= [[f c]](

−→
v′)

which means that f c is a complement function of f since (f M f c) is injective. It is proved by
induction on #funcall(f(−→v)) + #funcall(f(

−→
v′)).

Base case: #funcall(f(−→v)) + #funcall(f(
−→
v′)) = 0.

There exist r, r′ ∈ R and substitutions θ, θ′ such that

r = f(−→p) =̂ K[−→x]

r′ = f(
−→
p′) =̂ K ′[

−→
x′]

where −→p θ = −→v ,
−→
p′ θ′ =

−→
v′ , −→v 6=

−→
v′ and [[f]](−→v) = [[f]](

−→
v′). When r 6= r′, the proof is done

since Br and Br′ differ. Consider the case r = r′. From K[−→x]θ = K[−→x]θ′, we have θ(x) = θ′(x)
for all x ∈ UsedVars(r). Since v = −→p θ and v′ = −→p θ′ differ while [[f]](−→v) = [[f]](

−→
v′), there

exists z ∈ LostVars(r) such that θ(z) 6= θ′(z). Because f c has a rule f c(−→p) =̂ Br(−→y) where
{−→y } = LostVars(r) by definition, we have [[f c]](−→v) 6= [[f c]](

−→
v′).

Inductive step: #funcall(f(−→v)) > 0, #funcall(f(
−→
v′)) = 0.

There exist r, r′ ∈ R and substitutions θ, θ′ such that

r = f(−→p) =̂ K[f1(−→x1) . . . fn(−→xn),−→x] where n > 0

r′ = f(
−→
p′) =̂ K ′[

−→
x′]

where −→p θ = −→v ,
−→
p′ θ′ =

−→
v′ , −→v 6=

−→
v′ and [[f]](−→v) = [[f]](

−→
v′). Since Br and Br′ differ because of

r 6= r′, we have [[f c]](−→v) 6= [[f c]](
−→
v′).

Inductive step: #funcall(f(−→v)) = 0, #funcall(f(
−→
v′)) > 0.

Similar to the previous case.

1

Inductive step: #funcall(f(−→v)) > 0, #funcall(f(
−→
v′)) > 0.

There exist r, r′ ∈ R and substitutions θ, θ′ such that

r = f(−→p) =̂ K[f1(−→x1), . . . , fn(−→xn),−→x]

r′ = f(
−→
p′) =̂ K ′[f ′

1(
−→
x′

1), . . . , f
′
n′(

−→
x′

n′),
−→
x′]

where −→p θ = −→v ,
−→
p′ θ′ =

−→
v′ , −→v 6=

−→
v′ and [[f]](−→v) =

−→
f (

−→
v′). When r 6= r′, the proof is done since

Br and Br′ differ. Consider the case r = r′. Since −→p θ 6= −→p θ′, we consider the following two
cases.

• θ(z) 6= θ′(z) for some z ∈ LostVars(r)

• θ(z) 6= θ′(z) for some z ∈ {−→xi}

Note that θ(z) 6= θ′(z) implies z 6∈ {−→x } since [[f]](−→v) = [[f]](
−→
v′). In the first case, we have

[[f c]](−→v) 6= [[f c]](−→v) by definition of rc. Consider the second case. In the case, −→xiθ 6= −→xiθ
′ and

[[f]](−→xiθ) = [[f]](−→xiθ
′) hold. Because [[fi

c]](−→xiθ) 6= [[fi
c]](−→xiθ

′) from the induction hypothesis, we
have [[f c]](−→v) 6= [[f c]](

−→
v′).

A.2 Proof of Theorem 4: Soundness of ALGi

Theorem (Soundness of ALGi) For every function symbol f ∈ F , [[f]] is an injective func-
tion if ALGi returns “f is injective”.

Proof. Let us prove the contraposition of the statement: for all f ∈ F ,

[[f]] is a non-injective function ⇒ ALGi returns “f is non-injective”. (INJS)

Suppose that f(−→v) ⇓ u and f(
−→
v′) ⇓ u for −→v and

−→
v′ with −→v 6=

−→
v′ . There are two possible cases:

Case 1. The derivation tree of f(−→v) ⇓ u is the same as that of f(
−→
v′) ⇓ u except for binding,

that is, both derivation trees use the same rules.

Case 2. The other case.

For Case 1, We prove the statement (INJS) by induction on #funcall(f(−→v)).

Base Case: #funcall(f(−→v)) = #funcall(f(
−→
v′)) = 0.

There exists r ∈ R such that
r = f(−→p) =̂ K[−→x]

where −→p θ = −→v and −→p θ′ =
−→
v′ for some θ, θ′ and K[−→x]θ = K[−→x]θ′. Assume that LostVars(r) =

∅. Then −→x θ = −→x θ′ implies −→p θ = −→p θ′. It contradicts −→v 6=
−→
v′ . Hence we obtain LostVars(r) 6= ∅.

Therefore the algorithm ALGi returns “f is non-injective”.

2

Inductive Step: #funcall(f(−→v)) = #funcall(f(
−→
v′)) > 0.

There exists r ∈ R such that

r = f(−→p) =̂ K[f1(−→x1), . . . , fl(−→xn),−→x]

where −→p θ = −→v and −→p θ′ =
−→
v′ for some θ, θ′. We have f(−→v) ⇓ K[w1, . . . , wn,−→x θ] and f(

−→
v′) ⇓

K[w1, . . . , wn,−→x θ′] where fi(−→xiθ) ⇓ wi and fi(−→xiθ
′) ⇓ wi for i ∈ {1, . . . , n} and −→x θ = −→x θ′.

When LostVars(r) 6= ∅, the algorithm ALGi returns “f is non-injective”. Consider the case
LostVars(r) = ∅. From −→p θ 6= −→p θ′ and −→x θ = −→x θ′, there exists i such that −→xiθ 6= −→xiθ

′. Thus
[[fi]] is non-injective. Then ALGi returns “fi is non-injective” from the induction hypothesis.
Hence ALGi also returns “f is non-injective.”

For Case 2, we prove (INJS) by induction on #funcall(f(−→v)) + #funcall(f(
−→
v′)).

Base case: #funcall(f(−→v)) + #funcall(f(
−→
v′)) = 0.

We have distinct two rules r, r′ ∈ R such that

r = f(−→p) =̂ K[−→x]

r′ = f(
−→
p′) =̂ K ′[

−→
x′]

where −→p θ = −→v ,
−→
p′ θ′ =

−→
v′ , −→v 6=

−→
v′ and K[−→x]θ = K ′[

−→
x′]θ′. It implies that the ranges of K[−→x]

and K ′[
−→
x′] overlap. Therefore the algorithm ALGi returns “f is non-injective”.

Inductive step: #funcall(f(−→v)) = 0 or #funcall(f(
−→
v′)) = 0.

Similar to the previous case.

Inductive step: #funcall(f(−→v)) > 0, #funcall(f(
−→
v′)) > 0.

There are two cases:

• There are two distinct rules for f whose left-hand side uses patterns −→p ,
−→
p′ where −→p θ = −→v

and
−→
p′ θ′ =

−→
v′ for some θ, θ′.

• f(−→v) and f(
−→
v′) use the same rule for the first step of their derivation.

In the first case, we can prove the theorem in a similar way to the previous case. We consider
the second case. Suppose that the rule of the first step of the derivation is

r = f(−→p) =̂ K[f1(−→x1), . . . , fn(−→xn),−→x]

where −→v = −→p θ and
−→
v′ = −→p θ′ for some θ, θ′, −→v 6=

−→
v′ and, for i ∈ {1, . . . , n}, we have

fi(−→xiθ) ⇓ ui and fi(−→xiθ
′) ⇓ ui for some ui. Because of the assumption, there exists i such that

the derivation trees of fi(−→xiθ) and fi(−→xiθ
′) differ (which also implies −→xiθ 6= −→xiθ

′). From the
induction hypothesis, the algorithm ALGi returns “fi is non-injective”. Therefore ALGi returns
“f is non-injective”. 2

3

A.3 Proof of Theorem 4: Completeness of ALGi

Theorem (Completeness of ALGi) For every function symbol f ∈ F , ALGi returns “f is
injective” if [[f]] is an injective function.

Proof. Let us prove the contraposition of the statement:

ALGi returns “f is non-injective” ⇒ [[f]] is a non-injective function (INJC)

Suppose that the algorithm ALGi returns “f is non-injective”. There is a sequence f1, . . . , fn, f
of marked functions ordered by being marked. We prove the statement (INJC) by induction on
the length of the sequence.

Base Case: f is marked first.

In this case, f is marked by one of the first two procedure in the definition of ALGi. Hence, f
satisfies either of following two.

• Some rule r for f , LostVars(r) 6= ∅.

• Some two rules r, r′ for f , the range of the right-hand side expressions of r, r′ overlap.

Consider the first case. Here, r = K[f1(−→x1), . . . , fn(−→xn),−→x]. From the semantic restrictions of
Vdl, there exist distinct two values t,t′ and −→vi such that [[fi]](−→vi)↓ for all i ∈ {1, . . . , n} because
Dom([[f]]) 6= ∅ for any function f defined in Vdl. For some s0 ∈ TC , we define two distinct
substitutions σ, σ′ as follows.

σ(x) =

t if x ∈ LostVars(r)
vij if x = xij

s0 otherwise

σ′(x) =

t′ if x ∈ LostVars(r)
vij if x = xij

s0 otherwise

Here, xij is the jth element of the sequence −→xi . The above substitutions, σ and σ′, are well-
defined because Vdl is affine. Then, we have −→p σ 6= −→p σ and [[f]](−→p σ) = [[f]](−→p σ′), which
implies [[f]] is non-injective. In the second case, obviously [[f]] is non-injective.

Induction Step:

If f is marked by the first or the second procedure of the definition of ALGi, we can prove the
statement (INJC) in a similar way to the base case.

Consider the case that f is marked by the third procedure in the definition of ALGi. In that
case, f has a form

r = f(−→p) =̂ K[f1(−→x1), . . . , fn(−→xn),−→x]

where some of f1, . . . , fn are marked. Without loss of generality, we assume that f1 is marked.
From the induction hypothesis, there exist −→v1 and

−→
v′1 such that −→v1 6=

−→
v′1 and [[f1]](−→v1) = [[f1]](

−→
v′1).

From the semantic restrictions of Vdl, there exists −→vi such that [[fi]](−→vi)↓ for any i ∈ {2, . . . , n}

4

because Dom(f) 6= ∅ for any function f defined in Vdl. Then, for some s0 ∈ TC , we define the
two distinct substitutions σ, σ′ as follows.

σ(x) =

v1j if x = x1j

vij if x = xij , i ∈ {2, . . . , n}
s0

σ′(x) =

v′1j if x = x1j

vij if x = xij , i ∈ {2, . . . , n}
s0

The above substitutions, σ and σ′, are well-defined because Vdl is affine. Since, by definition,
−→p σ 6= −→p σ′ and [[f]](−→p σ) = [[f]](−→p σ′), we conclude [[f]] is non-injective. 2

A.4 Proof of Lemma 1

Lemma (The Range of Expressions) Let P = (R,F , C,X) be a program. For each ex-
pression e occurring in P , a tree t is in the range of e if and only if the tree automaton Ae

accepts t.

Proof. Let E be a set of expressions occurring in R. Because, for any expression e in E , the
automaton Ae has the same transition rules and states and input symbols, we simply write A
for Ae when the final states of automata are not concerned.

Recall that the range of expressions is defined as {t | ∃θ, eθ ⇓ t}. We prove that

t
∗→
A

qe ⇐⇒ there exists a substitution θ such that eθ ⇓ t

for any tree t.

(⇐=) Suppose eθ ⇓ t with some θ. We prove t →∗
A qe by induction on the derivation tree of

eθ ⇓ t.

(Con)-Case.

There are following three cases.

• e = x

• e = C

• e = C(e1, . . . , en), for n > 0

In the first case, e = x. The range of e is all values TC . Since the automaton A has a
transition q∗ → qe by definition and t →∗

A q∗ for any tree t ∈ TC , we have t →∗
A qe.

In the second case, e = C. The range of e is the singleton set {C} in this case. Since the
automaton A has a transition C → qe by definition, we have t →∗

A qe for all t in the range of e.
In the third case, e = C(e1, . . . , en). From the induction hypothesis, for all ei, we have

vi →∗
A qei where eiθ ⇓ vi. Since the automaton A has a transition C(qe1 , . . . , qen) → qe and

t = C(v1, . . . , vn), we have t →∗
A qe.

5

(Fun)-Case.

Consider the case, e = f(−→x). Because f(−→x θ) ⇓ t, there exists a rule r ∈ R such that

r = f(−→p) =̂ K[f1(−→x1), . . . , fn(−→xn),−→x]

where K[f1(−→x1), . . . , fl(−→xl),−→x]θ ⇓ t. It means that, for i ∈ {1, . . . , l}, fi(−→xi)θ ⇓ ti with some ti
such that t = K[t1, . . . , tl,−→x θ]. From the induction hypothesis, we have ti →∗

A qfi(
−→xi). Then we

can show t →∗
A qe by a simple induction on the size of K.

(=⇒) Suppose t →∗
A qe. We prove that there exists a substitution θ such that eθ ⇓ t by

induction on the number of transition. Note that A contains ε-transitions and we also count
the number of ε-transitions.

Base Case.

Consider the base case. In this case, the transition rule C → qe with e = C is used. Hence the
proof is done.

Inductive Step.

Consider the inductive step. There are three cases the which transition is used at last:

• q∗ → qe with e = x,

• C(qe1 , . . . , qen) → qe with e = C(e1, . . . , en),

• qf → qe with e = f(x1, . . . , xn).

In the first case, we have eθ ⇓ t for θ such that θ(x) = t.
In the second case, t = C(t1, . . . , tn) and, for all i ∈ {1, . . . , n}, ti →∗

A qei . By induction
hypothesis, for all i ∈ {1, . . . , n}, there exists θi and eiθi ⇓ ti. By definition of ⇓, since the
language Vdl is affine, we have eθ ⇓ t using a substitution θ defined by the union of θ1 . . . θn.

In the third case, a transition qe′ → qf must be used previously because there are no other
transition rules whose right-hand side is qf . Then, by definition of A, we have t →∗ e′ where
f(−→p) =̂ e′ in R. By the induction hypothesis, we have e′θ′ ⇓ t for some θ′. Taking θ that
satisfies −→x θ = −→p θ′, eθ = f(−→x)θ ⇓ t. 2

A.5 Proof of Theorem 5: Soundness of ALGsc

Theorem (Soundness of ALGsc) Let P = (R,F , C,X) be a program and P c = (Rc,Fc, Cc,X c)
the derived program by ALGsc. Then, for every function symbol f ∈ F , [[f c]] is a complement
function of [[f]].

Proof Sketch. Here, we show a proof sketch only. That is because the proof of Theorem 5
follows that of Theorem 3 since ALGsc is an extension of ALGc. In ALGsc, we use the following
improvement techniques.

• Removing injective function calls

• Attaching the same constructors to complement rules

6

• Omitting the unary constructors

In the proof of Theorem 3, we consider two inputs v, v′ and two rules of view function r, r′

such that

r = f(−→p) =̂ K[f1(−→x1), . . . , fn(−→xn),−→x]

r′ = f(
−→
p′) =̂ K ′[f ′

1(
−→
x′

1), . . . , f
′
n′(

−→
x′

n′),
−→
x′]

and −→p θ = −→v ,
−→
p′ θ′ =

−→
v′ and [[f]](−→v) = [[f]](

−→
v′). That means, the range of right-hand side

expressions of r and r′ overlap. We conclude that rc and r′c have the same form as in ALGc

except for injective function calls are removed.
Note that [[f]](−→u) = [[f]](

−→
u′) implies −→u =

−→
u′ for any injective function f . Adding some

changes to the fourth case of the proof of Theorem 3, we prove the soundness of ALGsc in
almost the same way. 2

A.6 Proof of Theorem 6: Correctness of Inversion

The semantics of Vdl with where-clauses is formally defined as follows.

(Fun’)

f(−→p) =̂ (
−→
p′) where (−→x1) =̂ f ′

1(
−→
x′

1) . . . (−→xk) =̂ f ′
k(
−→
x′

k) ∈ RM

∃θ,−→p θ = −→v ∧ Dom(θ) = Vars(p)
f ′
1(
−→
x′

1θ) ⇓
−→
v′1 · · · f ′

k(
−→
x′

kθ) ⇓
−→
v′k

∃σ, (−→x1σ =
−→
v′1 · · · −→xkσ =

−→
v′k) (

−→
p′)θσ = −→u

f(−→v) ⇓ −→u

We write the relation ⇓ in a program P as ⇓P .
It is sufficient to prove the following lemma to prove Theorem 6 because the tupled programs

obtained by Algorithm 4 define injective functions.

Lemma For all −→v and −→u ,

f(−→v) ⇓P M
−→u ⇒ (f)−1(−→u) ⇓(P M)−1

−→v .

Proof. Note that the derivation relation of ⇓ on derivation trees is well-founded. We prove
by induction on the definition of ⇓,

Suppose that f(−→v) ⇓P M
−→u . By the definition of ⇓, there exists a rule of f in P M,

f(−→p) =̂ (
−→
p′) where (−→xi) =̂ f ′

i(
−→
x′

i) i ∈ {1, . . . , k}

and substitutions θ, σ such that

−→p θ = −→v

f ′
1(
−→
x′

1θ) ⇓P M
−→
v′1 , . . . , f

′
k(
−→
x′

kθ) ⇓P M
−→
v′k

−→x1σ =
−→
v′1 , . . . ,

−→xkσ =
−→
v′k

−→u =
−→
p′ θσ.

7

Note that k = 0 in the base case and k > 0 in the inductive step. By the definition of the
inversion algorithm, there exist a rule of (f)−1 formed as follows.

(f)−1(
−→
p′) =̂ (−→p) where (

−→
x′

i) =̂ (f ′
i)

−1(−→xi) i ∈ {1, . . . , k}

Obviously, there exists the substitution η that satisfies
−→
p′ η = −→u . Then, we have −→xiη =

−→
v′1 for all

i ∈ {1, . . . , k}. From the induction hypothesis, for all i ∈ {1, . . . , k}, we have (f ′
i)

−1(−→xiη)⇓(P M)−1

−→
x′

1θ because f ′
i(
−→
x′

1θ) ⇓P M
−→
v′1 and −→xiη =

−→
v′1 . Then, there exists −→w such that (f)−1(−→u) ⇓(P M)−1

−→w

and −→w = −→p ητ where τ is defined as
−→
x′

iτ =
−→
x′

iθ.
We prove −→p ητ = −→p θ. For any variable x ∈ Vars(−→p) \

∪
1≤i≤k Vars(

−→
x′

i), we have xη = xθ

because, by linearity of tupled programs and calculated these inverses, x ∈ Vars(
−→
p′) and

−→
p′ η =

−→
p′ θσ =

−→
u′ . For any variable x ∈

∪
1≤i≤k Vars(

−→
x′

i), we have xτ = xθ by the definition of τ . Then,
we have −→w = −→v , which implies (f)−1(−→u) ⇓(P M)−1

−→v . 2

A.7 Proof of Theorem 7

Theorem (Validity of View Update Checker) A view updating checking tree automaton
AU = (Q, CM, {qt0

fM},∆) in Definition 3 exactly accepts a view v such that (v, t0) is in the range
of fM.

Proof. We shall prove a general statement that v→∗
AU

qv′
fM if and only if (v, v′) is in the range

of fM where v′ is a subtree of t0. Note that v →∗
AU

q∗ for any v in TC and v →∗
AU

qf if and only
if v is in the range of f , which is proved in the similar way to Lemma 1.

(⇐=) We prove by induction on #funcall(fM) that for any subtree v′ of t0, fM(−→v0) ⇓ (v, v′) for
some −→v0 implies v →∗

AU
qv′
fM .

Base Case: #funcall(fM(−→v0)) = 0.

In this case, there exists a rule of the form

fM(−→p) =̂ (K[−→x],K ′[
−→
x′])

and −→p θ = −→v0 for some substitution θ. Since we have v′ = K[
−→
x′θ], by definition of AU, AU has

a transition rule
K[q∗, . . . , q∗] → qv′

fM .

Here, we have v = K[−→x θ] and xkθ →∗
AU

q∗ for all xk ∈ {−→x }. Therefore, we have v →∗
AU

qv′
fM .

Inductive Step: #funcall(fM(−→v0)) > 0.

In this case, there exists a rule of the form

fM(−→p) =̂ (K[
−→
t ,−→u ,−→x],K ′[

−→
t′ ,

−→
x′])

where (ti, t′i) =̂ f ′M
i (−→yi) i ∈ {1, . . . , n}

uj =̂ g′j(
−→zj) j ∈ {1, . . . ,m}

8

and substitutions θ and σ such that

−→p θ = −→v0

f ′
i
M(−→yi θ) ⇓ (wi, w

′
i) i ∈ {1, . . . , n}

g′j(
−→zj θ) ⇓ vj j ∈ {1, . . . ,m}

(K[
−→
t σ,−→u σ,−→x θ],K ′[

−→
t′ σ,

−→
x′θ]) = (v, v′).

By definition of AU, the automaton AU has a transition rule.

K[
−−→
qt′θσ
f ′M ,−→qg′ ,

−→q∗] → qv′
fM .

We have ujσ = vj →∗
AU

qg′j
and xkθ →∗

AU
q∗ for all j ∈ {1, . . . ,m} and xk ∈ {−→x }. Since

f ′
i
M(−→yi θ) ⇓ (wi, w

′
i), we have tiσ = wi →∗

AU
q
w′

i

f ′
i

M for all i ∈ {1, . . . , n} from the induction

hypothesis. Thus, from
−→
t′ θσ =

−→
t′ σ =

−→
w′, we have v = K[

−→
t σ,−→u σ,−→x θ] →∗

AU
qv′
fM .

(=⇒) We prove by induction on the number of transitions that for any subtree v′ of t0,
v →∗

AU
qs
fM implies fM(−→v0) ⇓ (v, v′) for some −→v0 .

Base Case.

Consider the case where there is only one transition. In this case, AU uses K[] → qv′
fM at last,

so v = K[]. This means that there should exist a rule of the form

fM(−→p) =̂ (K[],K ′[
−→
x′])

and a substitution θ such that
v′ = K ′[

−→
x′]θ.

Therefore, taking −→v0 as −→v0 = −→p θ, we have fM(−→v0) ⇓ (v, v′).

Inductive Step.

Suppose that the reduction of v →∗
AU

qv′
fM , in the last step, uses the following transition rule

K[
−−→
qt′θ
f ′M ,−→qg′ ,

−→q∗] → qv′
fM

where K ′[
−→
t′ ,

−→
x′]θ = v′ and

fM(−→p) =̂ (K[
−→
t ,−→u ,−→x],K ′[

−→
t′ ,

−→
x′])

where (ti, t′i) =̂ f ′
i
M(−→yi) i ∈ {1, . . . , n}

uj =̂ g′j(
−→zj) j ∈ {1, . . . ,m}.

Note that v has the form K[−→w ,−→v ,−→s] and v′ has the formed K ′[
−→
w′,

−→
s′] where

−→
w′ =

−→
t′ θ,

−→
s′ =

−→
x′θ,

wi →∗
AU

q
w′

i

f ′
i

M for all i ∈ {1, . . . , n} and vj →∗
AU

qg′j
for all j ∈ {1, . . . ,m}. Here, vj →∗

AU
qg′j

implies there exists a substitution σj such that g′j(
−→zj σj) ⇓ vj for any vj ∈ {1, . . . ,m}, and,

9

from the induction hypothesis, wi →∗
AU

q
w′

i

f ′
i

M implies there exists a substitution ηi such that

f ′
i
M(−→yi ηi) = (wi, w

′
i) for any wi ∈ {1, . . . , n}. We define a substitution τ as following.

τ(x) =

σj(x) if x ∈ {−→zj }
ηi(x) if x ∈ {−→yi}
θ(x) if x ∈ {

−→
x′}

sk if x = xk ∈ {−→x }

The above is well-defined because Vdl with where-clauses is affine. Then, we have [[fM]](−→p τ) =
(K[−→w ,−→v ,−→s],K ′[

−→
w′,

−→
s′]) = (v, v′). 2

10

